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STABILITY OF IMPLICIT MULTIFUNCTIONS IN ASPLUND SPACES

N. Q. Huy and J.-C. Yao*

Abstract. The purpose of this paper is to present new sufficient conditions for
both the metric regularity and the Lipschitzian stability of implicit multifunc-
tions in Asplund spaces. The basic tools of our analysis involve the Fréchet
normal coderivative and the Mordukhovich normal coderivative of set-valued
mappings, the basic subgradient estimate for marginal functions and the Eke-
land variational principle. Applications to the pointbased characterizations
for the metric regularity and the Lipschitzian stability of solution mapping of
parametric generalized equations are given.

1. INTRODUCTION

Consider F : X × Y ⇒ Z a set-valued mapping between Banach spaces and
the generalized inequality systems

0 ∈ F (x, y).(1.1)

The solution map G : Y ⇒ X associated with (1.1) which has the form

G(y) = {x ∈ X : 0 ∈ F (x, y)}(1.2)

is said to be the implicit multifunction defined by the inclusion (1.1). In this paper
we will focus on the study of the metric regularity in the Robinson’s sense [24]
and the Lipschitzian stability in the Aubin’s sense [1] for the implicit multifunction
(1.2).
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The study of implicit multifunction has a long history. Stable properties of
implicit multifunction such as the metric regularity and Lipschitzian stability which
have attracted much attention of many researchers; see, e.g., [2–19, 22–27] and the
references therein for more details and discussions.

In a special case of F in (1.1) which has the form

(1.3) F (x, y) = f(x, y) +Q(x, y)

where f : X × Y → Z is a single-valued mapping and Q : X × Y ⇒ Z is a
set-valued mapping between Asplund spaces, Mordukhovich [12, 14, 15] gave the
characterizations of necessary as well as sufficient conditions for the Lipschitzian
stability of (1.2) under the strict differentiability of f with the surjective property of
partial gradient of f and either Q does not depend x or Q is graphically regular at
a given point. Together with the Lipschitzian stability, the metric regularity of (1.2)
was intensively investigated in implicit and inverse multifunctions (see, e.g., [2–11,
13, 16–19, 22–27]). Recently, Ledyaev and Zhu [9], Ngai and Théra [22] established
sufficient conditions for the metric regularity of (1.2) in terms of the Fréchet normal
coderivatives in Banach space with the Fréchet-smooth bump function. Another
set of sufficient conditions for the same property in Asplund spaces was given
by Lee, Tam and Yen [10] in terms of the normal coderivatives. More recently,
Yen and Yao [27] established some pointbased sufficient conditions for the metric
regularity property of implicit multifunctions in finite-dimensional setting, and the
same property in the WCG space setting was also presented in [7]. It is well known
that for inverse multifunctions the metric regularity is equivalent to the Lipschitz-
like property (see [3, 11, 23]). However, as well shown in [8, Example 3.6 and
3.7] that the metric regularity of implicit multifunctions is not equivalent to the
Lipschitz-like property in general.

Our main objective of this paper is to establish new sufficient conditions for
both the (local) metric regularity and Lipschitzian stability of the solution map (1.2)
in Asplund space setting. The basic tools of our analysis involve the Fréchet normal
coderivative and the Mordukhovich normal coderivative of set-valued mappings, the
basic subgradient estimate for marginal functions and the Ekeland variational prin-
ciple. Applications to the pointbased characterizations for both the metric regularity
and the Lipschitzian stability of solution mapping of parametric generalized equa-
tions (1.1)–(1.3) are also given without any requirements of either the surjective
property of partial gradient of f , Q does not depend x or Q is graphically regular
at a given point. Some our results generalized the corresponding results presented
in [7, 10, 27].

The paper is organized as follows. In Section 2 we recall some basic definitions
and preliminaries from variational analysis and the generalized differentiation. In
Section 3 we derive pointbased sufficient conditions for both the (local) metric
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regularity and Lipschitzian stability of the implicit multifunction (1.2), and the
relationships with the corresponding known results. Applications to stability analysis
for solution mapping of parametric generalized equations are given in Section 4.

2. PRELIMINARIES

Throughout the paper we use standard notation of variational analysis and gen-
eralized differentiation. We refer the reader to the books by Mordukhovich [16, 17]
for more details and discussions. Unless otherwise stated, all spaces under consid-
eration are Banach spaces whose norms are always denoted by ‖ · ‖. For any X we
consider its dual space X ∗ equipped with the weak∗ topology w∗ where 〈· , ·〉means
the canonical pairing. As usual, BX and B∗

X∗ stand for the closed unit balls of the
Banach space X and its dual, respectively. The symbol A∗ is the adjoint operator
of a linear continuous operator A. The closed ball with center x and radius ρ is
denoted by Bρ(x).

Given a set-valued mapping F : X ⇒ X∗ between a Banach space X and its
topological dual X∗, we denote by

Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣∣ ∃ sequences xk → x̄ and x∗k
w∗−−→ x∗

with x∗k ∈ F (xk) for all k ∈ N

}
the sequential Painlevé-Kuratowski upper/outer limit with respect to the norm topol-
ogy of X and the weak∗ topology of X∗, where N := {1, 2, . . .}.

Given Ω ⊂ X and ε ≥ 0, define the collection of ε-normals to Ω at x̄ ∈ Ω by

(2.1) N̂ε(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup
x

Ω−→x̄

〈x∗, x− x̄〉
‖x− x̄‖ ≤ ε

}
,

where x Ω−→ x̄ means that x → x̄ with x ∈ Ω. When ε = 0, the set N̂ (x̄; Ω) :=
N̂0(x̄; Ω) in (2.1) is a cone called the prenormal cone or the Fréchet normal cone
to Ω at x̄.

The Mordukhovich normal cone N (x̄; Ω) is obtained from N̂ε(x; Ω) by taking
the sequential Painlevé-Kuratowski upper limit in the weak∗ topology of X∗ as

(2.2) N (x̄; Ω) := Lim sup
x

Ω−→x̄
ε↓0

N̂ε(x; Ω),

where one can put ε = 0 when Ω is closed around x̄ and the space X is Asplund,
i.e., a Banach space whose separable subspaces have separable duals. The subset
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Ω ⊂ X is said to be (locally) closed around x̄ if there is a neighborhood U of x̄
such that Ω ∩ clU is closed.

Let F : X ⇒ Y be a set-valued mapping between Banach spaces with the graph

gphF :=
{
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
}
.

The Mordukhovich normal coderivative D ∗F (x̄, ȳ) : Y ∗ ⇒ X∗ of F at (x̄, ȳ) ∈
gphF is defined by

(2.3) D∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N ((x̄, ȳ); gphF )

}
.

The Fréchet normal coderivative at (x̄, ȳ) ∈ gphF is defined by

(2.4) D̂∗F (x̄, ȳ)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂((x̄, ȳ); gphF ))} ∀y∗ ∈ Y ∗.

A single-valued mapping f : X → Y is said to be strictly differentiable at x̄ if
there is a linear continuous operator ∇f(x̄) : X → Y such that

lim
x,u→x̄

f(x) − f(u) − 〈∇f(x̄), x− u〉
‖x− u‖ = 0.

We known that for such mappings one has

D∗f(x̄)(y∗) = D̂∗f(x̄)(y∗) = {(∇f(x̄))∗y∗} ∀y∗ ∈ Y ∗,

i.e., the Mordukhovich normal coderivative (resp., Fŕechet normal coderivative) is a
generalization of the adjoint operator to the classical Jacobian/strict derivative. For
more details, we refer the reader to [16].

For an extended real-valued function ϕ : X → R̄ := [−∞,∞], we define

domϕ = {x ∈ X | |ϕ(x)| <∞}, epiϕ = {(x, µ) ∈ X × R | µ ≥ ϕ(x)},
and say that ϕ is lower semicontinuous at x̄ ∈ X if lim inf

x→x̄
ϕ(x) ≥ ϕ(x̄). Here

lim inf
x→x̄

denotes the lower limit of scalar functions in the classical sense.

Each extended real-valued function ϕ : X → R̄ corresponds to a multifunction
Φ : X ⇒ R defined by

Φ(x) = Eϕ(x) := {µ ∈ R | µ ≥ ϕ(x)} ∀x ∈ X,

which is called the associated epigraphical multifunction. The limiting or ba-
sic/Mordukhovich subdifferential ∂ϕ(x̄) of ϕ at x̄ ∈ domϕ is defined via the
coderivative D∗Φ(x̄, ȳ) as follows

∂ϕ(x̄) := D∗Eϕ(x̄, ϕ(x̄))(1) = {x∗ ∈ X | (x∗,−1) ∈ N ((x̄, ϕ(x̄)); epiϕ)}.
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If x̄ /∈ domϕ then one puts ∂ϕ(x̄) = ∅. If x̄ is a local minimum of ϕ, then

(0,−1) ∈ N̂((x̄, ϕ(x̄)); epiϕ) ⊂ N ((x̄, ϕ(x̄)); epiϕ).

The presubdifferential or Fréchet subdifferential of ϕ at x̄ ∈ domϕ is denoted by

∂̂ϕ(x̄) := {x∗ ∈ X | (x∗,−1) ∈ N̂((x̄, ϕ(x̄)); epiϕ)}.

We recall that a set Ω is sequentially normally compact (SNC) at x̄ if for any
sequences εk ↓ 0, xk

Ω→ x̄, and x∗k ∈ N̂εk
(xk; Ω) one has

[
x∗k

w∗→ 0
]

=⇒ [‖x∗k‖ → 0
]
as k → ∞,

where εk can be omitted if X is Asplund and if Ω is locally closed around x̄. A
set-valued mapping F : X ⇒ Y is SNC at (x̄, ȳ) ∈ gphF if its graph enjoys this
property. F is partially sequentially normally compact (PSNC) at (x̄, ȳ) if for any
sequence (εk, xk, yk, x

∗
k, y

∗
k) ∈ [0,∞)× (gphF ) ×X∗ × Y ∗ satisfying

εk ↓ 0, (xk, yk) → (x̄, ȳ), x∗k ∈ D̂∗
εk
F (xk, yk)(y∗k), x

∗
k

w∗→ 0 and ‖y∗k‖ → 0

one has ‖x∗k‖ → 0 as k → ∞.
Let ϕ : X → R̄ be finite at x̄. We say that ϕ is sequentially normally epi-

compact (SNEC) at x̄ if its epigraph is (SNC) at (x̄, ϕ(x̄)).
Let us recall the definitions of the (local) metric regularity and Lipschitz-like

multifunctions introduced by Robinson [24] and Aubin [1], respectively.

Definition 2.1. [16]. Let Φ: X ⇒ Y be a multifunction between Asplund
spaces. Let (x̄, ȳ) ∈ gph Φ.

(a) Φ is said to be local-metrically regular around (x̄, ȳ) with modulus c > 0
if there exist a neighborhood U of x̄, a neighborhood V of ȳ, and a number µ > 0
such that

dist (x,Φ−1(y)) ≤ c dist (y,Φ(x))

for any x ∈ U and y ∈ V satisfying dist(y,Φ(x)) ≤ µ.
(b) Φ is said to be pseudo-Lipschitzian or Lipschitz-like around (x̄, ȳ) with

modulus � > 0 if there exist a neighborhood U of x̄ and a neighborhood V of ȳ
such that

Φ(x1) ∩ V ⊂ Φ(x2) + �‖x1 − x2‖BX ∀x1, x2 ∈ U.
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3. CHARACTERIZATIONS OF METRIC REGULARITY AND LIPSCHITZIAN STABILITY

In this section we establish the sufficient conditions for the metric regularity and
the Lipschitzian stability of the implicit multifunction (1.2).

Let Z be an Asplund space and let Ω ⊂ Z. We say that Ω has the robustness
property at z̄ belonging to closure of Ω if for any sequences zk

Ω−→ z̄ and z∗k
w∗−−→

z∗ with z∗k ∈ N (zk; Ω), k = 1, 2, . . ., there exists a subsequence {z∗kj
} of {z∗k}

satisfying z∗kj
→ z∗ in the normal topology of Z∗ and z∗ ∈ N (z̄; Ω). Obviously,

the robustness property of Ω at z̄ automatically holds if Z is a finite-dimensional
space.

Let Ξ: X ⇒ Y be a multifunction and let (x0, y0) ∈ gph Ξ. The Mordukhovich
normal coderivative of Ξ is said to be robust at (x0, y0) if its graph has the robustness
property at (x0, y0).

One says that Ξ is inner semicompact around x0 ∈ X if there exists a neigh-
borhood U of x0 such that for any x ∈ U and any sequence xk → x, there is a
sequence yk ∈ Ξ(xk), k = 1, 2, . . ., which contains a subsequence convergent in
the norm topology of Y .

Definition 3.1. [24]. For the variational system defined as in (1.1) and (1.2),
let ω0 := (x0, y0, 0) ∈ gphF . The implicit multifunction G is said to be local-
metrically regular around ω0 with modulus c > 0 if there exist a neighborhood U
of x0, a neighborhood V of y0 and a number µ > 0 such that

dist (x, G(y)) ≤ c dist (0, F (x, y))(3.1)

for any x ∈ U and y ∈ V satisfying dist(0, F (x, y)) ≤ µ.

Given a subset Ω ⊂ X and a point u ∈ X , we denote the set of the metric
projections of u on the closure of Ω by M(u,Ω), that is

M(u,Ω) = {x ∈ clΩ | ‖x− u‖ = dist (u,Ω)}
where dist (u,Ω) := inf

z∈Ω
‖z − u‖ is the distance from u to Ω and clΩ denotes the

closure of Ω.
For the variational system defined as in (1.1) and (1.2), let ω0 := (x0, y0, 0) ∈

gphF and let Fy(·) := F (·, y). Consider the following assumption (SC):
There are a neighborhood U0 of x0, a neighborhood V0 of y0 such that for
any y ∈ V0 and for any x ∈ U0, the multifunction M(0, Fy(·)) is inner
semicompact around x.

We first give the pointbased sufficient conditions for the metric regularity and
the Lipschitzian stability of implicit multifunction (1.2).
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Theorem 3.2. . LetX, Y, Z be Asplund spaces, a multifunctionF : X×Y ⇒ Z

and a multifunction G : Y ⇒ X be defined as in (1.1) and (1.2). Let ω 0 :=
(x0, y0, 0) ∈ gphF . Suppose that gphF is locally closed around ω 0 and (SC) is
valid. If the Mordukhovich normal coderivative of F has the robustness property
at ω0 and the following condition

(PB) ∀ (y∗, z∗) ∈ Y ∗ × Z∗, (0, y∗) ∈ D∗F (ω0)(z∗) =⇒ (y∗, z∗) = (0, 0)

holds, then G is local-metrically regular around ω 0 with modulus
1
σ
> 0, i.e., there

exist a neighborhoods U of x0, a neighborhood V of y0, a number σ > 0 and a
number µ > 0 such that

dist (x, G(y)) ≤ 1
σ

dist (0, F (x, y))(3.2)

for any x ∈ U and y ∈ V satisfying dist (0, F (x, y)) ≤ µ. Moreover, for any
x∗ ∈ X∗,

(3.3) D∗G(y0, x0)(x∗) ⊂
⋃

z∗∈Z∗
{y∗ : (−x∗, y∗) ∈ D∗F (ω0)(z∗)}

and G is Lipschitz-like around (y0, x0).

For proving Theorem 3.2, we need the following auxiliary results.
We first consider the parametric minimization problem

(3.4) min{ϕ(x, y) | y ∈ Φ(x)}

depending on the parameter x and the corresponding marginal function

m(x) := inf{ϕ(x, y) : y ∈ Φ(x)},(3.5)

where ϕ : X × Y → R̄ is an extended real-valued function and Φ : X ⇒ Y is a
multifunction between Banach spaces. Let

(3.6) M(x) := {y ∈ Φ(x) | ϕ(x, y) = m(x)}

denote the parametric solution set of (3.4).

Lemma 3.3. (Basic subgradient of marginal function) [16, Theorem 3.38]. Let
Φ : X ⇒ Y be a closed-graph multifunction between Asplund spaces X and Y ,
let ϕ : X × Y → R̄ be lower semicontinuous on gph Φ. Suppose that for any
ȳ ∈M(x̄), the multifunctionM in (3.6) be inner semicompact at (x̄, ȳ) and either
ϕ is SNEC at (x̄, ȳ) or gphΦ is SNC at (x̄, ȳ) and the qualification constraint
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∂∞ϕ(x̄, ȳ) ∩ (−N ((x̄, ȳ); gphΦ)) = {0}(3.7)

is satisfied. Then one has the inclusion

(3.8) ∂m(x̄) ⊂ ⋃ {x∗ +D∗Φ(x̄, ȳ)(y∗) : (x∗, y∗) ∈ ∂ϕ(x̄, ȳ), ȳ ∈M(x̄)} .

Given a single-valued mapping f : X → Y between Banach spaces. Let x̄ ∈ X .
f is said to be locally Lipschitzian around x̄ if there exist a neighborhood U of x̄
and a number � ≥ 0 such that

‖f(x1) − f(x2)‖ ≤ �‖x1 − x2‖ for all x1, x2 ∈ U.

We recall from [16, Corollary 1.81] that if X is a Banach space and ϕ : X → R̄

is locally Lipschitzian around x̄, then ∂∞ϕ(x̄) = {0}.

Lemma 3.4. (Sum rules for basic subgradient) [16, Theorem 3.36]. Let X be
an Asplund space, let ϕi : X → R̄, i = 1, 2, be lower semicontinuous at x̄, and
one of these functions be SNEC at x̄. Suppose that

[x∗i ∈ ∂∞ϕi(x̄), i = 1, 2, x∗1 + x∗2 = 0] =⇒ x∗1 = x∗2 = 0.

Then one has the inclusion

∂(ϕ1 + ϕ2)(x̄) ⊂ ∂ϕ1(x̄) + ∂ϕ2(x̄).

The following result derives a sufficient condition for the metric regularity of
G via the partial Mordukhovich normal coderivative of F in x.

Theorem 3.5. Let X,Z be Asplund spaces, Y a metric space, F : X×Y ⇒ Z
and G : Y ⇒ X multifunctions are defined as in (1.1) and (1.2), respectively. Let
ω0 := (x0, y0, 0) ∈ gphF . Suppose that gphF is locally closed around ω 0 and
(SC) is valid. If there exist σ > 0 and neighborhood U 0 × V0 of (x0, y0) such that
for any (x, y) ∈ U0 × V0 with 0 �∈ F (x, y) satisfying

(3.9) σ ≤ inf{‖x∗‖ : x∗ ∈ D∗Fy(x, z)(z∗), z ∈ M(0, Fy(x)), ‖z∗‖ = 1},

then G is metrically regular around ω 0 with modulus
1
σ
> 0, i.e., there exist a

neighborhood U of x0, a neighborhood V of y0 and a number µ > 0 such that

dist (x, G(y)) ≤ 1
σ

dist (0, F (x, y))(3.10)

for any x ∈ U and y ∈ V satisfying dist(0, F (x, y)) ≤ µ. Moreover, if F :
X × Y ⇒ Z is partially Lipschitz-like in y with rank � around ω 0, i.e., there exist
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a neighborhood U1 of x0, a neighborhood V1 of y0 and a neighborhood W0 of 0
such that, for any (x, y) ∈ U1 × V1 and (x, y′) ∈ U1 × V1,

F (x, y′) ∩W0 ⊂ F (x, y) + �dist(y′, y)BY ,

then G is Lipschitz-like with rank
�

σ
around (y0, x0), i.e., there exist a neighborhood

V of y0 and a neighborhood U of x0 such that

G(y′) ∩ U ⊂ G(y) +
�

σ
dist (y′, y)BX ∀y, y′ ∈ V.

Proof. Let ω0 := (x0, y0, 0) ∈ gphF . By our assumptions, there are a
neighborhood U0 of x0 and a neighborhood V0 of y0 such that (3.9) is valid. Choose
a number µ > 0 and a number ρ > 0 such that

(3.11) µ < σρ and Bρ(x0) ⊂ U0.

We now examine the case (x, y) ∈ domF ∩ (U0 × V0) satisfying

(3.12) dist (0, F (x, y)) ≤ µ.

For convenience we will ignore (x, y) ∈ domF . Let U := U0 and V := V0. We
want to show that U , V together with constants µ and σ satisfy the conclusion of
the theorem. Fix any x ∈ U and y ∈ V and assume that (3.12) is satisfied. Put
α := dist (0, F (x, y)). By (3.11) and (3.12), α < σρ. It remains to show that

(3.13) dist (x, G(y)) ≤ α

σ
.

Consider the function υy(u) := dist(0, Fy(u)), u ∈ U . We claim that υy(·) is
lower semicontinuous on U . Indeed, if there is a sequence xk → u and ε > 0 such
that vy(xk) ≤ vy(u) − ε for every k ∈ N, then, by (SC), there exist a sequence
{kj} ⊂ {k} and a sequence zkj ∈ M(0, Fy(xkj)) such that zkj → z ∈ Z. Since
zkj ∈ Fy(xkj) = F (xkj , y) for every j ∈ N, the closedness of gphF around ω0

implies z ∈ Fy(u). Hence, from the relation

‖zkj‖ = vy(xkj ) ≤ vy(u)− ε ∀j ∈ N,

it follows that vy(u) ≤ ‖z‖ ≤ vy(u) − ε, which is impossible and our claim is
proved. Therefore, υ(·) is lower semicontinuous on Bρ(x0). Fixing any δ ∈ (

α

ρ
, σ),

we have υy(x) = α < α
σ

δ
. Putting t :=

δ

α
υy(x), we see that

υy(x) = t
α

δ
, and t ∈ (0, σ).
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Clearly, υy(x) ≤ inf
u∈Bρ(x0)

υy(u) + t
α

δ
. From the Ekeland variational principle [16,

Theorem 2.26], it follows that there is x̄ ∈ Bρ(x0) such that

(3.14) vy(x̄) ≤ vy(x), ‖x̄− x‖ ≤ α

δ

and

(3.15) vy(x̄) ≤ vy(u) + t‖u− x̄‖ ∀u ∈ Bρ(x0).

We next claim that
0 ∈ Fy(x̄).

Conversely, suppose that 0 �∈ Fy(x̄). It follows from (3.15) that x̄ is a local minimum
of the function

ψ(u) := vy(u) + χ(u), u ∈ Bρ(x0),

where χ(u) := t‖u − x̄‖ is a Lipschitz function. From the nonsmooth version of
Fermat’s rule [16, Proposition 1.114], it follows that

0 ∈ ∂ψ(x̄).

By the Lipschitzian property of χ and Corollary 1.81 in [16], we have ∂∞χ(x̄) =
{0} and χ is sequentially normally epi-compact at x̄. From Lemma 3.4, we have

(3.16) 0 ∈ ∂vy(x̄) + tBX∗ .

Let us now compute ∂vy(x̄). Define

Φ(u) := Fy(u), ϕ(u, z) := ‖z‖,
m(u) := υy(u) = inf{ϕ(u, z) : z ∈ Φ(u)}.

Take arbitrary z̄ ∈M(x̄) := M(0, Fy(x̄)). Since ϕ is locally Lipschitzian at (x̄, z̄),
it is sequentially normally epi-compact at this point and

∂∞ϕ(x̄, z̄) = {(0, 0)}.

Define θ(z) := ‖z‖. It is easy to check that

∂ϕ(x̄, z̄) = {0} × ∂θ(z̄).

Applying Lemma 3.3, we obtain

(3.17) ∂vy(x̄) ⊂
⋃

[D∗Fy(x̄, z̄)(z∗) | z∗ ∈ ∂θ(z̄), z̄ ∈ M(0, Fy(x̄))] .
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The condition 0 �∈ Fy(x̄) implies z̄ �= 0 for every z̄ ∈ M(0, Fy(x̄)). It follows that

(3.18) ∂θ(z̄) = {z∗ ∈ Z∗ | ‖z∗‖ = 1, 〈z∗, z̄〉 = ‖z̄‖}.

From (3.16)–(3.18), there exist vectors z̄ ∈ M(0, Fy(x̄)), z∗ ∈ Z∗ with ‖z∗‖ = 1,
and x∗ ∈ D∗Fy(x̄, z̄)(z∗) such that ‖x∗‖ ≤ t < σ. Besides, by (3.9), we can assert
that σ ≤ ‖x∗‖, this contradicts the inequality ‖x∗‖ < σ. We have thus shown that
0 ∈ Fy(x̄), i.e., x̄ ∈ G(y). Hence, by (3.14),

dist(x, G(y)) ≤ ‖x− x̄‖ ≤ α

δ
.

Letting δ → σ we obtain dist(x, G(y)) ≤ 1
σ dist(0, F (x, y)) and G is local-

metrically regular around ω0.
Suppose that F is partially Lipschitz-like in y with rank � around ω0. Then

there exist a neighborhood U1 of x0, a neighborhood V1 of y0 and a neighborhood
W0 of 0 such that, for any (x, y), (x, y′) ∈ U1 × V1,

F (x, y′) ∩W0 ⊂ F (x, y) + �dist(y′, y)BY .(3.19)

Choose µ > 0 such that
Bµ(0) ⊂W0.

It follows from the regularity of G around ω0 that there exist a neighborhood U2 of
x0, a neighborhood V2 of y0 and a number σ > 0 such that

dist (x, G(y)) ≤ 1
σ

dist (0, F (x, y))(3.20)

for any x ∈ U2 and y ∈ V2 satisfying dist(0, F (x, y)) ≤ µ. Let U := U1 ∩ U2 and
V := V1 ∩ V2. Then

G(y′) ∩ U ⊂ G(y) +
�

σ
dist(y′, y)BX ∀y, y′ ∈ V.(3.21)

Indeed, take arbitrary x ∈ G(y′) ∩ U . From (3.19) and (3.20), it follows that

dist (x, G(y)) ≤ 1
σ

dist (0, F (x, y)) ≤ �

σ
dist(y′, y) ∀y, y′ ∈ V.

Hence, x ∈ G(y) +
�

σ
dist(y′, y)BX ∀y, y′ ∈ V . So, (3.21) follows. The proof is

complete.
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Remark 3.6. Obviously, (A1) in [10, Theorem 3.1] implies (3.9). The cor-
responding results for the metric regularity of (1.2) in [10, Theorem 3.2] always
require the lower continuity of F (x0, ·) at y0 and F (·) is lower semicontinuous
at (x0, y0). Hence, Theorem 3.5 extends Theorem 3.1, Theorem 3.3 in [10] and
Theorem 3.4 in [7]. The condition (3.9) is similar to the condition (iv’) in [9,
Theorem 3.6], but Ledyaev and Zhu [9] assumed that X and Z are Banach spaces
with Fréchet-smooth Lipschitzian bump functions, F (x0, ·) is lower semicontinuous
at y0 and for any fixed y ∈ V0, F (·, y) is upper semicontinuous.

Lemma 3.7. (Partial coderivative) [16, Corollary 3.17]. Let F : X×Y ⇒ Z
be multifunction between Asplund spaces. Let ω̄ := (x̄, ȳ, z̄) ∈ gphF and let
Fy(·) := F (·, y). Suppose that gphF is locally closed around ω̄ and PSNC at this
point, and that

(0, y∗) ∈ D∗
MF (ω̄)(0) =⇒ y∗ = 0;

these conditions automatically hold when F is Lipschitz-like around ω̄. Then one
has the inclusion

(3.22) D∗Fȳ(x̄, z̄)(z∗)⊂
{
x∗∈X∗ :∃y∗∈Y ∗ such that (x∗, y∗)∈D∗F (ω̄)(z∗)

}
.

Next, we give the relationship between the pointbased criteria of F and the
partial Mordukhovich normal coderivative of F around a given point.

Theorem 3.8. LetX, Y, Z be Asplund spaces and a multifunctionF : X×Y ⇒
Z. Let ω̄ := (x̄, ȳ, 0) ∈ gphF . Suppose that gphF is locally closed around ω̄
and its Mordukhovich normal coderivative has the robustness property at this point.
Consider the following statements:

(i) For any (y∗, z∗) ∈ Y ∗ × Z∗, (0, y∗) ∈ D∗F (ω̄)(z∗) =⇒ (y∗, z∗) = (0, 0);

(ii) There exist a constant c > 0, a neighborhood U of x̄, a neighborhood V
of ȳ and a neighborhood W of 0 such that for any point ω = (x, y, z) ∈
gphF ∩ (U × V ×W ), it holds

(3.23) ‖z∗‖ ≤ c‖x∗‖ ∀z∗ ∈ Z∗, ∀x∗ ∈ D∗Fy(x, z)(z∗);

(iii) There exist a number σ > 0, a neighborhood U of x̄ and a neighborhood V
of ȳ such that for any (x, y) ∈ U × V with 0 �∈ F (x, y)

(3.24) σ ≤ inf{‖x∗‖ : x∗ ∈ D∗Fy(x, z)(z∗), z ∈ M(0, Fy(x)), ‖z∗‖ = 1}.

Then (i)=⇒ (ii) =⇒ (iii).
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Proof. We first prove that (i)=⇒ (ii). Suppose that (i) holds. We first claim
that there exist a neighborhood U of x̄, a neighborhood V of ȳ and a neighborhood
W of 0 such that for any point ω = (x, y, z) ∈ gphF ∩ (U × V ×W ) and for any
(y∗, z∗) ∈ Y ∗ × Z∗ satisfying

(3.25) (0, y∗) ∈ D∗F (ω)(z∗) =⇒ (y∗, z∗) = (0, 0).

Indeed, if our claim is false, then there exist sequences ωk = (xk, yk, zk) ∈ gphF
and (y∗k, z

∗
k) ∈ Y ∗ × Z∗ \ {(0, 0)} such that for every k = 1, 2, . . .

(3.26) (0, y∗k) ∈ D∗F (ωk)(z∗k) and ωk → ω̄ as k → ∞.

Without loss of generality we can assume that ‖z∗k‖ = 1 for every k ∈ N. Consider
the following two cases:

Case 1. {y∗k} is bounded. Since Y is a Asplund space, the unit ball of the dual
space Y ∗ is sequentially weak∗ compact. Taking into account the boundedness of
{(y∗k, z∗k)}, one may assume that (y∗k, z∗k) w∗−−→ (y∗, z∗) ∈ Y ∗ × Z∗. Clearly,

(0, y∗k,−z∗k) ∈ N (ωk; gphF ).

It follows from the robustness property of Mordukhovich normal coderivative of F
at ω0 that (y∗k, z

∗
k) → (y∗, z∗) as k → ∞ in the norm topology of Y ∗ × Z∗ and

(0, y∗,−z∗) ∈ N (ω̄; gphF ). Then ‖z∗‖ �= 0 and (0, y∗) ∈ D∗F (ω̄)(z∗) which is
a contradiction to (i).

Case 2. {y∗k} is not bounded. Then there is a subsequence {y∗kj
} of {y∗k} such

that ‖y∗kj
‖ → ∞ as j → ∞. Without loss of generality, we may assume that

(
y∗kj

‖y∗kj
‖ ,

z∗kj

‖y∗kj
‖
)

w∗−−→ (y∗, z∗) ∈ Y ∗ × Z∗.

Analysis similar to that as in Case 1 shows that ‖y∗‖ �= 0 and (0, y∗) ∈ D∗F (ω̄)(z∗)
which contradicts (i). Hence, our claim is proved. Since the Mordukhovich normal
coderivative of F is robust at ω̄, it follows that F is SNC at this point. Combining
this with (i) and Theorem 4.10 in [16], we deduce that F is Lipschitz-like around
ω̄. By (3.25) and Lemma 3.7, we have

(3.27) D∗Fy(x, z)(z∗)⊂
{
x∗∈X∗ :∃y∗∈Y ∗ such that (x∗, y∗)∈D∗F (ω)(z∗)

}
for any ω = (x, y, z) ∈ gphF ∩ (U × V ×W ) and z∗ ∈ Z∗.

Our next claim that (ii) holds. On the contrary, suppose that the conclusion
of (ii) is not true. Then we can find sequences ωk = (xk, yk, zk) ∈ gphF and
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(x∗k, z
∗
k) ∈ X∗×Z∗ such that ωk → ω̄, x∗k ∈ D∗Fyk

(xk, zk)(z∗k), and ‖z∗k‖ > k‖x∗k‖
for all k ∈ N. There is no loss of generality in assuming that ‖z∗k‖ = 1 for all
k ∈ N. Then

(3.28) x∗k ∈ D∗Fyk
(xk, zk)(z∗k) and ‖x∗k‖ ≤ 1

k
∀k ∈ N.

It follows from (3.27) that there exists a sequence {y∗k} ⊂ Y ∗ such that (x∗k, y
∗
k) ∈

D∗F (ωk)(z∗k), where ωk := (xk, yk, zk). Hence

(x∗k, y
∗
k,−z∗k) ∈ N (ωk; gphF ).

If the sequence {y∗k} is bounded then, by the same analysis as in Case 1, it fol-
lows that there exists a subsequence {(x∗

kj
, y∗kj

, z∗kj
)} of {(x∗k, y∗k, z∗k)} converging

to (0, y∗, z∗) in the norm topology of X∗ × Y ∗ × Z∗ such that ‖z∗‖ �= 0 and
(0, y∗,−z∗) ∈ N (ω̄; gphF ). Hence ‖z∗‖ �= 0 and (0, y∗) ∈ D∗F (ω̄)(z∗) which
contradicts (i). If the sequence {y∗k} is not bounded then, by the same method as
in Case 2, it follows that there exists a subsequence

{(
x∗kj

‖y∗kj
‖ ,

y∗kj

‖y∗kj
‖ ,

z∗kj

‖y∗kj
‖
)}

of{(
x∗k
‖y∗k‖

,
y∗k

‖y∗k‖
,
z∗k

‖y∗k‖
)}

converging to (0, y∗, z∗) in the norm topology of X∗ ×
Y ∗ × Z∗ such that ‖y∗‖ �= 0 and (0, y∗) ∈ D∗F (ω̄)(z∗) which is a contradiction
to (i).

From the above, it follows that there must exist a constant c > 0, a neighborhood
U of x̄, a neighborhood V of ȳ and a neighborhood W of 0 such that for any
point ω = (x, y, z) ∈ gphF ∩ (U × V ×W ), (3.23) is fulfilled. The implication
[(ii)=⇒(iii)] is trivial. The proof is complete.

Proof of Theorem 3.2. Obviously, the local-metric regularity of G at ω0 immedi-
ately follows from Theorem 3.5 and Theorem 3.8. Now let us examine the formula
(3.3). We first observe that the graph of the mapping G under consideration can be
represented as follows

gphG = {(y, x) ∈ Y ×X | g(x, y) ∈ Θ}with Θ := gphF,

where g(x, y) := (x, y, 0). Obviously, g is a strictly differentiable function and

(3.29) (∇g(x0, y0))∗(x∗, y∗, z∗) = (x∗, y∗) ∀(x∗, y∗, z∗) ∈ X∗ × Y ∗ × Z∗.

We have

(3.30) N (ω0; Θ) ∩ ker (∇g(x0, y0))∗ = {0}.
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Indeed, let (x∗, y∗, z∗) ∈ N (ω0; Θ)∩ker (∇g(x0, y0))∗. Then, by (3.29), (x∗, y∗) =
(0, 0) and (0, 0) ∈ D∗F (ω0)(z∗). It follows from (PB) that z∗ = 0 and (3.30) is
fulfilled. Applying Corollary 3.42 in [16] we have

(3.31) N (ω0; g−1(Θ)) ⊂ (∇g(ω0))∗N (ω0; Θ).

For each x∗ ∈ X∗, let y∗ ∈ D∗G(y0, x0)(x∗). Then (y∗,−x∗) ∈ N ((y0, x0); gphG).
It is easy to check that

(3.32) (y∗,−x∗) ∈ N ((y0, x0); gphG) ⇐⇒ (−x∗, y∗) ∈ N ((x0, y0); g−1(Θ)).

From (3.29) and (3.31) it follows that

(3.33) (−x∗, y∗)∈N ((x0, y0); g−1(Θ))=⇒∃z∗∈Z∗, (−x∗, y∗)∈D∗F (ω0)(z∗).

Therefore, (3.3) immediately follows from (3.32) and (3.33). From (3.3) it follows
that D∗G(y0, x0)(0) = {0}. Since the Mordukhovich normal coderivative of F is
robust at ω0, it follows that it is SNC at ω0. By Theorem 3.84 in [16], g−1(Θ)
is SNC at (x0, y0) (note that, by the special structure of g as above, we see check
at once that Theorem 3.84 in [16] is still fulfilled with the local closedness of
Θ around ω0). Since gphF is locally closed around ω0 it follows that gphG is
locally closed around (y0, x0). Applying Theorem 4.10 in [16] we conclude that G
is Lipschitz-like around (y0, x0). The proof is complete.

The following corollary extends the corresponding result in [27].

Corollary 3.9. Let F : R
m×Rn ⇒ Rp be a multifunction andG : Rn ⇒ Rm a

multifunction defined as in (1.1) and (1.2). Let ω0 := (x0, y0, 0) ∈ gphF . Suppose
that gphF is closed around ω0. If the following pointbased condition

∀ (y∗, z∗) ∈ Rn ×Rp, (0, y∗) ∈ D∗F (ω0)(z∗) =⇒ (y∗, z∗) = (0, 0)

holds, then G is local-metrically regular around ω 0 and Lipschitz-like around
(y0, x0).

Proof. The proof is immediate from Theorem 3.2, so can be omitted.

4. APPLICATIONS TO STABILITY ANALYSIS FOR SOLUTION MAPPING OF PARAMETRIC
GENERALIZED EQUATIONS

In this section we consider a special case of F in (1.1) which has the form
F (x, y) = f(x, y) + Q(x, y) where f : X × Y → Z is a single-valued mapping
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and Q : X × Y ⇒ Z is a set-valued mapping between Asplund spaces. Then (1.1)
becomes

0 ∈ f(x, y) +Q(x, y).(4.1)

This generalized equation was introduced by Robinson [24]. It is well known that
model (4.1) provides a convenient framework for the unified study of optimal so-
lutions in many optimization-related areas including mathematical programming,
complementarity, variational inequalities, optimal control, mathematical economics,
equilibrium, etc.; see, e.g., [16, 17, 25] and the references therein for more infor-
mation and discussions. When Q(x, y) = N (y; Ω) the normal cone operator for a
convex set Ω, the parametric generalized equations (4.1) is reduced to the parametric
variational inequality:

Find y ∈ Ω such that 〈f(x, y), z− y〉 ≥ 0 ∀z ∈ Ω,(4.2)

which is of particular interest for applications.
The solution map G : Y ⇒ X associated with (4.1) is defined by

G(y) = {x ∈ X : 0 ∈ f(x, y) +Q(x, y)}.(4.3)

For the variational system defined as in (4.1) and (4.3), let ω0 := (x0, y0,−f(x0,

y0)) ∈ gphQ and let Qy(·) := Q(·, y). Consider the following assumption (SC’):
There are a neighborhood U0 of x0, a neighborhood V0 of y0 such that for
any y ∈ V0 and for any x ∈ U0, the multifunction M(−f(·, y), Qy(·)) is
inner semicompact around x.

In what follows we establish the sufficient conditions ensuring the metric regu-
larity and Lipschitzian stability for parametric generalized equation (4.3).

Theorem 4.1. Let X, Y, Z be Asplund spaces. Let f : X × Y → Z be a
single-valued mapping, Q : X × Y ⇒ Z and G : Y ⇒ X multifunctions defined
as in (4.1) and (4.3). Let ω0 := (x0, y0,−f(x0, y0)) ∈ gphQ. Suppose that f is
strictly differentiable at (x 0, y0), gphQ is locally closed around ω0 and (SC’) is
valid. If the Mordukhovich normal coderivative of Q has the robustness property
at ω0 and for each (y∗, z∗) ∈ Y ∗ × Z∗, the following condition holds
(4.4)
(−∇fx(x0, y0)∗(z∗), y∗−∇fy(x0, y0)∗(z∗)) ∈ D∗Q(ω0)(z∗) =⇒ (y∗, z∗) = (0, 0)

then G is local-metrically regular around ω 0 with modulus
1
σ
> 0, i.e., there exist

a neighborhoods U of x0, a neighborhood V of y0, a number σ > 0 and a number
µ > 0 such that

dist (x, G(y)) ≤ 1
σ

dist (−f(x, y), Q(x, y))(4.5)
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for any x ∈ U and y ∈ V satisfying dist (−f(x, y), Q(x, y)) ≤ µ. Moreover, for
any x∗ ∈ X∗,

(4.6)
D∗G(y0, x0)(x∗) ⊂

⋃
z∗∈Z∗{y∗ : (−x∗ −∇fx(x0, y0)∗(z∗), y∗

−∇fy(x0, y0)∗(z∗)) ∈ D∗Q(ω0)(z∗)}
and G is Lipschitz-like around (y0, x0).

Proof. Let F (x, y) = f(x, y) +Q(x, y), (x, y) ∈ X × Y . Since f is strictly
differentiable at (x0, y0) and gphQ is locally closed around ω0, it follows from
Theorem 3.5 in [20] that

(4.7) D∗F (x0, y0, 0)(z∗) = ∇f(x0, y0)∗(z∗) +D∗Q(ω0)(z∗) ∀z∗ ∈ Z∗.

Hence, the Mordukhovich normal coderivative of F has the robustness property at
(x0, y0, 0). Clearly, gphF is locally closed around (x0, y0, 0). From (4.4) and (4.7)
it follows that

∀(y∗, z∗) ∈ Y ∗ × Z∗, (0, y∗) ∈ D∗F (x0, y0, 0)(z∗) =⇒ (y∗, z∗) = (0, 0).

ApplyingTheorem 3.2we can assert thatG is both local-metrically regular around ω0

and Lipschitz-like around (y0, x0), and (4.6) is fulfilled. The proof is complete.

The following corollary follows immediately from Theorem 4.1.

Corollary 4.2. Let f : R
m×Rn → Rp be a single-valued mapping,Q : Rm×Rn

⇒ Rp and G : Rn ⇒ Rm multifunctions defined as in (4.1) and (4.3). Let ω0 :=
(x0, y0,−f(x0, y0)) ∈ gphQ. Suppose that f is strictly differentiable at (x 0, y0)
and gphQ is closed around ω0. If for each (y∗, z∗) ∈ Rn × Rp the following
condition holds

(−∇fx(x0, y0)∗(z∗), y∗−∇fy(x0, y0)∗(z∗)) ∈ D∗Q(ω0)(z∗) =⇒ (y∗, z∗) = (0, 0),

thenG is both local-metrically regular aroundω 0 and Lipschitz-like around (y0, x0).
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