
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 13, No. 1, pp. 211-224, February 2009
This paper is available online at http://www.tjm.nsysu.edu.tw/

STAR MATCHING AND DISTANCE TWO LABELLING

Wensong Lin and Peter Che-Bor Lam

Abstract. This paper first introduces a new graph parameter. Let t be a
positive integer. A t-star-matching of a graph G is a collection of mutually
vertex disjoint subgraphsK1,i ofGwith 1≤ i≤ t. The t-star-matching number,
denoted by SMt(G), is the maximum number of vertices covered by a t-star-
matching ofG. ClearlySM1(G)/2 is the edge independence number ofG.

An L(2, 1)-labelling of a graph G is an assignment of nonnegative integers
to the vertices of G such that vertices at distance at most two get different
numbers and adjacent vertices get numbers which are at least two apart. The
L(2, 1)-labelling number of a graph G is the minimum range of labels over all
L(2, 1)-labellings. If we require the assignment to be one-to-one, then similarly
as above we can define the L′(2, 1)-labelling and the L′(2, 1)-labelling number
of a graph G. Given a graph G, the path covering number of G, denoted by
pv(G), is the smallest number of vertex-disjoint paths covering V (G). By Gc

we denote the complement graph of G.
In this paper, we design a polynomial time algorithm to compute SMt(G)

for any graph G and any integer t ≥ 2 and studies the properties of t-star-
matchings of a graph G. For any graph G, we determine the path covering
numbers of (µ(G))c and (G × K̂2)c in terms of SM4(Gc), and the L′(2, 1)-
labelling umbers of µ(G) and G × K̂2 in terms of SM4(Gc), where µ(G) is
the Mycielskian of G and G× K̂2 is the direct product of G and K̂2 (K̂2 is a
graph obtained from K2 by adding a loop on one of its vertices). Our results
imply that the path covering numbers of (µ(G))c and (G×K̂2)c, the L′(2, 1)-
labelling umbers of µ(G) and G×K̂2 can be computed in polynomial time for
any graph G. So, for any graph G, it is polynomial-time solvable to determine
whether (µ(G))c and (G × K̂2)c has a Hamiltonian path. And consequently,
for any graph G = (V, E), it is polynomially solvable to determine whether
λ(µ(G)) ≤ s for each s ≥ |V (µ(G))| and λ(G×K̂2) ≤ s for each s ≥ |V (G×
K̂2)|. Using these results, we easily determine L(2, 1)-labelling numbers and
L′(2, 1)-labelling numbers of several classes of graphs.
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1. INTRODUCTION

Given a graph G and an integer t(≥ 1). A t-star-matching is a collection of
disjoint subgraphs of G in which each subgraph is isomorphic to K1,i for some
i ∈ [1, t], where K1,i is an i-star. Let Γ be a t-star-matching of a graph G. For a
vertex v of G, if there exits some H ∈ Γ such that v ∈ V (H) then v is said to be Γ-
saturated, otherwise v is said to be Γ-unsaturated. A t-star-matching Γ is maximum
if the number of Γ-saturated vertices is maximum among all t-star-matchings of G.
The t-star-matching number of a graph G, denoted by SMt(G), is the number of
vertices in G saturated by a maximum t-star-matching of G. Obviously, when t = 1,
SMt(G)/2 is precisely the edge independence number of G. Thus we can view the
t-star-matching (the t-star-matching number) of a graph be a generalization of the
matching (the edge independence number) of a graph. As far as we know, this kind
of generalization had never been defined before. The maximum 1-star-matching
(the maximum matching) of any simple graph G can be found in O(n3) (where
n = |V (G)|) by Edmonds’s Cardinality Matching Algorithm [5]. The current best
know known algorithm (Micali and Vazirani [18]) for this problem has a running
time O(n

1
2 m), where n = |V (G)| and m = |E(G)|. In the next section, we shall

give an algorithm to find the maximum t-star-matching for any fixed t ≥ 2 with
running time O(nm). Thus we assume t ≥ 2 throughout this paper.

In a kind of channel assignment problem, in order to avoid interference, “close”
transmitters are required to receive different channels and “very close” transmitters
are required to receive channels that are at least two channel apart. Griggs and
Yeh in [21, 14] formulated this problem in graphs, in which radio transmitters are
represented by vertices, two vertices are “very close” if they are adjacent in the
graph and “close” if they are at distance 2 in the graph. More precisely, an L(2, 1)-
labelling f of a graph G is an assignment f of nonnegative integers to the vertices of
G such that |f(u)−f(v)| ≥ 2 if uv ∈ E(G), and |f(u)−f(v)| ≥ 1 if dG(u, v) = 2,
where dG(u, v) is the length (number of edges) of a shortest path between u and
v in G. Given a graph G, for an L(2, 1)-labelling f of G, elements of the image
of f are called labels, and we define the span of f , denoted by span(f), to be the
difference between the maximum and minimum vertex labels of f . Without loss
of generality we shall assume that the minimum label of L(2, 1)-labellings of G is
always 0. Then the span of f is the maximum vertex label. The L(2, 1)-labelling
number, denoted by λ(G), is the minimum span over all L(2, 1)-labellings of G. If
span(f) = λ(G), then we say that f is a λ-labelling of G. If we require the function
f to be one-to-one, then similarly as above we can define the L′(2, 1)-labelling and
the L′(2, 1)-labelling number (denoted by λ′(G)) of a graph G. We refer the reader
to surveys on L(2, 1)-labelling and its generalization L(h, k)-labelling [2, 13].

Given a graph G, the path covering number of G, denoted by pv(G), is the
smallest number of vertex-disjoint paths covering V (G). By Gc we denote the
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complement graph of G. The following result was proved by Georges et al. [12].

Theorem 1.1. Given a graph G on n vertices, then

λ(G)

{ ≤ n − 1, if pv(Gc) = 1,

= n + pv(Gc) − 2, if pv(Gc) ≥ 2.

From the proof of the above theorem [12], we know that actually one can have
a one-to-one L(2, 1)-labelling of G with span n+pv(Gc)−2 when pv(Gc) ≥ 2 and
n− 1 when pv(Gc) = 1. Thus this theorem is equivalent to the following theorem.

Theorem 1.2. Given a graph G on n vertices, then

λ′
2,1(G) = n + pv(Gc) − 2.

To decide whether λ2,1(G) ≤ |V (G)| for diameter 2 graphs is NP-complete
[14]. The problem remains NP-complete if we ask whether there exists an L(2, 1)-
labelling of span at most s, where s is a fixed constant ≥ 4, while it is polynomial
if s ≤ 3 [7]. The problems of finding the L(2, 1)-labelling number of graphs with
diameter 2 [14, 21], planar graphs [1, 11], bipartite graphs [1], split and chordal
graphs [1] are all NP-hard.

It is polynomially solvable to decide whether there exists an L(2, 1)-labelling
of span at most s for each tree and each given s [4]. The same is true for each
p-almost tree and each given integer s [7]. (A p-almost tree is a connected graph G
with |V (G)|+ p− 1 edges.) It was proved [4] that there is a linear time algorithm
to compute λ(G), λ′(G), and pv(G) for a cograph G. It is proved [20] that λ′(G)
for a bipartite graph G can be computed in polynomial time. In this paper we
shall provide two new classes of graphs G for which λ′(G) can be computed in
polynomial time.

In 1955, Mycielski [19] introduced a graph transformation. For a graph G =
(V, E), the Mycielskian of G, µ(G), is defined to be the graph with vertex set
V0 ∪ V1 ∪ {u}, where Vi = {vi : v ∈ V } (i = 0, 1), and edge set {x0y0 : xy ∈
E}∪ {x0y1 : xy ∈ E}∪ {uv1 : v1 ∈ V1}. Please see Figure 1 for an illustration of
this definition. Mycielskians of graphs have many interesting properties concerning
several kinds of graph colorings as well as other parameters of graphs and had been
studied extensively, see [3, 6, 8, 9, 10, 15, 16, 17].

Given two graphs G and H , the direct product of G and H is the graph G×H
with vertex set V (G)×V (H) in which two vertices (x, y) and (x′, y′) are adjacent
if and only if xx′ ∈ E(G) and yy′ ∈ E(H). Let K̂2 denote the graph obtained
from K2 by adding a loop on one of its vertices.
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Fig. 1. The Mycielskian of C5.

The next section gives a polynomial time algorithm to compute SMt(G) for
any graph G and any integer t ≥ 2 and studies the properties of t-star-matchings of
a graph G. Section 3 determines, for any graph G, the path covering numbers of
(µ(G))c and (G × K̂2)c in terms of SM4(Gc), and the L′(2, 1)-labelling umbers
of µ(G) and G × K̂2 in terms of SM4(Gc). Our results imply that pv((µ(G))c),
λ′(µ(G)) and pv((G × K̂2)c), λ′(G × K̂2) can be computed in polynomial time
for any graph G. So, for any graph G, it is polynomial-time solvable to determine
whether (µ(G))c and (G×K̂2)c has a Hamiltonian path. And consequently, for any
graph G = (V, E), it is polynomially solvable to determine whether λ(µ(G)) ≤ s
for each s ≥ |V (µ(G))| and λ(G × K̂2) ≤ s for each s ≥ |V (G × K̂2)|. Using
these results, we easily determine L(2, 1)-labelling numbers and L′(2, 1)-labelling
numbers of µ(G) and G × K̂2 for graphs G being Kn and Kp ∨ Kc

q .
For nonnegative integers a and b with a ≤ b, let [a, b] denote the set {a, a +

1, a + 2, . . . , b − 1, b}.

2. t-STAR-MATCHING

Given a graph G and an integer t ≥ 2. Suppose Γ is a t-star-matching of G. Let
U denote the set of all Γ-unsaturated vertices. Denote by S the set of all vertices
saturated by subgraphs K1,i with 1 ≤ i ≤ t − 1 in Γ. The vertex of degree i in
K1,i is called the root of K1,i and is denoted by r(K1,i). The vertices of degree 1
in K1,i are called leaves of K1,i. If i = 1 then both ends of K1,1 can be viewed
as both roots and leaves. As we shall see, this will not affect our algorithms and
proofs. Let R denote the set of roots of all subgraphs K1,t in Γ and F the set of
leaves of all subgraphs K1,t in Γ.

A Γ-augmenting path is a path inG of the form ur1f1r2f2 . . . rkfkv with u ∈ U ,
v ∈ S ∪F , and for each i ∈ [1, k], ri ∈ R and fi a leaf in F adjacent to the root ri.
Please see Figure 2 for an illustration. An edge between U and U ∪S ∪F is called
a Γ-augmenting edge. And we shall consider a Γ-augmenting edge as a special
Γ-augmenting path. A Γ-augmenting path is called simple if v is not contained in
subgraphs K1,t with roots r1, r2, . . . , rk−1. A Γ-augmenting edge is also called a
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simple Γ-augmenting path. It is obvious that if G has a Γ-augmenting path then G

has a simple Γ-augmenting path.

Fig. 2. A Γ-augmenting path.

The followingMaximum t-star-matching Algorithm starts with any t-star-matching
Γ. Each time it searches for a Γ-augmenting path and augments it along the path un-
til no Γ-augmenting path exits. We actually only search for a simple Γ-augmenting
path. The way to search a simple Γ-augmenting path is described in Simple Γ-
augmenting Path Algorithm.

Let H be a subgraph of G, v a vertex of G, and xy an edge of G. We denote
by H − v the graph obtained from H by deleting the vertex v. H + xy denotes the
graph with vertex set V (H)∪ {x, y} and edge set E(H)∪ {xy}. We simply write
(H − v) + xy as H − v + xy.

Maximum t-star-matching Algorithm
Input: A graph G and an integer t ≥ 2.
Output: Maximum t-star-matching Γ of G.

Step 0. Choose a t-star-matching Γ of G. (Γ may be empty.) Identify the correspond-
ing sets U , S, F and R.

Step 1. Find a simple Γ-augmenting path P of G (Apply the Simple Γ-augmenting
Path Algorithm.) IfG has no Γ-augmenting path, then stop. (Γ is a maximum
t-star-matching of G.) Else let P be the Γ-augmenting path.

If P is a Γ-augmenting edge uv with u ∈ U and v ∈ U ∪ S ∪ F then go to
Step 2, else go to Step 3.

Step 2. If v is in U then set Γ := Γ ∪ {uv}, U := U \ {u, v}, S := S ∪ {u, v},
F := F , R := R, and go to Step 1.
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Else if v is in S∪F and is a root of some H in Γ, then set Γ := (Γ\{H})∪
{H + uv}.
If H is a K1,t−1 of Γ then set U := U \ {u}, S := S \ V (H), F :=
F∪(V (H)\{v})∪{u},R := R∪{v}, and go to Step 1. Else setU := U\{u},
S := S ∪ {u}, F := F , R := R, and go to Step 1.
Else if v is in S ∪F and is a leaf of some H in Γ, then set Γ := (Γ\{H})∪
{H − v, uv}.
If H is a K1,t of Γ then set U := U \ {u}, S := S ∪ V (H) ∪ {u, v},
F := F \V (H), R := R \{r(H)}, and go to Step 1. Else set U := U \{u},
S := S ∪ {u}, F := F , R := R, and go to Step 1.

Step 3. Let P be the nontrivial simple Γ-augmenting path of the form ur1f1r2f2 . . .
rkfkv with u ∈ U , v ∈ S ∪ F , ri ∈ R and fi ∈ F for i ∈ [1, k]. Let
H1, H2, . . . , Hk be the subgraphs K1,t in Γ with roots r1, r2, . . . , rk and let
H be the element of Γ that saturates the vertex v. (Notice that if H is Hk

then v is a leaf of Hk.)
If v is the root of H and thus H �= Hk then set

Γ := (Γ \ {H1, H2, . . . , Hk, H})∪ {H1 − f1 + ur1, H2 − f2 + f1r2, . . . ,

Hk − fk + fk−1rk, H + fkv}.
If H is a K1,t−1 of Γ then set U := U \ {u}, S := S \ V (H), F :=
F∪(V (H)\{v})∪{u},R := R∪{v}, and go to Step 1. Else setU := U\{u},
S := S ∪ {fk}, F := (F ∪ {u}) \ {fk}, R := R, and go to Step 1.
Else if v is a leaf of H and H �= Hk then set

Γ := (Γ \ {H1, H2, . . . , Hk, H})∪ {H1 − f1 + ur1, H2 − f2 + f1r2, . . . ,

Hk − fk + fk−1rk, H − v, fkv}.
If H is a K1,t of Γ then set U := U \ {u}, S := S ∪ V (H) ∪ {fk},
F := (F ∪ {u}) \ (V (H)∪ {fk}), R := R \ {r(H)}, and go to Step 1. Else
set U := U \ {u}, S := S ∪ {fk}, F := (F ∪ {u}) \ {fk}, R := R, and go
to Step 1.
Else if v is a leaf of H and H = Hk then set

Γ := (Γ \ {H1, H2, . . . , Hk, H})∪ {H1 − f1 + ur1, H2 − f2 + f1r2, . . . ,

Hk \ {fk, v}+ fk−1rk, fkv}.
Set U := U \ {u}, S := (S ∪ V (H))∪ {fk−1}, F := (F ∪ {u}) \ (V (H) ∪
{fk−1}), R := R \ {r(H)}, and go to Step 1.
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Given a graph G, an integer t ≥ 2, and a t-star matching Γ of G, the following
Simple Γ-augmenting Path Algorithm will find a simple Γ-augmenting path in G
or declare that none exits. In the following algorithm, U, S, R, F are the sets as we
defined in the beginning of this section.

A Γ-alternating path is a path in G of the form ur1f1r2f2 . . . rkfk with u ∈ U ,
and for each i ∈ [1, k], ri ∈ R and fi a leaf in F adjacent to the root ri. We
shall denote by B the set of vertices and edges the algorithm has passed through
currently. R̃ denotes the set of roots in B. R̂ denotes the set of new roots adjacent
in G to some non-root vertex of B. Denote by F̂ the set of leaves adjacent to some
vertex of R̂ in Γ. Note that we always have R̂ ⊆ R and F̂ ⊆ F .

For a subset W of V (G), denote by NG(W ) the set of vertices in V (G) \ W
that have a neighbor in W .

Simple Γ-augmenting Path Algorithm
Input: A graph G, an integer t ≥ 2, a t-star matching Γ of G, and the corresponding
sets U ,S,F ,R.
Output: A simple Γ-augmenting path (or report that none exits).

Step 0. If there is an edge uv between U and U ∪ S ∪ F then stop (uv is a Γ-
augmenting edge), else go to Step 1.

Step 1. Set B := U , R̃ := ∅, and R̂ := NG(U).

Step 2. Set F̂ := NΓ(R̂).

If G has no edge between F̂ and F ∪ S then go to Step 3, else use a
backtracking process to find a simple Γ-augmenting path, and stop.

Step 3. Set B := B ∪ R̂ ∪ F̂ ∪ EG(B, R̂) ∪ EG(R̂, F̂ ), R̃ := R̃ ∪ R̂, and R̂ :=
NG(F̂ ) \ R̃.

If R̂ �= ∅ then go to Step 2, else stop and report that there is no Γ-augmenting
path in G.

Note that if G has a Γ-augmenting paths then it also has simple Γ-augmenting
paths, and it is obvious that the Simple Γ-augmenting Path Algorithm will surely
find out one of the simple Γ-augmenting.

Let n = |V (G)| and m = |E(G)|. Given a t-star-matching Γ of G, we may
describe it by marking each vertex according to whichK1,i it belongs to and whether
it is a root or not. Thus Step 0 in the Maximum t-star-matching Algorithm takes at
most O(n) time steps. We call for the Simple Γ-augmenting Path Algorithm at most
n times and make augmenting at most n times. It is easy to see that each augmenting
takes at most O(n) time steps. The running time of the Simple Γ-augmenting Path
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Algorithm depends on the implementation of certain routines. If one using some
vertex labeling technique in Step 0 it will complete this process within O(m) time
steps. Step 2 and Step 3 may repeat many times, however, as in Step 0, by labeling
each vertex the algorithm has passed through properly, the time steps it takes in
total will also within O(m). Therefore the overall running time of the Maximum
t-star-matching Algorithm is at most O(nm).

Next we show that the output Γ of the Maximum t-star-matching Algorithm is
a maximum t-star-matching of G.

Theorem 2.1. A t-star-matching Γ of G is maximum if and only if there is no
Γ-augmenting path in G.

Proof. The necessity is obvious. So we only show the sufficiency. Suppose Γ
is a t-star-matching of G such that G contains no Γ-augmenting path. Note that, in
this case, the Simple Γ-augmenting Path Algorithm stops with R̂ = ∅. Recall that
U is the set of vertices unsaturated by Γ. When the algorithm stops, B is the set
of vertices and edges covered by all Γ-alternating paths and R̃ is the set of roots
in B of subgraphs K1,t in Γ. Let F̃ denote the set of leaves in B of subgraphs
K1,t in Γ. Clearly we have B = U ∪ R̃ ∪ F̃ ∪ EG(U ∪ F̃ , R̃). In the beginning,
R̂ = NG(U). Since there is no Γ-augmenting path in G, R̂ ⊆ R. Then, in Step
2, we obtain the set F̂ . It is clear that |F̂ | = t|R̂|. Afterwards each time after
we get a nonempty vertex set R̂ in Step 3 we shall go back to Step 2 and get the
new F̂ and we always have |F̂ | = t|R̂|. Thus when the algorithm ends we have
|F̃ | = t|R̃|. Since there is no Γ-augmenting path in G, U ∪ F̃ is independent in
G and NG(U ∪ F̃ ) = R̃. It follows that at least |U | vertices of U ∪ F̃ can not be
saturated by any t-star-matching of G. Hence Γ is maximum.

When the Simple Γ-augmenting Path Algorithm stops with the report that there
is no Γ-augmenting path in G, we actually arrive at the state described in the proof
of Theorem 2.1. We conclude that at least |U | vertices of U ∪F̃ cannot be saturated
by any t-star-matching of G and so Γ is maximum. Thus there is no Γ-augmenting
path in G. So the Simple Γ-augmenting Path Algorithm gives a correct report. And
the Maximum t-star-matching Algorithm stops only when the Simple Γ-augmenting
Path Algorithm reports that there is no Γ-augmenting path in G, thus the Maximum
t-star-matching Algorithm outputs a maximum t-star-matching of G.

The following theorem follows immediately from Theorem 2.1 and the above
discussions.

Theorem 2.2. Given any graph G of order n and an integer t ≥ 2 as inputs,
the Maximum t-star-matching Algorithm will find a maximum t-star-matching of G
within O(nm) time steps.
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Theorem 2.3. Suppose G = G(V, E) is a graph and V ′ is a subset of
V . Let t be an integer at least 2. Then G has a t-star-matching saturating all
vertices of V ′ if and only if for any independent set S included in V ′ there holds
|NG(S)| ≥ �|S|/t	.

Proof. If G has a t-star-matching saturating all vertices of V ′, then for any
independent set S in V ′, since any vertex in V can match at most t vertices of S,
we have |NG(S)| ≥ �|S|/t	.

Now assume that for any independent set S ⊆ V ′ there holds |NG(S)| ≥
�|S|/t	. We shall show that G has a t-star-matching saturating all vertices of V ′.
Suppose to the contrary that G has no t-star-matching saturating all vertices of V ′.
Let Γ be the t-star-matching of G such that the number of saturated vertices in V ′

is maximum. Denote by U the set of Γ-unsaturated vertices in V ′. Apparently G
contains no Γ-augmenting path starting from some vertex of U . Let B be the set
of vertices covered by all Γ-alternating paths starting from U . Let R be the set of
roots of Γ that are contained in B and F the set of leaves of Γ that are contained in
B. Clearly U ∪ F is an independent set. By the definition of B, NG(U ∪ F ) = R
and |F | = t|R|. It follows that |NG(U ∪ F )| < �|U ∪F |/t	, which contradicts the
assumption of the theorem.

Theorem 2.3 can be viewed as an extension of P. Hall’s theorem.
A t-star-matching of a graph G is said to be perfect if it saturates all vertices

of G.

Corollary 2.4. Let G be a graph and t ≥ 2 an integer. Then G has a
perfect t-star-matching if and only if for any independent set S of G there holds
|NG(S)| ≥ �|S|/t	.

If t = 1 then Theorem 2.3 and Corollary 2.4 are not true. Consider a 5-cycle,
it is obvious that each independent set of a 5-cycle has its neighborhood larger than
itself, however there is no perfect 1-star-matching. But for bipartite graphs, the
corresponding result is true for t = 1.

Corollary 2.5. Suppose G = G(X, Y, E) is a bipartite graph. Let t be an
integer at least 1. Then G has a t-star-matching saturating all vertices of X if and
only if for any S ⊆ X there holds |NG(S)| ≥ �|S|/t	.

3. λ′ AND λ OF µ(G) AND G× K̂2

We first determine the path covering numbers of (µ(G))c in terms of SM4(Gc).
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Theorem 3.1. For any graph G on n vertices, we have

pv((µ(G))c) =

{
1, if SM4(Gc) ≥ n − 4;

�(n − SM4(Gc) − 2)/2	, if SM4(Gc) < n − 4.

Proof. Recall that the graph µ(G) has vertex set V0 ∪ V1 ∪ {u}. V0 is cor-
responding to the vertex set of G and the neighborhood of u in µ(G) is V1. For
simplicity, by G′ we denote the graph (µ(G))c. Then it is easy to see that G′[V0] is
Gc, G′[V1] is a complete graph on n vertices, the neighborhood of u in G′ is V0, v0

i

is adjacent to v1
i in G′ for i = 1, 2, . . . , n, and v0

i v1
j (i �= j) is an edge of G′ if and

only if vivj is nonadjacent in G. For each subset A of V (G), we denote by V0(A)
and V1(A) the subsets of V (G′) corresponding to A in V0 and in V1 respectively.

Let q = n− SM4(Gc). We first show that if q > 4 then pv(G′) ≤ �(q − 2)/2	
and if q ≤ 4 then pv(G′) = 1. Suppose Γ is a maximum 4-star-matching of Gc

(= G′[V0]). We first observe that for each H in Γ there exits a path in G′[V0(H)∪
V1(H)] covering all vertices of V0(H)∪V1(H) with both its initial and end vertices
in V1(H). This is illustrated in Figure 3.

Fig. 3. Paths covering V0(H)∪V1(H) forH = K1,1, K1,2, K1,3, K1,4.

As G′[V1] is a complete graph, by connecting all these paths one can find a
path P in G′ which starts from and ends in V1 and covers all Γ-saturated vertices
in V0 and their “twins” in V1. Without loss of generality, let v0

1, v
0
2, . . . , v

0
q be Γ-

unsaturated vertices in V0. If q is even and q ≥ 6, then v0
2v

1
2Pv1

1v0
1uv0

4v
1
4v

1
3v0

3,
v0
5v

1
5v1

6v
0
6 , · · · , v0

q−1v
1
q−1v

1
qv

0
q is a path covering of G′ with (q− 2)/2 paths. If q is

odd and q ≥ 5, then we may similarly obtain a path covering of G′ with �(q−2)/2	
paths. And when q ≤ 4, it is easy to see that G′ has a Hamiltonian path, hence
pv(G′) = 1.
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To complete the proof of the theorem, it remains to show that if q > 4 then
pv(G′) ≥ �(q−2)/2	. Let Γ be a maximum 4-star-matching of Gc. As in the proof
of Theorem 2.1, let U be the set of Γ-unsaturated vertices (clearly |U | = q) and B

the set of vertices covered by all Γ-alternating paths. Let R̃ be the set of roots in
B of subgraphs K1,4 in Γ and F̃ the set of leaves in B of subgraphs K1,4 in Γ.
Clearly B = U ∪ R̃ ∪ F̃ and |F̃ | = 4|R̃|. Since Gc has no Γ-augmenting edge and
Γ-augmenting path, U ∪ F̃ is independent in Gc and NGc(U ∪ F̃ ) = R̃.

Let P be any path covering of G′. For each vertex x0 in V0(U ∪ F̃ ), it is easy
to see that NG′(x0) ⊆ {u, x1} ∪ V0(R̃) ∪ V1(R̃). Note that, for each vertex w of
{u} ∪ V0(R̃) ∪ V1(R̃), on the path P of P that covers vertex w, there are at most
two vertices of V0(U ∪ F̃ ) which are adjacent to w. Since |F̃ | = 4|R̃|, we conclude
that at least |U | − 2 vertices of V0(U ∪ F̃ ) are end vertices of paths in P . This
implies that |P| ≥ �(|U | − 2)/2	 = �(q − 2)/2	 and the theorem follows.

The following two theorems follow from Theorems 3.1, 1.1 and 1.2 immediately.

Theorem 3.2. For any graph G on n vertices, we have

λ′(µ(G)) = 2n + max{0, �(n− SM4(Gc) − 2)/2	 − 1}.

Theorem 3.3. For any graph G on n vertices, we have

λ(µ(G))

{ ≤ 2n, if SM4(Gc) ≥ n − 4;

= 2n + �(n − SM4(Gc) − 2)/2	 − 1, if SM4(Gc) < n − 4.

Similar to Theorems 3.1, 3.3 and 3.2, we have the following three theorems.

Theorem 3.4. For any graph G on n vertices, we have

pv((G× K̂2)c) =

{
1, if SM4(Gc) ≥ n − 2;

�(n − SM4(Gc))/2	, if SM4(Gc) < n − 2.

Theorem 3.5. For any graph G on n vertices, we have

λ′(G × K̂2) = 2n − 1 + max{0, �(n− SM4(Gc))/2	 − 1}.

Theorem 3.6. For any graph G on n vertices, we have

λ(G× K̂2)

{ ≤ 2n − 1, if SM4(Gc) ≥ n − 2;

= 2n + �(n − SM4(Gc))/2	 − 2, if SM4(Gc) < n − 2.
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Theorems 2.2, 3.1 and 3.4 imply that pv((µ(G))c) and pv((G × K̂2)c) can
be computed in polynomial time for any graph G. Thus, for any graph G, it
is polynomial-time solvable to determine whether (µ(G))c and (G × K̂2)c has a
Hamiltonian path. Theorems 2.2, 3.1, 3.2, 3.4 and 3.5 imply that, for any graph
G, λ′(µ(G)) and λ′(G × K̂2) can be computed in polynomial time. And conse-
quently, for any graph G = (V, E), it is polynomially solvable to determine whether
λ(µ(G)) ≤ s for each s ≥ |V (µ(G))| and λ(G×K̂2) ≤ s for each s ≥ |V (G×K̂2)|.

Finally, we give some simple applications of the above theorems.
It is not difficult to see that if G is a graph of diameter at most 2 then the

diameter of µ(G) is 2.

Corollary 3.7. Suppose n ≥ 2 is an integer. Then p v((µ(Kn))c) = �(n−2)/2	
if n > 4 and pv((µ(Kn))c) = 1 if n ≤ 4. And λ′(µ(Kn)) = λ(µ(Kn)) =
2n + �(n − 2)/2	 − 1 if n ≥ 3, and λ(µ(K2)) = 4.

Proof. If n ≥ 5, then SM4(Kc
n) = 0 < n − 4 and the corollary follows from

Theorems 3.1, 3.2 and 3.3. So we only need to deal with the cases when n = 2, 3,
and 4.

Since SM4(Kc
n) = 0, by Theorem 3.1, pv((µ(Kn)c) = 1 for n ≤ 4. It

follows from Theorems 1.1 and 1.2 that λ(µ(Kn)) ≤ λ′(µ(Kn)) ≤ 2n for n ≤ 4.
On the other hand, since µ(Kn) is of diameter 2, λ(µ(Kn)) ≥ 2n. Therefore
λ′(µ(Kn)) = λ(µ(Kn)) = 2n = 2n + �(n− 2)/2	− 1 for n = 3, 4. It is clear that
λ′(µ(K2)) = λ(µ(K2)) = λ(C5) = 4.

Similarly, by Theorem 3.6, we have the following corollary.

Corollary 3.8. Suppose n ≥ 2 is an integer. Then p v((Kn × K̂2)c) = �n/2	.
And λ′(Kn × K̂2) = λ(Kn × K̂2) = 2n + �n/2	 − 2.

Suppose G and H are two graphs. Let the join of G and H be the graph G+H

with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {xy|x ∈ V (G), y ∈
V (H)}.

Corollary 3.9. Suppose n ≥ 1 andm ≥ 2 are two integers. Let G = Kn+Kc
m.

Then

pv((µ(G))c) =

{
1, if n ≤ 4;

�(n − 2)/2	, if n > 4.

And
λ′(µ(G)) = λ(µ(G)) = 2(n + m) + max{0, �(n− 2)/2	 − 1}.

Proof. Since Gc is the disjoint union of K c
n and Km (m ≥ 2), we have SM4

(Gc)=m. Thus, by Theorem 3.1, pv((µ(G))c) equals 1 if n ≤ 4 and �(n−2)/2	 if
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n > 4. It is straightforward to check that µ(G) is of diameter 2. Now the corollary
follows from Theorems and .

Corollary 3.9. Suppose n ≥ 2 andm ≥ 2 are two integers. Let G = Kn+Kc
m.

Then pv((G × K̂2)c) = �n/2	. And λ′(G × K̂2) = λ(G × K̂2) = 2(n + m) +
�n/2	 − 2.
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