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ISOMORPHIC PATH DECOMPOSITIONS
OF λKn,n,n (λK∗

n,n,n) FOR ODD n

Hung-Chih Lee*, Ming-Ju Lee and Chiang Lin

Abstract. In this paper, the isomorphic path decompositions of λ-fold balanced
complete tripartite graphs λKn,n,n and λ-fold balanced complete tripartite
digraphs λK∗

n,n,n are investigated for odd n. We prove that the obvious
necessary conditions for such decompositions in the undirected case are also
sufficient; we also provide sufficient conditions for the directed case.

1. INTRODUCTION AND PRELIMINARIES

Let G and H be multigraphs. If there exist edge-disjoint subgraphs H1, H2, · · · ,
Hr of G such that every edge of G appears in some Hi, and each Hi (i = 1, 2, · · · , r)
is isomorphic to H , then we say that G has an H-decomposition. For multidi-
graphs G and H , H-decomposition of G is similarly defined. The H-decomposition
problems of a multigraph G are widely investigated when G is a complete graph or
a complete r-partite graph and H is a path or a cycle.

For a multigraph G, we use the symbol G∗ to denote the multidigraph obtained
from G by replacing each edge e by two opposite arcs connecting the endvertices
of e. Let λ be a positive integer. For a multigraph H , we use the symbol λH to
denote the multigraph obtained from H by replacing each edge e by λ edges each
of which has the same endvertices as e. Similarly, for a multidigraph H , we use
the symbol λH to denote the multidigraph obtained from H by replacing each arc
e by λ arcs each of which has the same tail and head as e.

For a positive integer k, let Pk denote a path on k vertices and let
−→
Pk denote a

directed path on k vertices.
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Let Kn denote the complete graph on n vertices. Tarsi [6] established criteria
for Pk-decompositions of λKn. Recently Meszka and Skupień [4] solved the

−→
Pk-

decomposition problem of λK∗
n.

Let Km1,m2,··· ,mr denote the complete r-partite graph with parts of sizes m1, m2,

· · · , mr, respectively. In [7] Truszczyński solved the
−→
Pk-decomposition problem of

λK∗
m,n, and considered the Pk-decomposition of λKm,n. The Pk-decomposition

problem of Km,n was completely solved by Parker [5]. The condition for P4-
decomposition of Km1,m2,··· ,mr was obtained by Kumar [2].

In this paper, we consider the Pk-decomposition of λKn,n,n and the−→
Pk-decomposition of λK∗

n,n,n. For a multigraph (multidigraph, respectively) G,
we also use E(G) to denote the edge set (arc set, respectively) of G. We will obtain
the following results.

Theorem A. Let n be an odd integer. Then λKn,n,n has a Pk-decomposition
if and only if 2 ≤ k ≤ 3n and |E(λKn,n,n)| ≡ 0 (mod k − 1).

Theorem B. Let n ≥ 3 be an odd integer. Suppose that k is an integer such
that 2 ≤ k ≤ 3n − 1 and |E(λK ∗

n,n,n)| ≡ 0 (mod k − 1). Then λK∗
n,n,n has a−→

Pk-decomposition.

For our discussions we need the following notations and terms. Let G be a multi-
graph. Suppose that W1 is a walk v0v1 · · ·vk and W2 is a walk vkvk+1 · · ·vl in G.
Then the sum of W1 and W2, denoted by W1+W2, is a walk v0v1 · · ·vkvk+1 · · ·vl.
Suppose that W is a walk v0v1 · · ·vk in G (no matter W is closed or not). The
girth of W , denoted by g(W ), is the minimum number of edges between two ap-
pearances of the same vertex along W , i.e., the minimum of j − i such that vi = vj

where 0 � i < j � k. A trail is a walk without repeated edges. An Euler trail of
G is a trail in G which traverses every edge of G. For multidigraphs, the following
terms are similarly defined: the sum of directed walks, the girth of a directed walk,
the directed trail, and the directed Euler trail.

In [6] Tarsi obtained the path decomposition of λKn by cutting Euler trails into
paths. We state the result of cutting method in the following remark. This remark
was henceforth used in many papers, e.g. [4, 5, 7].

Remark 1.1. Suppose that a multigraph (multidigraph, respectively) G

contains an Euler trail (a directed Euler trail, respectively) with girth g, and that
for i = 1, 2, · · · , r, ki is an integer such that 2 ≤ ki ≤ g and |E(G)| = k1+k2+· · ·+
kr − r. Then G can be decomposed into r paths (directed paths, respectively)
on k1, k2, · · · , kr vertices, respectively.

Letting k1 = k2 = · · · = kr = k in the above remark, we have the following.
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Remark 1.2. Suppose that a multigraph (multidigraph, respectively) G

contains an Euler trail (a directed Euler trail, respectively) with girth g, and
that k is an integer such that 2 ≤ k ≤ g and |E(G)| ≡ 0 (mod k − 1). Then G has
a Pk-decomposition (

−→
Pk − decomposition, respectively).

2. PATH DECOMPOSITIONS OF λKn,n,n FOR ODD n

In this section, we investigate the Pk-decomposition of λKn,n,n for odd n. For
a multigraph G, and nonempty subsets A, B of V (G) with A ∩ B = ∅, we use
G(A, B) to denote the set of all edges in G which have one end in A and the other
end in B. We begin with some lemmas.

Lemma 2.1. Let n ≥ 3 be an odd integer. Then

(1) Kn,n,n has an Euler trail with girth 3n − 6,
(2) λKn,n,n has an Euler trail with girth 3n − 3 if λ ≥ 2.

Proof. For λ = 1, 2, 3, · · · , let (A, B, C) be the tripartition of λKn,n,n where
A = {a0, a1, · · · , an−1}, B = {b0, b1, · · · , bn−1} and C = {c0, c1, · · · , cn−1}.

An edge joining ai and bi+k (i = 0, 1, · · · , n − 1; k = 0, 1, · · · , n − 1) where
the indices are taken modulo n is said to be an edge between A and B with label k.
Similarly an edge joining bi and ci+k is said to be an edge between B and C with
label k, and an edge joining ci and ai+k is said to be an edge between C and A
with label k.

(1) Let λ = 1. For each i = 0, 1, 2, · · · , n − 1, let Di be the following walk in
Kn,n,n: a0bic2ia1bi+1c2i+1a2bi+2c2i+2 · · ·an−1bi+n−1c2i+n−1a0 where the
indices are taken modulo n. Note that each Di consists of all edges between
A and B with label i, all edges between B and C with label i, and all edges
between C and A with label (1−2i)(mod n). Thus Kn,n,n(A, B) is a disjoint
union of D0(A, B), D1(A, B),· · · , Dn−1(A, B), and Kn,n,n(B, C) is a dis-
joint union of D0(B, C), D1(B, C), · · · , Dn−1(B, C). Also since n is odd,
we have {(1−2i)(mod n) : i = 0, 1, 2, · · · , n−1} = {0, 1, 2, · · · , n−1}; thus
Kn,n,n(C, A) is a disjoint union of D0(C, A), D1(C, A), · · · , Dn−1(C, A).
Hence E(Kn,n,n) is a disjoint union of E(D0), E(D1),· · · , E(Dn−1). Let
T be the walk D0 + D1 + · · ·+ Dn−1. We thus see that T is an Euler trail
in Kn,n,n.

Now we evaluate g(T ). Note that each Di is a Hamiltonian cycle of Kn,n,n.
Let i = 0, 1, · · · , n − 2. Then Di + Di+1 is the trail a0bic2i a1bi+1c2i+1

a2bi+2c2i+2 · · · an−1bi+n−1 c2i+n−1 a0bi+1c2i+2 a1bi+2c2i+3 · · · an−1bi

c2i+1 a0. In Di + Di+1, there are 3n− 6 edges between two appearances of
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cj if j = 0, 1, 2, · · · , 2i−1, 2i+2, 2i+3, · · · , n−1, and more than 3n−6 edges
between two appearances of any other vertex. Thus g(Di + Di+1) = 3n− 6.
Hence g(T ) = 3n − 6, and T is a required Euler trail of Kn,n,n.

(2) Let λ ≥ 2. For i = 0, 1, 2, · · · , n − 1, let Di be, as in the proof of (1), the
trail: a0bic2ia1bi+1c2i+1a2bi+2c2i+2 · · ·an−1bi+n−1c2i+n−1a0, and let Ei be
the trail: a0bi+1c2i+1a1bi+2c2i+2a2bi+3c2i+3 · · ·an−1bi+nc2i+na0 where the
indices are taken modulo n.
Let G = Kn,n,n be a subgraph of λKn,n,n. As in (1), E(G) is a disjoint
union of E(D0), E(D1),· · · , E(Dn−1). Note also that each Ei consists of all
edges between A and B with label (i + 1)(mod n), all edges between B and
C with label i, and all edges between C and A with label (−2i)(mod n). By
similar arguments as in (1), E(G) is a disjoint union of E(E0), E(E1),· · · ,
E(En−1). Let T be the following trail:

D0 + D0 + · · ·+ D0
︸ ︷︷ ︸

λ−1 copies of D0

+E0+D1 + D1 + · · ·+ D1
︸ ︷︷ ︸

λ−1 copies of D1

+E1+· · · · · · · · · · · · · · · · · ·

+ Dn−2+Dn−2+· · ·+Dn−2
︸ ︷︷ ︸

λ−1 copies of Dn−2

+En−2+Dn−1+Dn−1+· · ·+ Dn−1
︸ ︷︷ ︸

λ−1 copies of Dn−1

+En−1.

Then T is an Euler trail of λKn,n,n. To determine g(T ), we show in the
following that (i) g(Di+Di) = 3n for i = 0, 1, · · · , n−1, (ii) g(Di+Ei) = 3n−3
for i = 0, 1, · · · , n − 1, and (iii) g(Ei + Di+1) = 3n − 3 for i = 0, 1, · · · , n − 2.
Note that both Di and Ei are Hamiltonian cycles in λKn,n,n.

(i) This is trivial.
(ii) Let i = 0, 1, · · · , n− 1. We see that Di + Ei is the trail a0bic2i a1bi+1c2i+1

a2bi+2c2i+2 · · · an−1 bi+n−1c2i+n−1 a0bi+1c2i+1 a1bi+2c2i+2 a2bi+3c2i+3

· · · an−1bic2ia0. In Di+Ei, there are 3n−3 edges between two appearances
of bj if j = 0, 1, 2, · · · , i − 1, i + 1, i + 2, · · · , n − 1, and of cj if j =
0, 1, 2, · · · , 2i−1, 2i+1, 2i+2, · · · , n−1, and there are more than 3n−3 edges
between two appearances of any other vertex. Thus g(Di+Ei)=3n−3.

(iii) Let i = 0, 1, · · · , n − 2. We see that Ei + Di+1 is the trail a0bi+1c2i+1

a1bi+2c2i+2 a2bi+3c2i+3 · · ·an−1bic2i a0bi+1c2i+2 a1bi+2c2i+3 a2bi+3c2i+4

· · · an−1 bi c2i+1 a0. In Ei + Di+1 there are 3n − 3 edges between two
appearances of cj if j = 0, 1, 2, · · · , 2i, 2i + 2, 2i + 3, · · · , n − 1, and more
than 3n−3 edges between two appearances of any other vertex. Thus g(Ei+
Di+1) = 3n − 3.

From (i), (ii) and (iii), we obtain g(T ) = 3n − 3. Thus T is a required Euler
trail of λKn,n,n.
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Lemma 2.2. Let G be a graph of order t such that G can be decomposed
into Hamiltonian cycles. Suppose that λ and k are integers with 2 ≤ k ≤ t and
(k − 1)|λt. Then λG has a Pk-decomposition.

Proof. Suppose that G is decomposed into Hamiltonian cycles H1, H2, · · · , Hv.
Then λG is decomposed into λH1, λH2, · · · , λHv. Since k ≤ t, (k − 1)|λt, and
λHi (1 ≤ i ≤ v) has an Euler trail with girth t, each λHi has a Pk-decomposition.
Thus λG has a Pk-decomposition.

In the proof of (1) in Lemma 2.1, we see that if n ≥ 3 is an odd integer, then
Kn,n,n can be decomposed into Hamiltonian cycles D0, D1, · · · , Dn−1. More gen-
erally, Laskar and Auerbach [3] proved that the complete m-partite graph Kn,n,··· ,n
can be decomposed into Hamiltonian cycles if and only if (m− 1)n is even. Thus
Kn,n,n can be decomposed into Hamiltonian cycles for any positive integer n. We
are ready to prove the main result of this section.

Theorem A. Let n be an odd integer. Then λKn,n,n has a Pk-decomposition
if and only if 2 ≤ k ≤ 3n and |E(λKn,n,n)| ≡ 0 (mod k − 1).

Proof. The necessity is trivial. Now we prove the sufficiency.
The case n = 1 is trivial. We assume that n ≥ 3. By the assumptions, k is an

integer with 2 ≤ k ≤ 3n and |E(λKn,n,n)| ≡ 0 (mod k − 1) (i.e., (k − 1)|3λn2).
We distinguish two cases for λ = 1 and λ ≥ 2.

Case 1. λ = 1.
By Lemma 2.1(1), Kn,n,n has an Euler trail with girth 3n − 6. Hence by

Remark 1.2, Kn,n,n has a Pk-decomposition if k ≤ 3n − 6. So we only need to
consider 3n−5 ≤ k ≤ 3n. Since n is odd and (k−1)|3n2, we have that k is even.
So it remains to consider the following subcases: k = 3n − 5, 3n − 3, 3n − 1.
Subcase 1.1. k = 3n − 5.

From the assumption that (3n − 6)|3n2, we have (n − 2)|n2, which implies
(n − 2)|4 for 4 = n2 − (n + 2)(n − 2). This implies n − 2 = 1 since n is odd.
Thus n = 3 and k = 4. As mentioned in the paragraph preceding this theorem,
K3,3,3 can be decomposed into Hamiltonian cycles. Then by Lemma 2.2, K3,3,3

has P4-decomposition. This completes Subcase 1.1.
Subcase 1.2. k = 3n − 3.

From the assumption that (3n−4)|3n2, we have (3n−4)|16 for 16 = 3 ·3n2−
(3n + 4)(3n− 4). This is impossible since n is odd.
Subcase 1.3. k = 3n − 1.

From the assumption that (3n−2)|3n2, we have (3n−2)|4 since 4 = 3 · 3n2−
(3n + 2)(3n − 2). Thus n = 1 since n is odd. This is a contradiction since we
assumed that n ≥ 3.
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Case 2. λ ≥ 2.
By Lemma 2.1(2), λKn,n,n has an Euler trail with girth 3n−3. Hence λKn,n,n

has a Pk-decomposition if k ≤ 3n − 3. So we only need to consider k = 3n −
2, 3n− 1, 3n. We first show that (k − 1)|3λ for these k.
Subcase 2.1. k = 3n − 2.

From the assumption (3n − 3)|3λn2, we have (n − 1)|λn2, which implies
(n − 1)|λ since gcd(n − 1, n) = 1. Thus 3(n − 1)|3λ (i.e., (k − 1)|3λ).
Subcase 2.2. k = 3n − 1.

Since n is odd, it is easy to see that gcd(3n − 2, n) = 1, and hence gcd(3n −
2, n2) = 1. Thus the assumption (3n−2)|3λn2 implies (3n−2)|3λ (i.e., (k−1)|3λ).
Subcase 2.3. k = 3n.

It is trivial that gcd(3n − 1, n) = 1, and hence gcd(3n − 1, n2) = 1. Thus the
assumption (3n − 1)|3λn2 implies (3n − 1)|3λ (i.e., (k − 1)|3λ).

Now we have that Kn,n,n has order 3n and can be decomposed into Hamiltonian
cycles, and that k ≤ 3n, (k − 1)|λ · 3n. Thus by Lemma 2.2, λKn,n,n has a Pk-
decomposition. This completes Case 2.

3. DIRECTED PATH DECOMPOSITIONS OF λK∗
n,n,n FOR ODD n

In this section, we investigate the
−→
Pk-decomposition of λK∗

n,n,n for odd n. Let
us begin with n = 1. First the result for the decomposition of λK∗

n into directed
Hamiltonian paths is the following [1, 4]: λK ∗

n can be decomposed into directed
Hamiltonian paths if and only if neither n = 3 and λ is odd nor n = 5 and λ = 1.
It follows from the case n = 3 that λK∗

3 has a
−→
P3-decomposition if and only if λ

is even. Thus we can see that λK∗
1,1,1 = λK∗

3 has a
−→
Pk-decomposition if and only

if either k = 2 or k = 3 and λ is even.

Remark 3.1. If a multigraph G has a Pk-decomposition, then G∗ has a
−→
Pk-

decomposition.

For a multidigraph G and nonempty subsets A, B of V (G) with A∩B = ∅, let
G(A, B) denote the set of all arcs of G which have their tails in A and their heads
in B.

Lemma 3.2. Let n ≥ 3 be an odd integer. Then λK ∗
n,n,n has a directed Euler

trail with girth 3n − 4.

Proof. Let (A, B, C) be the tripartition of λK ∗
n,n,n where A = {a0, a1, · · · ,

an−1}, B = {b0, b1, · · · , bn−1} and C = {c0, c1, · · · , cn−1}.
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An arc joining ai to bi+k (i = 0, 1, · · · , n − 1, k = 0, 1, · · · , n − 1) where the
indices are taken modulo n is said to be an arc from A to B with label k. An arc
from B to C with label k and an arc from C to A with label k are similarly defined.

For i = 0, 1, 2, · · · , n− 1, let
−→
D i be the directed trail: a0 → bi → c2i → a1 →

bi+1 → c2i+1 → a2 → bi+2 → c2i+2 → · · · · · · → an−1 → bi+n−1 → c2i+n−1 →
a0, and let

−→
F i be the directed trail: a0 → c2i+1 → bi+1 → a1 → c2i+2 → bi+2 →

a2 → c2i+3 → bi+3 → · · · · · · → an−1 → c2i+n → bi+n → a0 where the indices
are taken modulo n.

Let G = K∗
n,n,n be a subgraph of λK∗

n,n,n. Note that each
−→
Di consists of the

following arcs in G: all arcs from A to B with label i, all arcs from B to C

with label i, and all arcs from C to A with label (1 − 2i)(mod n). Thus G(A, B)
is a disjoint union of

−→
D0(A, B),

−→
D1(A, B), · · · , −→Dn−1(A, B), and G(B, C) is a

disjoint union of
−→
D0(B, C),

−→
D1(B, C), · · · , −→

Dn−1(B, C). And since n is odd,
we have {(1 − 2i)(mod n) : i = 0, 1, 2, · · · , n − 1} = {0, 1, 2, · · · , n − 1}; thus
G(C, A) is a disjoint union of

−→
D0(C, A),

−→
D1(C, A), · · · , −→

Dn−1(C, A). Hence
G(A, B) ∪ G(B, C) ∪ G(C, A) = E(

−→
D0) ∪ E(

−→
D1) ∪ · · · ∪ E(

−→
Dn−1). By similar

arguments, we have G(A, C) ∪ G(C, B) ∪ G(B, A) = E(
−→
F0) ∪ E(

−→
F1) ∪ · · · ∪

E(
−→
F n−1). Therefore E(G) is a disjoint union of E(

−→
D0), E(

−→
D1), · · · , E(

−→
Dn−1),

E(
−→
F0), E(

−→
F1), · · · , E(

−→
F n−1).

Let
−→
T be the following directed trail:

−→
D0+

−→
D0+· ·+−→

D0
︸ ︷︷ ︸

λ copies of
−→
D0

+
−→
F0+

−→
F0+· ·+−→

F0
︸ ︷︷ ︸

λ copies of
−→
F0

+
−→
D1+

−→
D1+· ·+−→

D1
︸ ︷︷ ︸

λ copies of
−→
D1

+
−→
F1+

−→
F1+· ·+−→

F1
︸ ︷︷ ︸

λ copies of
−→
F1

+

· · · · · · · · · · · · · · · · · ·+−→
Dn−1+

−→
Dn−1+· · ·+ −→

Dn−1
︸ ︷︷ ︸

λ copies of
−→
Dn−1

+
−→
F n−1+

−→
F n−1+· · ·+ −→

F n−1
︸ ︷︷ ︸

λ copies of
−→
F n−1

.

We see that
−→
T is a directed Euler trail of λK∗

n,n,n.
To evaluate g(

−→
T ), we show in the following that for i = 0, 1, · · · , n − 1 we

have (i) g(
−→
D i +

−→
D i) = 3n, g(

−→
F i +

−→
F i) = 3n (ii) g(

−→
D i +

−→
F i) = 3n− 4 and (iii)

g(
−→
F i +

−→
D i+1) = 3n − 2. Note that each

−→
Di is a directed Hamiltonian cycle of

λK∗
n,n,n, and so is each

−→
Fi.

(i) This is trivial.

(ii) We see that
−→
D i +

−→
F i is the directed trail a0 → bi → c2i → a1 → bi+1 →

c2i+1 → · · · → an−1 → bi+n−1 → c2i+n−1 → a0 → c2i+1 → bi+1 → a1 →
c2i+2 → bi+2 → · · · → an−1 → c2i → bi → a0. In

−→
D i+

−→
F i, there are 3n−4

arcs between two appearances of cj if j = 0, 1, · · · , 2i−1, 2i+1, · · · , n−1,
and more than 3n−4 arcs between two appearances of any other vertex. Thus
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g(
−→
Di +

−→
F i) = 3n − 4.

(iii)
−→
F i+

−→
D i+1 is the directed trail a0 → c2i+1 → bi+1 → a1 → c2i+2 → bi+2 →

· · · → an−1 → c2i → bi → a0 → bi+1 → c2i+2 → a1 → bi+2 → c2i+3 →
· · · → an−1 → bi → c2i+1 → a0. In

−→
F i +

−→
D i+1, there are 3n − 2 arcs

between two appearances of cj if j = 0, 1, · · · , 2i, 2i + 2, · · · , n − 1, and
more than 3n − 2 arcs between two appearances of any other vertex. Thus
g(
−→
F i +

−→
D i+1) = 3n − 2.

From (i), (ii) and (iii), we obtain g(
−→
T ) = 3n − 4.

Now we prove the main result of this section.

Theorem B. Let n ≥ 3 be an odd integer. Suppose that k is a positive integer
such that 2 ≤ k ≤ 3n − 1 and |E(λK ∗

n,n,n)| ≡ 0 (mod k − 1). Then λK∗
n,n,n has

a
−→
Pk-decomposition.

Proof. Since |E(λK∗
n,n,n)| ≡ 0 (mod k−1) (i.e., (k−1)|6λn2), by Lemma 3.2

and Remark 1.2 λK∗
n,n,n has a

−→
Pk-decomposition if 2 ≤ k ≤ 3n − 4. So we only

need to consider 3n−3 ≤ k ≤ 3n−1. We distinguish two cases: Case 1. k = 3n−3
or k = 3n − 1, Case 2. k = 3n − 2.

Case 1. k = 3n − 3 or k = 3n − 1.
Then k − 1 is odd. Thus (k − 1)|6λn2 implies (k − 1)|3λn2. By Theorem A

and Remark 3.1, λK∗
n,n,n has a

−→
Pk-decomposition.

Case 2. k = 3n − 2.
From the assumption (3n − 3)|6λn2, we have (n − 1)|2λn2, which implies

(n − 1)|2λ since gcd(n, n − 1) = 1. Hence we have (k − 1)|6λ.
For i = 0, 1, · · · , n−1, let

−→
D i,

−→
F i be the directed trails defined in Lemma 3.2,

and let
−→
W i be the following directed trail:−→

Fi + · · ·+ −→
Fi

︸ ︷︷ ︸

λ copies of
−→
Fi

+
−→
D i+1 + · · ·+ −→

D i+1
︸ ︷︷ ︸

λ copies of
−→
D i+1

, where the indices are taken modulo n.

In the proof of Lemma 3.2, we see that a subgraph K∗
n,n,n of λK∗

n,n,n can be
decomposed into

−→
D0,

−→
D1, · · · ,

−→
Dn−1,

−→
F0,

−→
F1, · · · ,

−→
F n−1. Thus λK∗

n,n,n can be
decomposed into

−→
W 0,

−→
W 1, · · · , −→Wn−1.

Also from (iii) in the proof of Lemma 3.2, we have g(
−→
F i +

−→
D i+1) = 3n − 2

for i = 0, 1, · · · , n − 1. Thus g(
−→
W i) = 3n − 2 for i = 0, 1, · · · , n − 1. Now we

see that k ≤ g(
−→
W i), (k − 1)|6λ and the length of

−→
W i is 6nλ. Thus we can cut
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each
−→
W i from the starting vertex into 6nλ/(k − 1) directed paths of length k − 1.

Hence λK∗
n,n,n is decomposed into directed paths of order k.

For the
−→
Pk-decomposition of λK∗

n,n,n, the trivial necessities are 2 ≤ k ≤ 3n
and |E(λK∗

n,n,n)| ≡ 0 (mod k − 1). Comparing with Theorem B, we see that for
odd n the undetermined case for the sufficiency is k = 3n.

Using Remark 1.1, we can decompose a multigraph (multidigraph, respectively)
into paths (directed paths, respectively) which need not to have equal orders. Thus
Lemmas 2.1 and 3.2 imply the following:

1. Let n ≥ 3 be an odd integer. Suppose that for i = 1, 2, · · · , r, ki is an
integer such that 2 ≤ ki ≤ 3n − 6 and |E(Kn,n,n)| = k1 + k2 + · · ·+ kr −
r. Then Kn,n,n can be decomposed into r paths on k1, k2, · · · , kr vertices,
respectively.

2. Let n ≥ 3 be an odd integer and λ ≥ 2 be an integer. Suppose that for
i = 1, 2, · · · , r, ki is an integer such that 2 ≤ ki ≤ 3n−3 and |E(λKn,n,n)| =
k1 + k2 + · · ·+ kr − r. Then λKn,n,n can be decomposed into r paths on
k1, k2, · · · , kr vertices, respectively.

3. Let n ≥ 3 be an odd integer. Suppose that for i = 1, 2, · · · , r, ki is an integer
such that 2 ≤ ki ≤ 3n − 4 and |E(λK∗

n,n,n)| = k1 + k2 + · · · + kr − r.
Then λK∗

n,n,n can be decomposed into r paths on k1, k2, · · · , kr vertices,
respectively.

The decompositions into paths with even less restrictive orders are much more
challenging.

In this paper the Pk-decomposition of λKn,n,n and the
−→
Pk-decomposition of

λK∗
n,n,n have been studied for odd n. We use the property gcd(2, n) = 1 in

Lemmas 2.1 and 3.2. We do not have this advantage for even n. Up to now we
can only deal with this case for even λ.
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