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NONLINEAR KLEIN-GORDON EQUATIONS AND LORENTZIAN

MINIMAL SURFACES IN LORENTZIAN COMPLEX SPACE FORMS

Bang-Yen Chen

Abstract. We investigate Lorentzian minimal surfaces in Lorentzian complex

space forms. First, we prove that for such surfaces the equation of Ricci

is a consequence of the equations of Gauss and Codazzi. Next, we classify

Lorentzian minimal surfaces in the Lorentzian complex plane C2
1. Finally,

we classify minimal slant surfaces in the Lorentzian complex projective plane

CP 2
1 (4) and in the Lorentzian complex hyperbolic plane CH2

1(−4). In par-
ticular, our latter results show that if a minimal slant surface in CP 2

1 (4) or in
CH2

1(−4) contains no open subset of constant curvature, then it is of Klein-
Gordon type which arises from the solutions of certain nonlinear Klein-Gordon

equations.

1. INTRODUCTION

Let M̃n
i (4c) be a complete simply-connected indefinite complex space form of

complex dimension n and complex index i. Here, the complex index is defined

as the complex dimension of the largest complex negative definite subspace of the

tangent space. If i = 1, we say that M̃n
i (4c) is Lorentzian.

The curvature tensor R̃ of M̃n
i (4c) is given by

(1.1)
R̃(X, Y )Z = c{〈Y, Z〉X − 〈X, Z〉Y + 〈JY, Z〉JX

−〈JX, Z〉JY + 2 〈X, JY 〉JZ}.
Let Cn denote the complex n-plane with complex coordinates z1, . . . , zn. The

Cn endowed with gi,n, i.e., the real part of the Hermitian form

bi,n(z, w) = −
i∑

k=1

z̄kwk +
n∑

j=i+1

z̄jwj, z, w ∈ Cn,
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defines a flat indefinite complex space form with complex index i. We simply

denote the pair (Cn, gi,n) by Cn
i .

Consider the differentiable manifold:

S2n+1
2 (c) = {z ∈ Cn+1

1 ; b1,n+1(z, z) = c−1 > 0},

which is an indefinite real space form of constant sectional curvature c. The Hopf
fibration

π : S2n+1
2 (c) → CPn

1 (4c) : z �→ z · C∗

is a submersion and there exists a unique pseudo-Riemannian metric of complex

index one on CPn
1 (4c) such that π is a Riemannian submersion.

The pseudo-Riemannian manifold CP n
1 (4c) is a Lorentzian complex space form

of positive holomorphic sectional curvature 4c.
Analogously, if c < 0, consider

H2n+1
2 (c) = {z ∈ Cn+1

2 ; b2,n+1(z, z) = c−1 < 0},

which is an indefinite real space form of constant sectional curvature c < 0. The
Hopf fibration

π : H2n+1
2 (c) → CHn

1 (4c) : z �→ z · C∗

is a submersion and there exists a unique pseudo-Riemannian metric of complex

index 1 on CHn
1 (4c) such that π is a Riemannian submersion.

The pseudo-Riemannian manifold CHn
1 (4c) is a Lorentzian complex space form

of negative holomorphic sectional curvature 4c.

It is well-known that a complete simply-connected Lorentzian complex space

form M̃n
1 (4c) is holomorphically isometric to Cn

1 , CPn
1 (4c), or CHn

1 (4c), according
to c = 0, c > 0 or c < 0, respectively.

The history of minimal surfaces goes back to J. L. Lagrange (1736-1813) who

initiated in 1760 the study of minimal surfaces in Euclidean 3-space (cf. [12]).

Since then the theory of minimal surfaces have attracted many mathematicians for

more than two centuries. In particular, minimal surfaces in real space forms have

been studied very extensively during the last two centuries (see, [3, pages 207–249]

and [14, 15] for details).

In this article, we apply the method in [7, 8, 9] to investigate Lorentzian minimal

surfaces in Lorentzian complex space forms. In sections 2 and 3 we provide some

basic notations, formulas and results. In section 4, we prove that, for Lorentzian

minimal surfaces in Lorentzian complex space forms, the equation of Ricci is a

consequence of the equations of Gauss and Codazzi. Two existence results are

given in section 5. In section 6, we classify Lorentzian minimal surfaces in the

Lorentzian complex plane C2
1. In the last two sections, we classify minimal slant

surfaces in the Lorentzian complex projective plane CP 2
1 (4) and in the Lorentzian
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complex hyperbolic plane CH2
1 (−4). In particular, our results obtained in the last

two sections show that if a minimal slant surface in CP 2
1 (4) or in CH2

1 (−4) contains
no open subset of constant curvature, then it is of Klein-Gordon type which arises

from the solutions of certain nonlinear Klein-Gordon equations.

2. PRELIMINARIES

2.1. Basic formulas, equation and definitions

Let M be a Lorentzian surface of a Lorentzian Kähler surface M̃2
1 equipped

with an almost complex structure J and metric g̃. Let 〈 , 〉 denote the inner product
associated with g̃. Denote the induced metric on M by g.

Let ∇ and ∇̃ be the Levi-Civita connection on M and M̃2
1 , respectively. Then

the formulas of Gauss and Weingarten are given respectively by (cf. [1, 11, 13])

(2.1) ∇̃XY = ∇XY + h(X, Y ),

(2.2) ∇̃Xξ = −AξX + DXξ

for vector fields X, Y tangent to M and ξ normal to M , where h, A and D are the

second fundamental form, the shape operator and the normal connection.

The shape operator and the second fundamental form are related by

(2.3) 〈h(X, Y ), ξ〉 = 〈AξX, Y 〉

for X, Y tangent to M and ξ normal to M .

For each normal vector ξ of M at x ∈ M , the shape operator Aξ is a symmetric

endomorphism of the tangent space TxM . The mean curvature vector is defined by

(2.4) H =
1
2
traceh.

A Lorentzian surface in M̃2
1 is called minimal if its mean curvature vector vanishes

at each point on M .

For a Lorentzian surface M in a Lorentzian complex space form M̃2
1 (4c), the

equations of Gauss, Codazzi and Ricci are given respectively by

(2.5)
〈R(X, Y )Z, W 〉 = 〈 R̃(X, Y )Z, W 〉 + 〈h(X, W ), h(Y, Z)〉

− 〈h(X, Z), h(Y, W )〉 ,
(2.6) (R̃(X, Y )Z)⊥ = (∇̄Xh)(Y, Z)− (∇̄Y h)(X, Z),
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(2.7)
〈
RD(X, Y )ξ, η

〉
= 〈 R̃(X, Y )ξ, η 〉 + 〈[Aξ, Aη]X, Y 〉 ,

where X, Y, Z, W are vector tangent to M , and ∇̄h is defined by

(2.8) (∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

2.2. Special Legendre curves in light cone

A vector v is called space-like (respectively, time-like) if 〈v, v〉 > 0 (respectively,
〈v, v〉 < 0). A vector v is called null or light-like if it is a nonzero vector and it

satisfies 〈v, v〉 = 0.
The light cone LC in Cn

i (n ≥ 3, i = 1, 2) is defined by

LC = {z ∈ Cn
i : 〈z, z〉 = 0}.

A unit speed curve z(s) lying in LC is called Legendre if 〈iz ′, z〉 = 0 holds
identically. For a unit speed Legendre curve z in LC, we have

〈z, z〉 =
〈
z, z′

〉
=

〈
z, iz′

〉
=

〈
iz, z′′

〉
=

〈
z′, z′′

〉
= 0.

The Legendre curve z in LC is called special Legendre if 〈iz ′, z′′〉 = 0 holds.
The squared curvature κ2 of a unit speed special Legendre curve z is defined

by κ2 = 〈z′′, z′′〉 and its Legendre torsion τ̂ is defined by τ̂ = εz 〈z′′, iz′′′〉, where
εz = 1 or −1 according to z is space-like or time-like (see [5, 6] for more details).

2.3. Existence and uniqueness theorems

We need the following results from [11] for Section 6.

Theorem A. Let (Mn, g) be a simply connected Lorentzian n-manifold and

TM denote the tangent bundle of M n. If σ is a TM -valued symmetric bilinear

form on M satisfying

(1) 〈σ(X, Y ), Z〉 is totally symmetric,
(2) (∇̄σ)(X, Y, Z) = ∇Xσ(Y, Z)−σ(∇XY, Z)−σ(Y,∇XZ) is totally symmet-

ric,

(3) R(X, Y )Z = c(〈Y, Z〉X − 〈X, Z〉Y ) + σ(σ(Y, Z),X)− σ(σ(X, Z), Y ),

then there exists a Lagrangian isometric immersionL from (M, g) into the complete
simply-connected Lorentzian complex space form M̃n

1 (4c) whose second fundamen-
tal form h is given by h(X, Y ) = Jσ(X, Y ).
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Theorem B. Let L1, L2 : Mn → M̃n
1 (4c) be Lagrangian isometric immersions

of a Lorentzian n-manifoldM n with second fundamental forms h 1, h2, respectively.

If 〈
h1(X, Y ), JL1�Z

〉
=

〈
h2(X, Y ), JL2�Z

〉
,

for all vector fields X, Y, Z tangent to M n, then there exists an isometry φ of

M̃n
1 (4c) such that L1 = L2 ◦ φ.

3. BASICS RESULTS FOR LORENTZIAN SURFACES

Let M be a Lorentzian surface in a Lorentzian Kähler surface (M̃2
1 , g, J). For

each tangent vector X of M , we put

(3.1) JX = PX + FX,

where PX and FX are the tangential and the normal components of JX .

On the Lorentzian surface M there exists a pseudo-orthonormal local frame

{e1, e2} on M such that

(3.2) 〈e1, e1〉 = 〈e2, e2〉 = 0, 〈e1, e2〉 = −1.

For a pseudo-orthonormal frame {e1, e2} satisfying (3.2), it follows from (3.1),

(3.2), and 〈JX, JY 〉 = 〈X, Y 〉 that

(3.3) Pe1 = (sinhα)e1, Pe2 = −(sinh α)e2

for some function α. This function α is called the Wirtinger angle of M .

When the Wirtinger angle α is constant on M , the Lorentzian surface M is

called a slant surface (cf. [2, 10]). In this case, α is called the slant angle; the

slant surface is then called α-slant.

A α-slant surface is called Lagrangian if α = 0 (see [3, 4] for recent survey on
Lagrangian surfaces). Obviously, slant surfaces (in particular, Lagrangian surfaces)

in Lorentzian Kähler surfaces are Lorentzian surfaces.

If we put

(3.4) e3 = ( sechα)Fe1, e4 = ( sech θ)Fe2,

then we find from (3.1)-(3.4) that

(3.5) Je1 = sinhαe1 + cosh αe3, Je2 = − sinh αe2 + cosh αe4,

(3.6) Je3 = − cosh αe1 − sinh αe3, Je4 = − coshαe2 + sinh αe4,
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(3.7) 〈e3, e3〉 = 〈e4, e4〉 = 0, 〈e3, e4〉 = −1.

We call such a frame {e1, e2, e3, e4} an adapted pseudo-orthonormal frame for the
Lorentzian surface M in M̃2

1 .

We need the following lemmas (see [8]).

Lemma 3.1. If M is a Lorentzian surface in Lorentzian K ähler surface M̃2
1 ,

then every tangent plane of M is not J-invariant.

Lemma 3.2. If M is a Lorentzian surface in a Lorentzian K ähler surface M̃2
1 ,

then with respect to an adapted pseudo-orthonormal frame we have

(3.8) ∇Xe1 = ω(X)e1, ∇Xe2 = −ω(X)e2,

(3.9) DXe3 = Φ(X)e3, DXe4 = −Φ(X)e4

for some 1-forms ω, Φ on M .

It is easy to see that Φ = ω holds for Lagrangian surfaces in M̃2
1 .

For a Lorentzian surface M in M̃2
1 , we put

(3.10) h(ei, ej) = h3
ije3 + h4

ije4,

where e1, e2, e3, e4 is an adapted pseudo-orthonormal frame and h is the second

fundamental form of M .

The following lemma is fundamental in our study.

Lemma 3.3. ([3.1]). IfM is a Lorentzian surface in a Lorentzian K ähler surface

M̃2
1 , then with respect to an adapted pseudo-orthonormal frame {e 1, e2, e3, e4} we

have

(3.11)

{
Ae3ej = h4

j2e1 + h4
1je2,

Ae4ej = h3
j2e1 + h3

1je2,

(3.12) ejα = (ωj − Φj) cothα − 2h3
1j,

(3.13) e1α = h4
12 − h3

11, e2α = h4
22 − h3

12,

(3.14) ωj − Φj = (h3
1j + h4

j2) tanhα,

for j = 1, 2, where ωj = ω(ej) and Φj = Φ(ej).
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4. FUNDAMENTAL EQUATIONS OF LORENTZIAN MINIMAL SURFACES

The three fundamental equations of Gauss, Codazzi and Ricci are independent

in general. However, for Lorentzian minimal surfaces in M̃2
1 (4c) we have

Theorem 4.1. The equation of Ricci is a consequence of the equations of

Gauss and Codazzi for Lorentzian minimal surfaces in a Lorentzian complex space

form M̃2
1 (4c).

Proof. Assume thatM is a Lorentzian minimal surface in a Lorentzian complex

space form M̃2
1 (4c). Without loss of generality, we may assume thatM is equipped

with the Lorentzian metric tensor:

(4.1) g = −m2(x, y)(dx⊗ dy + dy ⊗ dx)

for some positive function m(x, y). Then we have

(4.2) ∇ ∂
∂x

∂

∂x
=

2mx

m

∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂y

∂

∂y
=

2my

m

∂

∂y
.

The Gaussian curvature G of M is given by

(4.3) G =
2mmxy − 2mxmy

m4
.

If we put

(4.4) e1 =
1
m

∂

∂x
, e2 =

1
m

∂

∂y
,

then {e1, e2} is a pseudo-orthonormal frame satisfying (3.2). From (4.2) and (4.4)
we find

(4.5)

∇e1e1 =
mx

m2
e1, ∇e2e1 = −my

m2
e1,

∇e1e2 = −mx

m2
e2, ∇e2e2 =

my

m2
e2.

Let e3, e4 be the normal vector fields defined by (3.4). Then {e1, e2, e3, e4}
is an adapted pseudo-orthonormal frame. Since M is minimal and Lorentzian, it

follows from (2.4) and (3.2) that

(4.6) h(e1, e1) = βe3 + γe4, h(e1, e2) = 0, h(e2, e2) = λe3 + µe4

for some functions β, γ, λ, µ.
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From (1.1), (3.2), (3.5) and (3.7), we find

(4.7) 〈 R̃(e1, e2)e2, e1 〉 = c(3 sinh2 α − 1).

In view of (1.1), (3.5), (3.7), (4.3), (4.6) and (4.7), equation (2.5) of Gauss can be

expressed as

(4.8) γλ + βµ = c(3 sinh2 α − 1) +
2(mmxy − mxmy)

m4
.

Using Lemma 3.3 and (4.5) we find

(4.9)

De1e3 =
(mx

m2
− β tanh α

)
e3, De2e3 = −

(my

m2
+ µ tanhα

)
e3,

De1e4 =
(
β tanhα − mx

m2

)
e4, De2e3 =

(my

m2
+ µ tanh α

)
e4.

It follows from (4.5), (4.6) and (4.9) that

(4.10)

(∇̄e1h)(e1, e2) = (∇̄e2h)(e1, e2) = 0,

(∇̄e1h)(e2, e2) =
(

λx

m
+

λmx

m2
− βλ tanhα

)
e3

+
(µx

m
− µmx

m2
+ βµ tanhα

)
e4 +

2mx

m2
(λe3 + µe4),

(∇̄e2h)(e1, e1) =
(

βy

m
− βmy

m2
− βµ tanh α

)
e3

+
(γy

m
+

γmy

m2
+ γµ tanhα

)
e4 +

2my

m2
(βe3 + γe4).

On the other hand, we derive from (1.1) and (3.5) that

(4.11)
(R̃(e1, e2)e2)⊥ = 3c sinh α cosh αe4,

(R̃(e2, e1)e1)⊥ = −3c sinh α cosh αe3.

Thus, by using (4.10), (4.11), and the equation of Codazzi we find

(4.12) λx = βλm tanhα − 3λmx

m
,

(4.13) µx = 3cm sinhα cosh α − βµm tanhα − µmx

m
,

(4.14) βy = −3cm sinhα coshα + βµm tanh α − βmy

m
,
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(4.15) γy = −γµm tanhα − 3γmy

m
.

Also, from (4.4) (4.5), (4.6), (4.9) and Lemma 3.3 we obtain

(4.16) Ae3e1 = γe2, Ae3e2 = µe1, Ae4e1 = βe2, Ae4e2 = λe1,

(4.17) β = −αx

m
, µ =

αy

m
.

Substituting (4.17) into equation (4.8) of Gauss yields

(4.18) γλ = c(3 sinh2 α − 1) +
2(mmxy − mxmy)

m4
+

αxαy

m2
.

Now, by applying (1.1), (3.5) and (3.6), we get

(4.19) 〈 R̃(e1, e2)e3, e4 〉 = c(3 sinh2 α + 1).

On the other hand, by using (4.5), (4.9), (4.16), and (4.17), we find

(4.20)
〈
RD(e1, e2)e3, e4

〉
=

2(mmxy − mxmy)
m4

+
2αxαy

m2
sech 2α+

2αxy

m2
tanhα,

(4.21) 〈[Ae3 , Ae4]e1, e2〉 = γλ +
αxαy

m2
.

Therefore, the equation of Ricci is given by

(4.21)

2(mmxy − mxmy)
m4

+
2αxαy

m2
sech 2α +

2αxy

m2
tanhα

= c(3 sinh2 α + 1) + γλ +
αxαy

m2
.

On the other hand, we derive from (4.14) and (4.17) that

(4.23) αxy = αxαy tanh α + 3cm2 sinh α coshα.

After substituting (4.23) into (4.22) we know that equation (4.22) of

(4.24)

2(mmxy − mxmy)
m4

+
2αxαy

m2
sech 2α +

2αxαy

m2
tanh2 α

= c(1− 3 sinh2 α) + γλ +
αxαy

m2
,

Since this equation of Ricci can be simplified as equation (4.18) of Gauss, we

conclude that the equation of Ricci is a consequence of Gauss and Codazzi for
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Lorentzian minimal surfaces in Lorentzian complex space forms. This completes

the proof of the theorem.

Corollary 4.1. Every minimal slant surface in a Lorentzian complex space

form M̃2
1 (4c) with c 
= 0 is Lagrangian.

Proof. If M is a minimal slant surface in a Lorentzian complex space form

M̃2
1 (4c), then α is constant. So, by applying (4.13) we have 3mc sinhα cos α = 0.

But this is impossible unless α = 0 or c = 0. Therefore, if c 
= 0, then the surface
is Lagrangian.

In view of (4.17), equations (4.12)-(4.15) reduce to

(4.25) λx = −λ(ln(m3 coshα))x, γy = −γ(ln(m3 cosh α))y,

(4.26) αxy = αxαy tanh α + 3cm2 sinh α coshα.

We derive from (4.25) that

(4.27) γ =
ϕ(x) sechα

m3
, λ =

ψ(y) sechα

m3

for some functions ϕ, ψ.

In view of (4.17) and (4.27), equation (4.8) of Gauss becomes

(4.28) αxαy = cm2(1− 3 sinh2 α) − 2mmxy − 2mxmy

m2
+

ϕ(x)ψ(y) sech2α

m4
.

Hence, the second fundamental form of M in M̃2
1 (4c) satisfies

(4.29)

h

(
∂

∂x
,

∂

∂x

)
= −mαxe3 +

ϕ(x)
m

sech αe4,

h

(
∂

∂x
,

∂

∂y

)
= 0,

h

(
∂

∂y
,

∂

∂y

)
=

ψ(y)
m

sech αe3 + mαye4.

In term of (4.29), the equation of Gauss and Codazzi are given by (4.26) and

(4.28). Consequently, by applying Theorem 4.1 together with the fundamental ex-

istence theorem of submanifolds, we obtain the following.

Corollary 4.2. Suppose that α(x, y) and m(x, y) 
= 0 are solutions of the
following PDE system:

(4.30) αxy = αxαy tanh α + 3cm2 sinh α coshα,
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(4.31) αxαy = cm2(1 − 3 sinh2 α) − 2mmxy − 2mxmy

m2
+

ϕ(x)ψ(y) sech2α

m4

for some functions ϕ(x) and ψ(y) defined on open intervals I 1 and I2, respectively.

Let gm be the Lorentzian metric on I1 × I2 defined by

gm = −m2(dx⊗ dy + dy ⊗ dx).

Then there exists a Lorentzian minimal immersion φ : (I 1 × I2, gm) → M̃2
1 (4c)

with Wirtinger angle α.

5. CLASSIFICATION OF LORENTZIAN MINIMAL SURFACES IN C2
1

In this section we completely classify Lorentzian minimal surfaces in C2
1.

Theorem 5.1. Let z(x) and w(y) be two null curves defined on open intervals
I1 and I2 respectively in the Lorentzian complex plane C 2

1. If 〈z(x), w(y)〉 
= 0 for
(x, y) ∈ I1 × I2, then

(5.1) ψ(x, y) = z(x) + w(y)

defines a Lorentzian minimal surface in C 2
1.

Conversely, locally every Lorentzian minimal surface in C 2
1 is congruent to the

translation surface defined above.

Proof. Let z(x), x ∈ I1, and w(y), y ∈ I2, be null curves in the Lorentzian
complex plane C2

1 satisfying 〈z(x), w(y)〉 
= 0 for (x, y) ∈ I1 × I2. Let ψ be the

map defined by (5.1). Then we have

(5.2) ψx = z′(x), ψy = w′(y),

(5.3) ψxx = z′′(x), ψxy = 0, ψyy = w′′(y).

From (5.2) and the assumption on z, w we find 〈z′, z′〉 = 〈w′, w′〉 = 0. Thus,
the induced metric of ψ is the following Lorentzian metric:

(5.4) g =
〈
z′(x), w′(y)

〉
(dx ⊗ dy + dy ⊗ dx).

Since ψxy = 0, it follows from (5.4) and the formula of Gauss that the trace of the
second fundamental form of ψ vanishes identically. Hence, ψ defines a Lorentzian

minimal surface in C2
1.
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Conversely, let us assume that M is a Lorentzian minimal surface in C2
1. We

may suppose that locally M is an open portion of the xy-plane equipped with the
Lorentzian metric :

(5.5) g = −m2(x, y)(dx⊗ dy + dy ⊗ dx)

for some nonzero function m(x, y). From (5.5) we derive that

(5.6) ∇ ∂
∂x

∂

∂x
=

2mx

m

∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂y

∂

∂y
=

2my

m

∂

∂y
.

If we put

(5.7) e1 =
1
m

∂

∂x
, e2 =

1
m

∂

∂y
,

then {e1, e2} is a pseudo-orthonormal frame in M satisfying (3.2). Let e3, e4 be

the normal vector fields defined by (3.4).

Since M is minimal and Lorentzian, it follows from (2.4) and (3.2) that

(5.8) h(e1, e1) = βe3 + γe4, h(e1, e2) = 0, h(e2, e2) = λe3 + µe4

for some functions β, γ, λ, µ.
On the other hand, we obtain from (3.5), (5.7) that

(5.9) e3 =
1
m

(i sech α − tanhα)ψx, e4 =
1
m

(i sech α + tanh α)ψy.

Hence, (5.6)-(5.9) and the formula of Gauss yield

(5.10)

ψxx =
1
m

(
2mx+β(i sech α−tanhα)

)
ψx+

γ

m
(i sech α+tanhα)ψy,

ψxy = 0,

ψyy =
λ

m
(i sech α − tanhα)ψx+

1
m

(
2my+µ(i sech α+tanhα)

)
ψy.

Solving the second equation in (5.10) gives

(5.11) ψ(x, y) = z(x) + w(y)

for some C2
1-valued functions z(x), w(y). Thus, we find from (5.5) and (5.1) that

(5.12)
〈
z′(x), z′(x)

〉
=

〈
w′(y), w′(y)

〉
= 0,

〈
z′(x), w′(y)

〉
= −m2(x, y).

These imply that z(x), w(y) are null curves satisfying 〈z′, w′〉 
= 0. Consequently,
every Lorentzian minimal surface inC2

1 is locally congruent to the translation surface

described in the theorem.
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6. LAGRANGIAN MINIMAL SURFACES OF KLEIN-GORDON TYPE

In this section, we give the following existence results.

Proposition 6.1. Let F be a nonconstant real-valued function defined on

a simply-connected open subset U of R2 which satisfies the following nonlinear

Klein-Gordon equation:

(6.1) (lnF )uv = − 1
F

− F 2.

Put gF = −F−1(du ⊗ dv + dv ⊗ du). Then, up to rigid motions, there exists
a unique Lagrangian minimal immersion L F : (U, gF ) → CP 2

1 (4) whose second
fundamental form satisfies

(6.2) h

(
∂

∂u
,

∂

∂u

)
= FJ

∂

∂v
, h

(
∂

∂u
,

∂

∂v

)
= 0, h

(
∂

∂v
,

∂

∂v

)
= FJ

∂

∂u
.

Proof. A direct computation shows that the Levi-Civita connection of gF

satisfies

(6.3) ∇ ∂
∂u

∂

∂u
= −(ln F )u

∂

∂u
, ∇ ∂

∂u

∂

∂v
= 0, ∇ ∂

∂v

∂

∂v
= −(lnF )v

∂

∂v
.

If we define a symmetric bilinear form σ by

(6.4) σ

(
∂

∂u
,

∂

∂u

)
= F

∂

∂v
, σ

(
∂

∂u
,

∂

∂v

)
= 0, σ

(
∂

∂v
,

∂

∂v

)
= F

∂

∂u
,

then it follows from (6.1), (6.3), (6.4) and the definitions of gF that 〈σ(X, Y ), Z〉
and (∇̄σ)(X, Y, Z) are totally symmetric. Moreover, a direct computation shows
that the curvature tensor R and σ satisfy condition (iii) of Theorem A in section
2. Therefore, according to Theorems A and B, up to rigid motions there exists a

unique Lagrangian immersion LF : (U, gF ) → CP 2
1 (4) whose second fundamental

form is given by Jσ.
Theminimality of the immersion follows from the expression of gF and (6.2).

We call such a Lagrangian minimal surface associated with a solution of the

nonlinear Klein-Gordon equation (6.1) a Lagrangian minimal surface of Klein-

Gordon type in CP 2
1 (4).

Similarly, we have the following
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Proposition 6.2. Let K(u, v) be a nonconstant real-valued function on a
simply-connected open subset U of R2 which satisfies the nonlinear Klein-Gordon

equation:

(6.5) (lnK)uv =
1
K

− K2.

Put gK = −K−1(du ⊗ dv + dv ⊗ du). Then, up to rigid motions, there exists a
unique Lagrangian minimal immersion L K : (U, gK) → CH2

1 (−4) whose second
fundamental form satisfies

(6.6) h

(
∂

∂u
,

∂

∂u

)
= KJ

∂

∂v
, h

(
∂

∂u
,

∂

∂v

)
= 0, h

(
∂

∂v
,

∂

∂v

)
= KJ

∂

∂u
.

Proof. This can be done in the same way as Proposition 6.1.

Similarly, we call a Lagrangian minimal surface in CH2
1 (4) associated with a

solution of the nonlinear Klein-Gordon equation (6.5) a Lagrangian minimal surface

of Klein-Gordon type in CH 2
1 (−4).

Remark 6.1. The nonlinear Klein-Gordon equations (6.1) and (6.5) admit

infinitely many solutions. Consequently, there exist infinitely many Lagrangian

minimal surfaces of Klein-Gordon type in CP2
1 (4) and in CH2

1 (−4).

7. CLASSIFICATION OF MINIMAL SLANT SURFACES IN CP2
1

Let π : S5
2(1) → CP 2

1 (4) denote the Hopf fibration.

Theorem 7.1. Let L : M → CP2
1 (4) be a minimal slant surface in the

Lorentzian complex projective plane CP 2
1 (4). Then we have:

(1) If M is of constant curvature, then M is congruent to one of the following

three types of surfaces:

(1.a) a totally geodesic Lagrangian surface of CP 2
1 (4);

(1.b) a curvature one Lagrangian minimal surface defined by π ◦ L̃ with

(7.1) L̃(x, y) = z′(x) − 2z(x)
x + y

,

where z(x), x ∈ I, is a unit speed space-like special Legendre curve ly-
ing in the light cone LC ⊂ C3

1 with null squared curvature κ2(s), i.e.,
〈z′′(x), z′′(x)〉 = 0 on I;
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(1.c) a flat Lagrangian minimal surface defined by π ◦ L̃ with

(7.2)

L̃(x, y) =
1√
3

(√
2e

i
2a

(x−a2y) cosh

(√
3

2a
(x + a2y)

)
, e

i
a
(a2y−x),

√
2e

i
2a

(x−a2y) sinh

(√
3

2a
(x + a2y)

))
,

where a is a nonzero real number.

(2) If M contains no open subset of constant curvature, thenM is a Lagrangian

minimal surface of Klein-Gordon type in CP 2
1 (4).

Proof. Let L : M → CP 2
1 (4) be a minimal slant surface. It follows from

Corollary 4.1 that M is Lagrangian. Thus, we get α = 0.

As in section 4, we may assume thatM is equipped with the Lorentzian metric:

(7.3) g = −m2(x, y)(dx⊗ dy + dy ⊗ dx)

for some positive function m(x, y). Then we have

(7.4) ∇ ∂
∂x

∂

∂x
=

2mx

m

∂

∂x
, ∇ ∂

∂x

∂

∂y
= 0, ∇ ∂

∂y

∂

∂y
=

2my

m

∂

∂y
.

The Gaussian curvature of M is then given by

(7.5) G =
2mmxy − 2mxmy

m4
.

If we put

(7.6) e1 =
1
m

∂

∂x
, e2 =

1
m

∂

∂y
,

then {e1, e2} is a pseudo-orthonormal frame satisfying (3.2). Since M is minimal

and Lagrangian, it follows from (2.4) and (3.2) that

(7.7) h(e1, e1) = βe3 + γe4, h(e1, e2) = 0, h(e2, e2) = λe3 + µe4

for some functions β, γ, λ, µ, where e3 = Je1 and e4 = Je2.

Since α = 0, we derive from section 4 that

(7.8) β = µ = 0,

(7.9) λx = −3λmx

m
, γy = −3γmy

m
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(7.10) γλ =
2mmxy − 2mxmy

m4
− 1.

Case (a). γ = λ = 0. In this case, M is a totally geodesic Lagrangian surface

which has constant curvature one. This gives case (1.a) of the theorem.

Case (b). γ 
= 0 and λ = 0. In this case, M is of constant curvature one.

Thus, we may assume that the metric tensor of M is given by

(7.11) g =
−2(dx ⊗ dy + dy ⊗ dx)

(x + y)2
.

So, we have

(7.12) m =
√

2
x + y

.

Since α = β = λ = µ = 0, (7.7) and (7.9) reduce to

(7.13) h(e1, e1) = γe4, h(e1, e2) = h(e2, e2) = 0,

(7.14) (lnγ)y =
3

x + y
.

Solving (7.14) gives

(7.15) γ = ϕ(x)(x + y)3

for some functions ϕ. Now, it follows from (7.4), (7.1), (7.12), (7.13), (7.15) and

the formula of Gauss that the horizontal lift L̃ : M → S5
2(1) of L satisfies

(7.16)

L̃xx =
−2L̃x

x + y
+ i

√
2ϕ(x)(x + y)2L̃y,

L̃xy =
2L̃

(x + y)2
, L̃yy =

−2L̃y

x + y
.

Solving the last equation in (7.16) gives

(7.17) L̃(x, y) = w(x) − 2z(x)
x + y

for some vector functions z(x), w(x). Substituting this into the second equation in
(7.16) gives w(x) = z′(x). Hence, (7.17) becomes

(7.18) L̃(x, y) = z′(x)− 2z(x)
x + y
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After substituting this into the first equation in (7.16), we find

(7.19) z′′′(x) = 2
√

2 iϕ(x)z(x).

Since 〈L̃, L̃〉 = 1, we derive from (7.18) that

(7.20) 〈z(x), z(x)〉 = 0,
〈
z′(x), z′(x)

〉
= 1.

Therefore, z is a unit speed space-like curve lying in the light cone LC of C3
1.

On the other hand, because L̃ is a horizontal lift of a Lagrangian immersion,

we also have 〈L̃x, iL̃y 〉 = 0. Hence, we may obtain from (7.19) that

(7.21)
〈
z(x), iz′(x)

〉
= 0,

〈
z(x), iz′′(x)

〉
= 0.

Differentiating the second equation in (7.2) yields

(7.22)
〈
z′(x), iz′′(x)

〉
=

〈
iz(x), z′′′(x)

〉
.

Combining this with (7.19) and using (7.20) give 〈z ′(x), iz′′(x)〉 = 0. Thus, z(x)
is a special Legendre curve in LC.

Finally, from 〈L̃x, L̃x〉 = 0 and (7.18), we find

(7.23)
〈
z′′(x), z′′(x)

〉
= 0.

This shows that the squared curvature κ2 of z(x) vanishes identically. Consequently,
we obtain case (1.b) of the theorem.

Case (c). γ = 0 and λ 
= 0. By interchanging x and y, this reduces to case
(b).

Case (d). γλ 
= 0. In this case, (7.7) and (7.9) reduce to

(7.24) h(e1, e1) = γe4, h(e1, e2) = 0, h(e2, e2) = λe3,

(7.25) (lnλ)x = −3(lnm)x, (lnγ)y = −3(lnm)y.

Solving (7.25) gives

(7.26) γ =
f(x)
m3

, λ =
k(y)
m3

for some functions f(x), k(y). Since γλ 
= 0, we must have f(x)k(y) 
= 0.
Substituting (7.26) into (7.10) gives

(7.27) f(x)k(y) = 2m2(mmxy − mxmy) − m6.
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Case (d.1). M is of constant curvature G = ε. It follows from (7.5) and (7.27)

that

(7.28) f(x)k(y) = (ε − 1)m6.

Since fk 
= 0, (7.28) shows that ε 
= 1. Hence, we have m6 = f(x)k(y)/(ε− 1).
Therefore, m(x, y) is the product of two functions of single variable, which implies
that mmxy = mxmy. Hence, it follows from (7.5) that G = 0. Consequently, the
surface is given by case (1.c) of the theorem according to [8].

Case (d.2). M contains no open subset of constant curvature. It follows from

(7.6), (7.24) and (7.25) that

(7.29) h(e1, e1) = γe4, h(e1, e2) = 0, h(e2, e2) = λe3,

(7.30) e2γ = 3γω2, e1λ = −3λω1,

where the connection form ω is defined in Lemma ??. Let us put

(7.31) η = γ1/3, δ = λ1/3.

By applying Lemma 3.2 we find [e1/η, e2/δ] = 0. Hence, there exist coordinates
u, v such that

(7.32) e1 = η
∂

∂u
, e2 = δ

∂

∂v
.

So, we know from (3.2) and (7.32) that the metric tensor is given by

(7.33) g = −du ⊗ dv + dv ⊗ du

F
, F = ηδ.

Since M has nonconstant curvature, ηδ is a nonconstant function. Hence, the
Levi-Civita connection satisfies

(7.34) ∇ ∂
∂u

∂

∂u
= −(ln F )u

∂

∂u
, ∇ ∂

∂u

∂

∂v
= 0, ∇ ∂

∂v

∂

∂v
= −(lnF )v

∂

∂v
.

Therefor, by applying (7.24), (7.3), (7.32), (7.34) and the formula of Gauss, we

obtain the following PDE system for the horizontal lift L̃ : M → S5
2(1):

(7.35)
L̃uu = −(lnF )uL̃u + iFL̃v, L̃uv =

L̃

F
,

L̃vv = iFL̃u − (lnF )vL̃v .
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The compatibility condition of this system is given by the nonlinear Klein-Gordon

equation:

(7.36) (lnF )uv = − 1
F

− F 2.

Hence, the surface is a Lagrangian minimal surface of Klein-Gordon type in

CP 2
1 (4) as described in Proposition 6.1. Consequently, we obtain case (2).

Example 7.1. There exist infinitely many unit speed space-like special Leg-

endre curve lying in the light cone LC ⊂ C3
1 with null squared curvature. The

simplest such examples are the following.

z(x) =
(

a +
(

1
4a

+ ib
)

s2, a−
(

1
4a

− ib
)

s2, s

)
,

where a, b are nonzero real numbers. It is easy to check that this special Legendre
curve has null Legendre torsion, i.e., τ̂ = 0.

Example 7.2. Another example of unit speed space-like special Legendre curve

lying in the light cone LC ⊂ C3
1 with null squared curvature is the following.

z(x) =
1√
3

(
e

is
2 cosh

(√
3s

2

)
− i

√
3e

is
2 sinh

(√
3s

2

)
, 2e

is
2 sinh

(√
3s

2

)
, e−is

)
.

This special Legendre curve has constant Legendre torsion τ̂ = −1.

8. CLASSIFICATION OF MINIMAL SLANT SURFACES IN CH2
1

Let π : H5
2 (−1) → CH2

1 (−4) denote the Hopf fibration.

Theorem 8.1. Let L : M → CH2
1 (−4) be a minimal slant surface in the

Lorentzian complex hyperbolic plane CH 2
1 (−4). Then we have:

(1) If M is of constant curvature, then M is congruent to one of the following

three types of surfaces:

(1.a) a totally geodesic Lagrangian surface of CH 2
1 (−4);

(1.b) a Lagrangian minimal surface of constant curvature −1 given by π ◦ L̃
with

(8.1) L̃(x, y) = z′(x)−
√

2z(x) tanh
(

x + y√
2

)
,
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where z(x), x ∈ I, is a unit speed time-like special Legendre curve in the

light cone LC ⊂ C3
2 with constant squared curvature κ 2 = 2;

(1.c) a flat Lagrangian minimal surface defined by π ◦ L̃ with

(8.2)

L̃(x, y) =
1√
3

(√
2e−

i
2a

(x+a2y) cosh

(√
3

2a
(x− a2y)

)
, ei(ay+x

a
),

√
2e−

i
2a

(x+a2y) sinh

(√
3

2a
(x − a2y)

))
,

where a is a nonzero real number.

(2) If M contains no open subset of constant curvature, then M is a Lagrangian

minimal surface of Klein-Gordon type in CH 2
1 (−4).

Proof. Assume thatM is a minimal slant surface in CH 2
1 (−4). Then, according

to Corollary 4.1, M is Lagrangian. Thus, we get α = 0.
We may assume that M is equipped with the Lorentzian metric:

(8.3) g = −m2(x, y)(dx⊗ dy + dy ⊗ dx)

for some positive function m(x, y). So, we have (4.2) and (4.3). If we put

(8.4) e1 =
1
m

∂

∂x
, e2 =

1
m

∂

∂y

as before, then {e1, e2} is a pseudo-orthonormal frame satisfying (3.2). Since M is

minimal and Lorentzian, we have as before that

(8.5) h(e1, e1) = γe4, h(e1, e2) = 0, h(e2, e2) = λe3,

(8.6) λx = −3λmx

m
, γy = −3γmy

m

(8.7) γλ =
2mmxy − 2mxmy

m4
+ 1

for some functions γ, λ, where e3 = Je1 and e4 = Je2.

Case (a). γ = λ = 0. In this case, M is a totally geodesic Lagrangian surface

which has constant curvature −1. Thus, we get case (1.a) of the theorem.
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Case (b). γ 
= 0 and λ = 0 on M . In this case, M is of constant curvature

−1. Thus, we may assume that the metric tensor is given by

(8.8) g = − sech 2

(
x + y√

2

)
(dx⊗ dy + dy ⊗ dx).

So, we have

(8.9) m = sech
(

x + y√
2

)
.

Since λ = 0, (8.5) and (8.6) reduce to

(8.10) h(e1, e1) = γe4, h(e1, e2) = h(e2, e2) = 0,

(8.11) (ln γ)y =
3√
2

tanh
(

x + y√
2

)
.

Solving (8.1) gives

(8.12) γ = ϕ(x) cosh3

(
x + y√

2

)

for some nonzero functions ϕ.
It follows from (4.2), (8.8), (8.9), (8.10), (8.12) and the formula of Gauss that

the horizontal lift L : M → H 5
2 (−1) of M in CH2

1 (−4) satisfies

(8.13)

L̃xx = −
√

2 tanh
(

x + y√
2

)
L̃x + iϕ(x) cosh2

(
x + y√

2

)
L̃y,

L̃xy = − sech 2

(
x + y√

2

)
L̃,

L̃yy = −
√

2 tanh
(

x + y√
2

)
L̃y.

Solving the last two equations in (8.13) gives

(8.14) L̃ = z′(x) −
√

2z(x) tanh
(

x + y√
2

)

After substituting this into the first equation in (8.13), we find

(8.15) z′′′(x)− 2z′(x) + iϕ(x)z(x) = 0.

Since 〈L̃, L̃〉 = −1, we derive from (8.14) that

(8.16) 〈z(x), z(x)〉 = 0,
〈
z′(x), z′(x)

〉
= −1.
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Hence, z is a unit speed time-like curve lying in the light cone LC of C3
2.

On the other hand, because L̃ is a horizontal lift of a Lagrangian immersion,

we also have 〈L̃x, iL̃y 〉 = 0. Hence, we may obtain from (8.15) that

(8.17)
〈
z(x), iz′(x)

〉
= 0,

〈
z(x), iz′′(x)

〉
= 0.

Differentiating the second equation in (8.17) yields

(8.18)
〈
z′(x), iz′′(x)

〉
=

〈
iz(x), z′′′(x)

〉
.

Combining this with (8.15) and using (8.16) and (8.17) give 〈z ′(x), iz′′(x)〉 = 0.

Therefore, z(x) is a special Legendre curve in LC.
Finally, from 〈L̃x, L̃x〉 = 0, (8.14), and (8.16), we find

(8.19) κ2 =
〈
z′′(x), z′′(x)

〉
= 2.

Consequently, we obtain case (1.b) of the theorem.

Case (c). γ = 0 and λ 
= 0. By interchanging x and y, this reduces to case

(b).

Case (d). γλ 
= 0. In this case, (8.5) and (8.6) reduce to

(8.20) h(e1, e1) = γe4, h(e1, e2) = 0, h(e2, e2) = λe3,

(8.21) (lnλ)x = −3(lnm)x, (lnγ)y = −3(lnm)y.

Solving (8.2) gives

(8.22) γ =
f(x)
m3

, λ =
k(y)
m3

for some functions f(x), k(y). Since γλ 
= 0, we have f(x)k(y) 
= 0.
Substituting (8.22) into (8.7) gives

(8.23) f(x)k(y) = 2m2(mmxy − mxmy) + m6.

Case (d.1). M is of constant curvature ε. It follows from (4.3) and (8.23)

that

(8.24) f(x)k(y) = (ε + 1)m6.

Since fk 
= 0, we have ε 
= −1. Thus, m is the product of two functions of one

variable. So, we get mmxy = mxmy. Hence, it follows from (4.3) that G = 0.
Consequently, the surface is given by case (1.c) of the theorem according to [8].
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Case (d.2). M contains no open subset of constant curvature. It follows from

(8.20) and (8.2) that

(8.25) h(e1, e1) = γe4, h(e1, e2) = 0, h(e2, e2) = λe3,

(8.26) e2γ = 3γω2, e1λ = −3λω1.

Let us put η = γ 1/3, δ = λ1/3. Then, by Lemma ?? we get [e1/η, e2/δ] = 0.
Thus, there exist coordinates u, v such that

(8.27) e1 = η
∂

∂u
, e2 = δ

∂

∂v
.

From (3.2) and (8.27), we know that the metric tensor is given by

(8.28) g = −du ⊗ dv + dv ⊗ du

K
, K = ηδ.

Since M has nonconstant curvature, ηδ is a nonconstant function.

From (8.28) we derive that

(8.29) ∇ ∂
∂u

∂

∂u
= −(ln K)u

∂

∂u
, ∇ ∂

∂u

∂

∂v
= 0, ∇ ∂

∂v

∂

∂v
= −(ln K)v

∂

∂v
.

Hence, by applying (8.20), (8.27), (8.29) and the formula of Gauss, we obtain the

following PDE system:

(8.30)
L̃uu = −(lnK)uL̃u + iKL̃v, L̃uv = − L̃

K
,

L̃vv = iKL̃u − (ln K)vL̃v.

The compatibility condition of system (8.30) is given by the following nonlinear

Klein-Gordon equation:

(8.31) (lnK)uv =
1
K

− K2.

Therefore, the surface is a Lagrangian minimal surface of Klein-Gordon type as

described in Proposition 6.2. Consequently, we obtain case (2) of the theorem.

Example 8.1. There exist many unit speed time-like special Legendre curve

in the light cone LC ⊂ C3
2 with constant squared curvature κ2 = 2. The simplest

such examples are the following.

z(x) =
(

1√
2
, ae

√
2s −

(
1
8a

− ic
)

e−
√

2x, ae
√

2s +
(

1
8a

+ ic
)

e−
√

2x

)
,

where a is a nonzero real number.

Recently, the author is able to prove Theorem 4.1 for arbitrary Lorentzian sur-

faces in any Lorentzian Kähler surface.
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