# ISOMORPHIC PATH DECOMPOSITIONS <br> OF $\lambda K_{n, n, n}\left(\lambda K_{n, n, n}^{*}\right)$ FOR ODD $n$ 

Hung-Chih Lee*, Ming-Ju Lee and Chiang Lin


#### Abstract

In this paper, the isomorphic path decompositions of $\lambda$-fold balanced complete tripartite graphs $\lambda K_{n, n, n}$ and $\lambda$-fold balanced complete tripartite digraphs $\lambda K_{n, n, n}^{*}$ are investigated for odd $n$. We prove that the obvious necessary conditions for such decompositions in the undirected case are also sufficient; we also provide sufficient conditions for the directed case.


## 1. Introduction and Preliminaries

Let $G$ and $H$ be multigraphs. If there exist edge-disjoint subgraphs $H_{1}, H_{2}, \cdots$, $H_{r}$ of $G$ such that every edge of $G$ appears in some $H_{i}$, and each $H_{i}(i=1,2, \cdots, r)$ is isomorphic to $H$, then we say that $G$ has an $H$-decomposition. For multidigraphs $G$ and $H, H$-decomposition of $G$ is similarly defined. The $H$-decomposition problems of a multigraph $G$ are widely investigated when $G$ is a complete graph or a complete $r$-partite graph and $H$ is a path or a cycle.

For a multigraph $G$, we use the symbol $G^{*}$ to denote the multidigraph obtained from $G$ by replacing each edge $e$ by two opposite arcs connecting the endvertices of $e$. Let $\lambda$ be a positive integer. For a multigraph $H$, we use the symbol $\lambda H$ to denote the multigraph obtained from $H$ by replacing each edge $e$ by $\lambda$ edges each of which has the same endvertices as $e$. Similarly, for a multidigraph $H$, we use the symbol $\lambda H$ to denote the multidigraph obtained from $H$ by replacing each arc $e$ by $\lambda$ arcs each of which has the same tail and head as $e$.

For a positive integer $k$, let $P_{k}$ denote a path on $k$ vertices and let $\overrightarrow{P_{k}}$ denote a directed path on $k$ vertices.

[^0]Let $K_{n}$ denote the complete graph on $n$ vertices. Tarsi [6] established criteria for $P_{k}$-decompositions of $\lambda K_{n}$. Recently Meszka and Skupien [4] solved the $\overrightarrow{P_{k}}$ decomposition problem of $\lambda K_{n}^{*}$.

Let $K_{m_{1}, m_{2}, \cdots, m_{r}}$ denote the complete $r$-partite graph with parts of sizes $m_{1}, m_{2}$, $\cdots, m_{r}$, respectively. In [7] Truszczyniski solved the $\overrightarrow{P_{k}}$-decomposition problem of $\lambda K_{m, n}^{*}$, and considered the $P_{k}$-decomposition of $\lambda K_{m, n}$. The $P_{k}$-decomposition problem of $K_{m, n}$ was completely solved by Parker [5]. The condition for $P_{4}{ }^{-}$ decomposition of $K_{m_{1}, m_{2}, \cdots, m_{r}}$ was obtained by Kumar [2].

In this paper, we consider the $P_{k}$-decomposition of $\lambda K_{n, n, n}$ and the $\overrightarrow{P_{k}}$-decomposition of $\lambda K_{n, n, n}^{*}$. For a multigraph (multidigraph, respectively) $G$, we also use $E(G)$ to denote the edge set (arc set, respectively) of $G$. We will obtain the following results.

Theorem A. Let $n$ be an odd integer. Then $\lambda K_{n, n, n}$ has a $P_{k}$-decomposition if and only if $2 \leq k \leq 3 n$ and $\left|E\left(\lambda K_{n, n, n}\right)\right| \equiv 0(\bmod k-1)$.

Theorem B. Let $n \geq 3$ be an odd integer. Suppose that $k$ is an integer such that $2 \leq k \leq 3 n-1$ and $\left|E\left(\lambda K_{n, n, n}^{*}\right)\right| \equiv 0(\bmod k-1)$. Then $\lambda K_{n, n, n}^{*}$ has a $\overrightarrow{P_{k}}$-decomposition.

For our discussions we need the following notations and terms. Let $G$ be a multigraph. Suppose that $W_{1}$ is a walk $v_{0} v_{1} \cdots v_{k}$ and $W_{2}$ is a walk $v_{k} v_{k+1} \cdots v_{l}$ in $G$. Then the sum of $W_{1}$ and $W_{2}$, denoted by $W_{1}+W_{2}$, is a walk $v_{0} v_{1} \cdots v_{k} v_{k+1} \cdots v_{l}$. Suppose that $W$ is a walk $v_{0} v_{1} \cdots v_{k}$ in $G$ (no matter $W$ is closed or not). The girth of $W$, denoted by $g(W)$, is the minimum number of edges between two appearances of the same vertex along $W$, i.e., the minimum of $j-i$ such that $v_{i}=v_{j}$ where $0 \leqslant i<j \leqslant k$. A trail is a walk without repeated edges. An Euler trail of $G$ is a trail in $G$ which traverses every edge of $G$. For multidigraphs, the following terms are similarly defined: the sum of directed walks, the girth of a directed walk, the directed trail, and the directed Euler trail.

In [6] Tarsi obtained the path decomposition of $\lambda K_{n}$ by cutting Euler trails into paths. We state the result of cutting method in the following remark. This remark was henceforth used in many papers, e.g. [4, 5, 7].

Remark 1.1. Suppose that a multigraph (multidigraph, respectively) $G$ contains an Euler trail (a directed Euler trail, respectively) with girth $g$, and that for $i=1,2, \cdots, r, k_{i}$ is an integer such that $2 \leq k_{i} \leq g$ and $|E(G)|=k_{1}+k_{2}+\cdots+$ $k_{r}-r$. Then $G$ can be decomposed into $r$ paths (directed paths, respectively) on $k_{1}, k_{2}, \cdots, k_{r}$ vertices, respectively.

Letting $k_{1}=k_{2}=\cdots=k_{r}=k$ in the above remark, we have the following.

Remark 1.2. Suppose that a multigraph (multidigraph, respectively) $G$ contains an Euler trail (a directed Euler trail, respectively) with girth $g$, and that $k$ is an integer such that $2 \leq k \leq g$ and $|E(G)| \equiv 0 \operatorname{lnod} k-1)$. Then $G$ has a $P_{k}$-decomposition ( $\overrightarrow{P_{k}}-$ decomposition, respectively $)$.

## 2. Path Decompositions of $\lambda K_{n, n, n}$ For ODD $n$

In this section, we investigate the $P_{k}$-decomposition of $\lambda K_{n, n, n}$ for odd $n$. For a multigraph $G$, and nonempty subsets $A, B$ of $V(G)$ with $A \cap B=\emptyset$, we use $G(A, B)$ to denote the set of all edges in $G$ which have one end in $A$ and the other end in $B$. We begin with some lemmas.

Lemma 2.1. Let $n \geq 3$ be an odd integer. Then
(1) $K_{n, n, n}$ has an Euler trail with girth $3 n-6$,
(2) $\lambda K_{n, n, n}$ has an Euler trail with girth $3 n-3$ if $\lambda \geq 2$.

Proof. For $\lambda=1,2,3, \cdots$, let $(A, B, C)$ be the tripartition of $\lambda K_{n, n, n}$ where $A=\left\{a_{0}, a_{1}, \cdots, a_{n-1}\right\}, B=\left\{b_{0}, b_{1}, \cdots, b_{n-1}\right\}$ and $C=\left\{c_{0}, c_{1}, \cdots, c_{n-1}\right\}$.

An edge joining $a_{i}$ and $b_{i+k}(i=0,1, \cdots, n-1 ; k=0,1, \cdots, n-1)$ where the indices are taken modulo $n$ is said to be an edge between $A$ and $B$ with label $k$. Similarly an edge joining $b_{i}$ and $c_{i+k}$ is said to be an edge between $B$ and $C$ with label $k$, and an edge joining $c_{i}$ and $a_{i+k}$ is said to be an edge between $C$ and $A$ with label $k$.
(1) Let $\lambda=1$. For each $i=0,1,2, \cdots, n-1$, let $D_{i}$ be the following walk in $K_{n, n, n}: a_{0} b_{i} c_{2 i} a_{1} b_{i+1} c_{2 i+1} a_{2} b_{i+2} c_{2 i+2} \cdots a_{n-1} b_{i+n-1} c_{2 i+n-1} a_{0}$ where the indices are taken modulo $n$. Note that each $D_{i}$ consists of all edges between $A$ and $B$ with label $i$, all edges between $B$ and $C$ with label $i$, and all edges between $C$ and $A$ with label $(1-2 i)(\bmod n)$. Thus $K_{n, n, n}(A, B)$ is a disjoint union of $D_{0}(A, B), D_{1}(A, B), \cdots, D_{n-1}(A, B)$, and $K_{n, n, n}(B, C)$ is a disjoint union of $D_{0}(B, C), D_{1}(B, C), \cdots, D_{n-1}(B, C)$. Also since $n$ is odd, we have $\{(1-2 i)(\bmod n): i=0,1,2, \cdots, n-1\}=\{0,1,2, \cdots, n-1\}$; thus $K_{n, n, n}(C, A)$ is a disjoint union of $D_{0}(C, A), D_{1}(C, A), \cdots, D_{n-1}(C, A)$. Hence $E\left(K_{n, n, n}\right)$ is a disjoint union of $E\left(D_{0}\right), E\left(D_{1}\right), \cdots, E\left(D_{n-1}\right)$. Let $T$ be the walk $D_{0}+D_{1}+\cdots+D_{n-1}$. We thus see that $T$ is an Euler trail in $K_{n, n, n}$.
Now we evaluate $g(T)$. Note that each $D_{i}$ is a Hamiltonian cycle of $K_{n, n, n}$. Let $i=0,1, \cdots, n-2$. Then $D_{i}+D_{i+1}$ is the trail $a_{0} b_{i} c_{2 i} a_{1} b_{i+1} c_{2 i+1}$
 $c_{2 i+1} a_{0}$. In $D_{i}+D_{i+1}$, there are $3 n-6$ edges between two appearances of
$c_{j}$ if $j=0,1,2, \cdots, 2 i-1,2 i+2,2 i+3, \cdots, n-1$, and more than $3 n-6$ edges between two appearances of any other vertex. Thus $g\left(D_{i}+D_{i+1}\right)=3 n-6$. Hence $g(T)=3 n-6$, and $T$ is a required Euler trail of $K_{n, n, n}$.
(2) Let $\lambda \geq 2$. For $i=0,1,2, \cdots, n-1$, let $D_{i}$ be, as in the proof of (1), the trail: $a_{0} b_{i} c_{2 i} a_{1} b_{i+1} c_{2 i+1} a_{2} b_{i+2} c_{2 i+2} \cdots a_{n-1} b_{i+n-1} c_{2 i+n-1} a_{0}$, and let $E_{i}$ be the trail: $a_{0} b_{i+1} c_{2 i+1} a_{1} b_{i+2} c_{2 i+2} a_{2} b_{i+3} c_{2 i+3} \cdots a_{n-1} b_{i+n} c_{2 i+n} a_{0}$ where the indices are taken modulo $n$.
Let $G=K_{n, n, n}$ be a subgraph of $\lambda K_{n, n, n}$. As in (1), $E(G)$ is a disjoint union of $E\left(D_{0}\right), E\left(D_{1}\right), \cdots, E\left(D_{n-1}\right)$. Note also that each $E_{i}$ consists of all edges between $A$ and $B$ with label $(i+1)(\bmod n)$, all edges between $B$ and $C$ with label $i$, and all edges between $C$ and $A$ with label $(-2 i)(\bmod n)$. By similar arguments as in (1), $E(G)$ is a disjoint union of $E\left(E_{0}\right), E\left(E_{1}\right), \cdots$, $E\left(E_{n-1}\right)$. Let $T$ be the following trail:

$$
\begin{aligned}
& \underbrace{D_{0}+D_{0}+\cdots+D_{0}}_{\lambda-1 \text { copies of } D_{0}}+E_{0}+\underbrace{D_{1}+D_{1}+\cdots+D_{1}}_{\lambda-1 \text { copies of } D_{1}}+E_{1}+\cdots \cdots \cdots \cdots \cdots \\
& +\underbrace{D_{n-2}+D_{n-2}+\cdots+D_{n-2}}_{\lambda-1 \text { copies of } D_{n-2}}+E_{n-2}+\underbrace{D_{n-1}+D_{n-1}+\cdots+D_{n-1}}_{\lambda-1 \text { copies of } D_{n-1}}+E_{n-1}
\end{aligned}
$$

Then $T$ is an Euler trail of $\lambda K_{n, n, n}$. To determine $g(T)$, we show in the following that (i) $g\left(D_{i}+D_{i}\right)=3 n$ for $i=0,1, \cdots, n-1$, (ii) $g\left(D_{i}+E_{i}\right)=3 n-3$ for $i=0,1, \cdots, n-1$, and (iii) $g\left(E_{i}+D_{i+1}\right)=3 n-3$ for $i=0,1, \cdots, n-2$. Note that both $D_{i}$ and $E_{i}$ are Hamiltonian cycles in $\lambda K_{n, n, n}$.
(i) This is trivial.
(ii) Let $i=0,1, \cdots, n-1$. We see that $D_{i}+E_{i}$ is the trail $a_{0} b_{i} c_{2 i} a_{1} b_{i+1} c_{2 i+1}$ $a_{2} b_{i+2} c_{2 i+2} \cdots a_{n-1} b_{i+n-1} c_{2 i+n-1} \quad a_{0} b_{i+1} c_{2 i+1} a_{1} b_{i+2} c_{2 i+2} \quad a_{2} b_{i+3} c_{2 i+3}$ $\cdots a_{n-1} b_{i} c_{2 i} a_{0}$. In $D_{i}+E_{i}$, there are $3 n-3$ edges between two appearances of $b_{j}$ if $j=0,1,2, \cdots, i-1, i+1, i+2, \cdots, n-1$, and of $c_{j}$ if $j=$ $0,1,2, \cdots, 2 i-1,2 i+1,2 i+2, \cdots, n-1$, and there are more than $3 n-3$ edges between two appearances of any other vertex. Thus $g\left(D_{i}+E_{i}\right)=3 n-3$.
(iii) Let $i=0,1, \cdots, n-2$. We see that $E_{i}+D_{i+1}$ is the trail $a_{0} b_{i+1} c_{2 i+1}$ $a_{1} b_{i+2} c_{2 i+2} a_{2} b_{i+3} c_{2 i+3} \cdots a_{n-1} b_{i} c_{2 i} a_{0} b_{i+1} c_{2 i+2} a_{1} b_{i+2} c_{2 i+3} a_{2} b_{i+3} c_{2 i+4}$ $\cdots a_{n-1} b_{i} c_{2 i+1} a_{0}$. In $E_{i}+D_{i+1}$ there are $3 n-3$ edges between two appearances of $c_{j}$ if $j=0,1,2, \cdots, 2 i, 2 i+2,2 i+3, \cdots, n-1$, and more than $3 n-3$ edges between two appearances of any other vertex. Thus $g\left(E_{i}+\right.$ $\left.D_{i+1}\right)=3 n-3$.

From (i), (ii) and (iii), we obtain $g(T)=3 n-3$. Thus $T$ is a required Euler trail of $\lambda K_{n, n, n}$.

Lemma 2.2. Let $G$ be a graph of order $t$ such that $G$ can be decomposed into Hamiltonian cycles. Suppose that $\lambda$ and $k$ are integers with $2 \leq k \leq t$ and $(k-1) \mid \lambda t$. Then $\lambda G$ has a $P_{k}$-decomposition.

Proof. Suppose that $G$ is decomposed into Hamiltonian cycles $H_{1}, H_{2}, \cdots, H_{v}$. Then $\lambda G$ is decomposed into $\lambda H_{1}, \lambda H_{2}, \cdots, \lambda H_{v}$. Since $k \leq t,(k-1) \mid \lambda t$, and $\lambda H_{i}(1 \leq i \leq v)$ has an Euler trail with girth $t$, each $\lambda H_{i}$ has a $P_{k}$-decomposition. Thus $\lambda G$ has a $P_{k}$-decomposition.

In the proof of (1) in Lemma 2.1, we see that if $n \geq 3$ is an odd integer, then $K_{n, n, n}$ can be decomposed into Hamiltonian cycles $D_{0}, D_{1}, \cdots, D_{n-1}$. More generally, Laskar and Auerbach [3] proved that the complete $m$-partite graph $K_{n, n, \cdots, n}$ can be decomposed into Hamiltonian cycles if and only if $(m-1) n$ is even. Thus $K_{n, n, n}$ can be decomposed into Hamiltonian cycles for any positive integer $n$. We are ready to prove the main result of this section.

Theorem A. Let $n$ be an odd integer. Then $\lambda K_{n, n, n}$ has a $P_{k}$-decomposition if and only if $2 \leq k \leq 3 n$ and $\left|E\left(\lambda K_{n, n, n}\right)\right| \equiv 0(\bmod k-1)$.

Proof. The necessity is trivial. Now we prove the sufficiency.
The case $n=1$ is trivial. We assume that $n \geq 3$. By the assumptions, $k$ is an integer with $2 \leq k \leq 3 n$ and $\left|E\left(\lambda K_{n, n, n}\right)\right| \equiv 0(\bmod k-1)$ (i.e., $\left.(k-1) \mid 3 \lambda n^{2}\right)$. We distinguish two cases for $\lambda=1$ and $\lambda \geq 2$.

Case 1. $\lambda=1$.
By Lemma 2.1(1), $K_{n, n, n}$ has an Euler trail with girth $3 n-6$. Hence by Remark 1.2, $K_{n, n, n}$ has a $P_{k}$-decomposition if $k \leq 3 n-6$. So we only need to consider $3 n-5 \leq k \leq 3 n$. Since $n$ is odd and $(k-1) \mid 3 n^{2}$, we have that $k$ is even. So it remains to consider the following subcases: $k=3 n-5,3 n-3,3 n-1$.
Subcase 1.1. $k=3 n-5$.
From the assumption that $(3 n-6) \mid 3 n^{2}$, we have $(n-2) \mid n^{2}$, which implies $(n-2) \mid 4$ for $4=n^{2}-(n+2)(n-2)$. This implies $n-2=1$ since $n$ is odd. Thus $n=3$ and $k=4$. As mentioned in the paragraph preceding this theorem, $K_{3,3,3}$ can be decomposed into Hamiltonian cycles. Then by Lemma 2.2, $K_{3,3,3}$ has $P_{4}$-decomposition. This completes Subcase 1.1.
Subcase 1.2. $k=3 n-3$.
From the assumption that $(3 n-4) \mid 3 n^{2}$, we have $(3 n-4) \mid 16$ for $16=3 \cdot 3 n^{2}-$ $(3 n+4)(3 n-4)$. This is impossible since $n$ is odd.
Subcase 1.3. $k=3 n-1$.
From the assumption that $(3 n-2) \mid 3 n^{2}$, we have $(3 n-2) \mid 4$ since $4=3 \cdot 3 n^{2}-$ $(3 n+2)(3 n-2)$. Thus $n=1$ since $n$ is odd. This is a contradiction since we assumed that $n \geq 3$.

## Case 2. $\lambda \geq 2$.

By Lemma 2.1(2), $\lambda K_{n, n, n}$ has an Euler trail with girth $3 n-3$. Hence $\lambda K_{n, n, n}$ has a $P_{k}$-decomposition if $k \leq 3 n-3$. So we only need to consider $k=3 n-$ $2,3 n-1,3 n$. We first show that $(k-1) \mid 3 \lambda$ for these $k$.
Subcase 2.1. $k=3 n-2$.
From the assumption $(3 n-3) \mid 3 \lambda n^{2}$, we have $(n-1) \mid \lambda n^{2}$, which implies $(n-1) \mid \lambda$ since $\operatorname{gcd}(n-1, n)=1$. Thus $3(n-1) \mid 3 \lambda$ (i.e., $(k-1) \mid 3 \lambda$ ).
Subcase 2.2. $k=3 n-1$.
Since $n$ is odd, it is easy to see that $\operatorname{gcd}(3 n-2, n)=1$, and hence $\operatorname{gcd}(3 n-$ $\left.2, n^{2}\right)=1$. Thus the assumption $(3 n-2) \mid 3 \lambda n^{2}$ implies $(3 n-2) \mid 3 \lambda($ i.e., $(k-1) \mid 3 \lambda)$. Subcase 2.3. $k=3 n$.

It is trivial that $\operatorname{gcd}(3 n-1, n)=1$, and hence $\operatorname{gcd}\left(3 n-1, n^{2}\right)=1$. Thus the assumption $(3 n-1) \mid 3 \lambda n^{2}$ implies $(3 n-1) \mid 3 \lambda$ (i.e., $\left.(k-1) \mid 3 \lambda\right)$.

Now we have that $K_{n, n, n}$ has order $3 n$ and can be decomposed into Hamiltonian cycles, and that $k \leq 3 n,(k-1) \mid \lambda \cdot 3 n$. Thus by Lemma $2.2, \lambda K_{n, n, n}$ has a $P_{k^{-}}$ decomposition. This completes Case 2.

## 3. Directed Path Decompositions of $\lambda K_{n, n, n}^{*}$ For ODD $n$

In this section, we investigate the $\overrightarrow{P_{k}}$-decomposition of $\lambda K_{n, n, n}^{*}$ for odd $n$. Let us begin with $n=1$. First the result for the decomposition of $\lambda K_{n}^{*}$ into directed Hamiltonian paths is the following [1, 4]: $\lambda K_{n}^{*}$ can be decomposed into directed Hamiltonian paths if and only if neither $n=3$ and $\lambda$ is odd nor $n=5$ and $\lambda=1$. It follows from the case $n=3$ that $\lambda K_{3}^{*}$ has a $\overrightarrow{P_{3}}$-decomposition if and only if $\lambda$ is even. Thus we can see that $\lambda K_{1,1,1}^{*}=\lambda K_{3}^{*}$ has a $\overrightarrow{P_{k}}$-decomposition if and only if either $k=2$ or $k=3$ and $\lambda$ is even.

Remark 3.1. If a multigraph $G$ has a $P_{k}$-decomposition, then $G^{*}$ has a $\overrightarrow{P_{k}}$ decomposition.

For a multidigraph $G$ and nonempty subsets $A, B$ of $V(G)$ with $A \cap B=\emptyset$, let $G(A, B)$ denote the set of all arcs of $G$ which have their tails in $A$ and their heads in $B$.

Lemma 3.2. Let $n \geq 3$ be an odd integer. Then $\lambda K_{n, n, n}^{*}$ has a directed Euler trail with girth $3 n-4$.

Proof. Let $(A, B, C)$ be the tripartition of $\lambda K_{n, n, n}^{*}$ where $A=\left\{a_{0}, a_{1}, \cdots\right.$, $\left.a_{n-1}\right\}, B=\left\{b_{0}, b_{1}, \cdots, b_{n-1}\right\}$ and $C=\left\{c_{0}, c_{1}, \cdots, c_{n-1}\right\}$.

An arc joining $a_{i}$ to $b_{i+k}(i=0,1, \cdots, n-1, k=0,1, \cdots, n-1)$ where the indices are taken modulo $n$ is said to be an arc from $A$ to $B$ with label $k$. An arc from $B$ to $C$ with label $k$ and an arc from $C$ to $A$ with label $k$ are similarly defined.

For $i=0,1,2, \cdots, n-1$, let $\vec{D}_{i}$ be the directed trail: $a_{0} \rightarrow b_{i} \rightarrow c_{2 i} \rightarrow a_{1} \rightarrow$ $b_{i+1} \rightarrow c_{2 i+1} \rightarrow a_{2} \rightarrow b_{i+2} \rightarrow c_{2 i+2} \rightarrow \cdots \cdots \rightarrow a_{n-1} \rightarrow b_{i+n-1} \rightarrow c_{2 i+n-1} \rightarrow$ $a_{0}$, and let $\vec{F}_{i}$ be the directed trail: $a_{0} \rightarrow c_{2 i+1} \rightarrow b_{i+1} \rightarrow a_{1} \rightarrow c_{2 i+2} \rightarrow b_{i+2} \rightarrow$ $a_{2} \rightarrow c_{2 i+3} \rightarrow b_{i+3} \rightarrow \cdots \cdots \rightarrow a_{n-1} \rightarrow c_{2 i+n} \rightarrow b_{i+n} \rightarrow a_{0}$ where the indices are taken modulo $n$.

Let $G=K_{n, n, n}^{*}$ be a subgraph of $\lambda K_{n, n, n}^{*}$. Note that each $\overrightarrow{D_{i}}$ consists of the following arcs in $G$ : all arcs from $A$ to $B$ with label $i$, all arcs from $B$ to $C$ with label $i$, and all $\operatorname{arcs}$ from $C$ to $A$ with label $(1-2 i)(\bmod n)$. Thus $G(A, B)$ is a disjoint union of $\overrightarrow{D_{0}}(A, B), \overrightarrow{D_{1}}(A, B), \cdots, \vec{D}_{n-1}(A, B)$, and $G(B, C)$ is a disjoint union of $\overrightarrow{D_{0}}(B, C), \overrightarrow{D_{1}}(B, C), \cdots, \vec{D}_{n-1}(B, C)$. And since $n$ is odd, we have $\{(1-2 i)(\bmod n): i=0,1,2, \cdots, n-1\}=\{0,1,2, \cdots, n-1\}$; thus $G(C, A)$ is a disjoint union of $\overrightarrow{D_{0}}(C, A), \overrightarrow{D_{1}}(C, A), \cdots, \vec{D}_{n-1}(C, A)$. Hence $G(A, B) \cup G(B, C) \cup G(C, A)=E\left(\overrightarrow{D_{0}}\right) \cup E\left(\overrightarrow{D_{1}}\right) \cup \cdots \cup E\left(\vec{D}_{n-1}\right)$. By similar arguments, we have $G(A, C) \cup G(C, B) \cup G(B, A)=E\left(\overrightarrow{F_{0}}\right) \cup E\left(\overrightarrow{F_{1}}\right) \cup \cdots \cup$ $E\left(\vec{F}_{n-1}\right)$. Therefore $E(G)$ is a disjoint union of $E\left(\overrightarrow{D_{0}}\right), E\left(\overrightarrow{D_{1}}\right), \cdots, E\left(\vec{D}_{n-1}\right)$, $E\left(\vec{F}_{0}\right), E\left(\vec{F}_{1}\right), \cdots, E\left(\vec{F}_{n-1}\right)$.

Let $\vec{T}$ be the following directed trail:

$$
\underbrace{\overrightarrow{D_{0}}+\overrightarrow{D_{0}}+\cdots+\overrightarrow{D_{0}}}_{\lambda \text { copies of } \overrightarrow{D_{0}}}+\underbrace{\overrightarrow{F_{0}}+\overrightarrow{F_{0}}+\cdots+\overrightarrow{F_{0}}}_{\lambda \text { copies of } \overrightarrow{F_{0}}}+\underbrace{\overrightarrow{D_{1}}+\overrightarrow{D_{1}}+\cdots+\overrightarrow{D_{1}}}_{\lambda \text { copies of } \overrightarrow{D_{1}}}+\underbrace{\overrightarrow{F_{1}}+\overrightarrow{F_{1}}+\cdots+\overrightarrow{F_{1}}}_{\lambda \text { copies of } \overrightarrow{F_{1}}}+
$$



We see that $\vec{T}$ is a directed Euler trail of $\lambda K_{n, n, n}^{*}$.
To evaluate $g(\vec{T})$, we show in the following that for $i=0,1, \cdots, n-1$ we have (i) $g\left(\vec{D}_{i}+\vec{D}_{i}\right)=3 n, g\left(\vec{F}_{i}+\vec{F}_{i}\right)=3 n$ (ii) $g\left(\vec{D}_{i}+\vec{F}_{i}\right)=3 n-4$ and (iii) $g\left(\vec{F}_{i}+\vec{D}_{i+1}\right)=3 n-2$. Note that each $\vec{D}_{i}$ is a directed Hamiltonian cycle of $\lambda K_{n, n, n}^{*}$, and so is each $\vec{F}_{i}$.
(i) This is trivial.
(ii) We see that $\vec{D}_{i}+\vec{F}_{i}$ is the directed trail $a_{0} \rightarrow b_{i} \rightarrow c_{2 i} \rightarrow a_{1} \rightarrow b_{i+1} \rightarrow$ $c_{2 i+1} \rightarrow \cdots \rightarrow a_{n-1} \rightarrow b_{i+n-1} \rightarrow c_{2 i+n-1} \rightarrow a_{0} \rightarrow c_{2 i+1} \rightarrow b_{i+1} \rightarrow a_{1} \rightarrow$ $c_{2 i+2} \rightarrow b_{i+2} \rightarrow \cdots \rightarrow a_{n-1} \rightarrow c_{2 i} \rightarrow b_{i} \rightarrow a_{0}$. In $\vec{D}_{i}+\vec{F}_{i}$, there are $3 n-4$ arcs between two appearances of $c_{j}$ if $j=0,1, \cdots, 2 i-1,2 i+1, \cdots, n-1$, and more than $3 n-4$ arcs between two appearances of any other vertex. Thus

$$
g\left(\vec{D}_{i}+\vec{F}_{i}\right)=3 n-4 .
$$

(iii) $\vec{F}_{i}+\vec{D}_{i+1}$ is the directed trail $a_{0} \rightarrow c_{2 i+1} \rightarrow b_{i+1} \rightarrow a_{1} \rightarrow c_{2 i+2} \rightarrow b_{i+2} \rightarrow$ $\cdots \rightarrow a_{n-1} \rightarrow c_{2 i} \rightarrow b_{i} \rightarrow a_{0} \rightarrow b_{i+1} \rightarrow c_{2 i+2} \rightarrow a_{1} \rightarrow b_{i+2} \rightarrow c_{2 i+3} \rightarrow$ $\cdots \rightarrow a_{n-1} \rightarrow b_{i} \rightarrow c_{2 i+1} \rightarrow a_{0}$. In $\vec{F}_{i}+\vec{D}_{i+1}$, there are $3 n-2$ arcs between two appearances of $c_{j}$ if $j=0,1, \cdots, 2 i, 2 i+2, \cdots, n-1$, and more than $3 n-2$ arcs between two appearances of any other vertex. Thus $g\left(\vec{F}_{i}+\vec{D}_{i+1}\right)=3 n-2$.

From (i), (ii) and (iii), we obtain $g(\vec{T})=3 n-4$.
Now we prove the main result of this section.
Theorem B. Let $n \geq 3$ be an odd integer. Suppose that $k$ is a positive integer such that $2 \leq k \leq 3 n-1$ and $\left|E\left(\lambda K_{n, n, n}^{*}\right)\right| \equiv 0(\bmod k-1)$. Then $\lambda K_{n, n, n}^{*}$ has a $\overrightarrow{P_{k}}$-decomposition.

Proof. Since $\left|E\left(\lambda K_{n, n, n}^{*}\right)\right| \equiv 0(\bmod k-1)$ (i.e., $\left.(k-1) \mid 6 \lambda n^{2}\right)$, by Lemma 3.2 and Remark $1.2 \lambda K_{n, n, n}^{*}$ has a $\overrightarrow{P_{k}}$-decomposition if $2 \leq k \leq 3 n-4$. So we only need to consider $3 n-3 \leq k \leq 3 n-1$. We distinguish two cases: Case 1 . $k=3 n-3$ or $k=3 n-1$, Case 2 . $k=3 n-2$.

Case 1. $k=3 n-3$ or $k=3 n-1$.
Then $k-1$ is odd. Thus $(k-1) \mid 6 \lambda n^{2}$ implies $(k-1) \mid 3 \lambda n^{2}$. By Theorem A and Remark 3.1, $\lambda K_{n, n, n}^{*}$ has a $\vec{P}_{k}$-decomposition.

Case 2. $k=3 n-2$.
From the assumption $(3 n-3) \mid 6 \lambda n^{2}$, we have $(n-1) \mid 2 \lambda n^{2}$, which implies $(n-1) \mid 2 \lambda$ since $\operatorname{gcd}(n, n-1)=1$. Hence we have $(k-1) \mid 6 \lambda$.

For $i=0,1, \cdots, n-1$, let $\vec{D}_{i}, \vec{F}_{i}$ be the directed trails defined in Lemma 3.2, and let $\vec{W}_{i}$ be the following directed trail:
$\underbrace{\vec{F}_{i}+\cdots+\vec{F}_{i}}+\underbrace{\vec{D}_{i+1}+\cdots+\vec{D}_{i+1}}$, where the indices are taken modulo $n$. $\lambda$ copies of $\vec{F}_{i} \quad \lambda$ copies of $\vec{D}_{i+1}$
In the proof of Lemma 3.2, we see that a subgraph $K_{n, n, n}^{*}$ of $\lambda K_{n, n, n}^{*}$ can be decomposed into $\overrightarrow{D_{0}}, \overrightarrow{D_{1}}, \cdots, \vec{D}_{n-1}, \overrightarrow{F_{0}}, \overrightarrow{F_{1}}, \cdots, \vec{F}_{n-1}$. Thus $\lambda K_{n, n, n}^{*}$ can be decomposed into $\vec{W}_{0}, \vec{W}_{1}, \cdots, \vec{W}_{n-1}$.

Also from (iii) in the proof of Lemma 3.2, we have $g\left(\vec{F}_{i}+\vec{D}_{i+1}\right)=3 n-2$ for $i=0,1, \cdots, n-1$. Thus $g\left(\vec{W}_{i}\right)=3 n-2$ for $i=0,1, \cdots, n-1$. Now we see that $k \leq g\left(\vec{W}_{i}\right),(k-1) \mid 6 \lambda$ and the length of $\vec{W}_{i}$ is $6 n \lambda$. Thus we can cut
each $\vec{W}_{i}$ from the starting vertex into $6 n \lambda /(k-1)$ directed paths of length $k-1$. Hence $\lambda K_{n, n, n}^{*}$ is decomposed into directed paths of order $k$.

For the $\overrightarrow{P_{k}}$-decomposition of $\lambda K_{n, n, n}^{*}$, the trivial necessities are $2 \leq k \leq 3 n$ and $\left|E\left(\lambda K_{n, n, n}^{*}\right)\right| \equiv 0(\bmod k-1)$. Comparing with Theorem B, we see that for odd $n$ the undetermined case for the sufficiency is $k=3 n$.

Using Remark 1.1, we can decompose a multigraph (multidigraph, respectively) into paths (directed paths, respectively) which need not to have equal orders. Thus Lemmas 2.1 and 3.2 imply the following:

1. Let $n \geq 3$ be an odd integer. Suppose that for $i=1,2, \cdots, r, k_{i}$ is an integer such that $2 \leq k_{i} \leq 3 n-6$ and $\left|E\left(K_{n, n, n}\right)\right|=k_{1}+k_{2}+\cdots+k_{r}-$ $r$. Then $K_{n, n, n}$ can be decomposed into $r$ paths on $k_{1}, k_{2}, \cdots, k_{r}$ vertices, respectively.
2. Let $n \geq 3$ be an odd integer and $\lambda \geq 2$ be an integer. Suppose that for $i=1,2, \cdots, r, k_{i}$ is an integer such that $2 \leq k_{i} \leq 3 n-3$ and $\left|E\left(\lambda K_{n, n, n}\right)\right|=$ $k_{1}+k_{2}+\cdots+k_{r}-r$. Then $\lambda K_{n, n, n}$ can be decomposed into $r$ paths on $k_{1}, k_{2}, \cdots, k_{r}$ vertices, respectively.
3. Let $n \geq 3$ be an odd integer. Suppose that for $i=1,2, \cdots, r, k_{i}$ is an integer such that $2 \leq k_{i} \leq 3 n-4$ and $\left|E\left(\lambda K_{n, n, n}^{*}\right)\right|=k_{1}+k_{2}+\cdots+k_{r}-r$. Then $\lambda K_{n, n, n}^{*}$ can be decomposed into $r$ paths on $k_{1}, k_{2}, \cdots, k_{r}$ vertices, respectively.

The decompositions into paths with even less restrictive orders are much more challenging.

In this paper the $P_{k}$-decomposition of $\lambda K_{n, n, n}$ and the $\overrightarrow{P_{k}}$-decomposition of $\lambda K_{n, n, n}^{*}$ have been studied for odd $n$. We use the property $\operatorname{gcd}(2, n)=1$ in Lemmas 2.1 and 3.2. We do not have this advantage for even $n$. Up to now we can only deal with this case for even $\lambda$.

## Acknowledgment

The Authors are grateful to the referee for the helpful comments which improve the readability of this paper.

## References

1. J. Bosák, Decompositions of Graphs, Kluwer, Dordrecht, Netherlands, 1990.
2. C. S. Kumar, On $P_{4}$-decomposition of graphs, Taiwanese J. Math. 7 (2003), 657664.
3. R. Laskar and B. Auerbach, On decomposition of $r$-partite graphs into edge disjoint Hamilton circuits, Discrete Math. 14 (1976), 265-268.
4. M. Meszka and Z. Skupień, Decompositions of a complete multidigraph into nonhamiltonian paths, J. Graph Theory 51 (2006), 82-91.
5. C. A. Parker, Complete bipartite graph path decompositions, Thesis, Auburn University, Auburn, Alabama 1998.
6. M. Tarsi, Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs, J. Combin. Theory, Ser. A 34 (1983), 60-70.
7. M. Truszczyński, Note on the decomposition of $\lambda K_{m, n}\left(\lambda K_{m, n}^{*}\right)$ into paths, Discrete Math. 55 (1985), 89-96.

Hung-Chih Lee<br>Department of Information Technology,<br>Ling Tung University,<br>Taichung, Taiwan 408, R.O.C.<br>E-mail: birdy@mail.ltu.edu.tw<br>Ming-Ju Lee<br>Jen-Teh Junior College of Medicine,<br>Nursing and Management,<br>Houlong, Miaoli,<br>Taiwan 356, R.O.C.<br>Chiang Lin<br>Department of Mathematics,<br>National Central University,<br>Chung-Li, Taiwan 320, R.O.C.<br>E-mail: chiang@math.ncu.edu.tw


[^0]:    Received October 16, 2006, accepted August 23, 2007.
    Communicated by Xu-Ding Zhu.
    2000 Mathematics Subject Classification: 05C38, 05C70.
    Key words and phrases: Decomposition, Path, Complete tripartite graph.
    This research was supported by the NSC of R.O.C. under grant 94-2115-M-008-014.
    *Corresponding author.

