SEMILINEAR ELLIPTIC EQUATIONS IN UNBOUNDED SYMMETRIC DOMAINS

Shyuh-yaur Tzeng and Hwai-chiuan Wang

Abstract

In this article we prove the existence of a minimizer of semilinear elliptic equations in axial symmetric domains.

1. Introduction

Throughout this article, let $N \geq 3,1<p<\frac{N+2}{N-2}$, and $z=(x, y)$ be the generic point of \mathbf{R}^{N} with $x \in \mathbf{R}^{N-1}, y \in \mathbf{R}$. By an axial symmetric domain $\Omega \subset \mathbf{R}^{N}$, we mean that $z=(x, y) \in \Omega$ if and only if $(|x|, 0, \cdots, 0, y) \in \Omega$. By an axial symmetric function u in Ω, we mean that there is a function $f:[0, \infty) \times \mathbf{R} \rightarrow \mathbf{R}$ such that $u(x, y)=f(|x|, y)$ for $(x, y) \in \Omega$.

Let $\Omega \subset \mathbf{R}^{N}$ be a domain. Consider the problem

$$
\begin{cases}-\Delta u+u=u^{p} & \text { in } \Omega \tag{1}\\ u>0 & \text { in } \Omega \\ u \in H_{0}^{1}(\Omega) . & \end{cases}
$$

Let $H_{s}(\Omega)$ be the H^{1}-closure of the space $\left\{u \in C_{0}^{\infty}(\Omega) \mid u\right.$ is axial symmetric $\}$,

$$
\begin{aligned}
& \alpha_{s}(\Omega)=\inf \left\{\left.\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right)\left|u \in H_{s}(\Omega), \int_{\Omega}\right| u\right|^{p+1}=1\right\}, \\
& \alpha(\Omega)=\inf \left\{\left.\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right)\left|u \in H_{0}^{1}(\Omega), \quad \int_{\Omega}\right| u\right|^{p+1}=1\right\}, \\
& \alpha=\alpha\left(R^{N}\right)=\inf \left\{\left.\int_{R^{N}}\left(|\nabla u|^{2}+u^{2}\right)\left|u \in H^{1}\left(R^{N}\right), \int_{R^{N}}\right| u\right|^{p+1}=1\right\} .
\end{aligned}
$$

Definition 1. $\Omega \subset \mathbf{R}^{N}$ is solvable if there is a solution of equation (1), otherwise Ω is unsolvable.
Received February 26, 1996
Communicated by S.-B. Hsu.
1991 Mathematics Subject Classification: 35J20, 35J25.
Key words and phrases: Semilinear elliptic equation, unbounded symmetric domain.

Many mathematicians have studiedthe solvability and unsolvability of $\Omega \subset$ \mathbf{R}^{N} as follows:

Example 2. If Ω is bounded or $\Omega=\mathbf{R}^{N}$, then $\alpha(\Omega)$ admits a minimizer and that Ω is solvable.

Proof. Taking a minimizing sequence for $\alpha(\Omega)$, then apply a compactness imbedding theorem.

Example 3. If Ω is the upper half plane \mathbf{R}_{+}^{N} or the upper half strip $S=\omega \times \mathbf{R}_{+}^{n}$, where $\omega \subset R^{m}$ and $N=m+n$, then Ω is unsolvable.

Proof. Esteban-Lions [3] have derived an integral identity to prove it.
Theorem 4. If $\Omega_{1}, \Omega_{2} \subset \mathbf{R}^{N}$ such that $\Omega_{1} \cap \Omega_{2}$ is bounded, $\alpha\left(\Omega_{1}\right) \leq \alpha\left(\Omega_{2}\right)$ and $\alpha\left(\Omega_{1}\right)$ admits a minimizer, then $\alpha\left(\Omega_{1} \cup \Omega_{2}\right)$ admits a minimizer.

Proof. See Lien-Tzeng-Wang [4; Theorem 5.1]
Example 5. If $S=\omega \times \mathbf{R}_{+}^{n}, B(0, r)$ is a ball of radius r and $\Omega_{r}=$ $S \cup B(0, r)$, then there is $r_{0}>0$ such that Ω_{r} is solvable provided that $r \geq r_{0}$.

Proof. Note $\alpha(S)>\alpha$ and $\lim _{r \rightarrow \infty} \alpha(B(0, r))=\alpha$. Then apply Theorem 2.

Example 6. The hyperboloid $|x|^{2}-y^{2}=l^{2}$ in R^{N} divides R^{N} into two axial symmetric domains A^{l} and A_{l} such that

1) A^{l} contains the y-axis and satisfying, for any $r>0$ there is $a_{r}>0$ such that

$$
\left\{(x, y) \in R^{N}| | x \mid \leq l\right\} \cup\left\{\left\{(x, y) \in R^{N}| | x\left|<r,|y|>a_{r}\right\} \subset A^{l} .\right.\right.
$$

2) A_{l} satisfies

$$
\lim _{r \rightarrow \infty} \inf \left\{|x|\left|(x, y) \in A_{l},|y| \geq r\right\}=\infty\right.
$$

Example 7. There is $l_{0}>0$ such that if $l \geq l_{0}$, then A^{l} is solvable.
Proof. First establish a decomposition lemma of a $(P S)$-sequence to get good energy levels $\left(\alpha\left(A^{l}\right), 2^{(p-1) /(p+1)} \alpha\left(A^{l}\right)\right)$. Then raise higher the energy to be in the good level through that the center of mass done as Coron [1] and that the length of l.

But for the solvability of A_{l}, it is nontrivial. In this article we shall establish a surprising result (see Theorem 11) in Section 2 and then in Section 3 use it to prove the solvability of A_{l} as follows:

Main Theorem. A_{l} is solvable and $\alpha_{s}\left(A_{l}\right)$ admits a minimizer.

2. An Analysis Theorem

In order to prove the Main Theorem, we need the following two known results:

Proposition 8. Let $m \geq 1, k \geq 2$, ω be a smooth bounded open set in \mathbf{R}^{m}, and $E=\omega \times \mathbf{R}^{k}$. Denote by (x, y) a generic point in $\mathbf{R}^{m} \times \mathbf{R}^{k}$ and consider the space $H_{s}(E)$ consisting of functions in $H_{0}^{1}(E)$ which are spherically symmetric in y-variable. Then the Sobolev imbedding from $H_{s}(E)$ into $L^{q}(E)$ is compact for every $q \in\left(2, \frac{2 N}{N-2}\right)$ with $N=m+k$.

Proof. By Esteban [2].
Lemma 9. If $\left\{v_{k}\right\} \subset H_{s}(\Omega)$ is a minimizing sequence for J, then $\left\{\alpha_{s}(\Omega)^{\frac{1}{p-1}} v_{k}\right\}$ is a $(P S)_{d}$-sequence of I, where $d=\left(\frac{1}{2}-\frac{1}{p+1}\right) \alpha_{s}(\Omega)^{(p+1) /(p-1)}$,

$$
I(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right)-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} \quad \text { for } u \in H_{s}(\Omega),
$$

and

$$
J(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right)
$$

Proof. By routine computation.
Lemma 10. Let $B_{r}=\left\{(x, y) \in \mathbf{R}^{N}| | x \mid>r\right\}$ and $r>0$. Then $\alpha\left(B_{r}\right)=\alpha$ for each $r>0$.

Proof See Lien-Tzeng-Wang [4].
However we have the following surprising result:

Theorem 11.

$$
\lim _{r \rightarrow \infty} \alpha_{s}\left(B_{r}\right)=\infty
$$

Proof. Assume $\lim _{r \rightarrow \infty} \alpha_{s}\left(B_{r}\right)=\eta<\infty$. For $n=1,2, \cdots$, take $\alpha_{n}=$ $\alpha_{s}\left(B_{n}\right)$. By a proof similar to that in Lien-Tzeng-Wang [4, Theorem 4.8], we obtain that $\alpha_{s}\left(B_{n}\right)$ admits a minimizer u_{n}. Then by the Maximum Principle

$$
\begin{gathered}
\alpha_{1}<\alpha_{2}<\cdots, \\
\lim _{n \rightarrow \infty} \alpha_{n}=\eta, \\
\left\{\left\|u_{n}\right\|_{H_{s}\left(B_{n}\right)}\right\} \text { is bounded, } \\
\int_{B_{n}}\left|u_{n}\right|^{p+1}=1 \text { for } n=1,2, \cdots .
\end{gathered}
$$

Embed $H_{s}\left(B_{n}\right)$ into $H_{s}\left(R^{N}\right)$ by letting $u_{n}=0$ outside B_{n} and consider the concentration function $Q_{n}(t)$ of u_{n} :

$$
Q_{n}(t)=\sup _{y^{\prime} \in \mathbf{R}} \int_{\mathbf{R}^{N-1} \times\left(y^{\prime}-t, y^{\prime}+t\right)}\left|u_{n}(x, y)\right|^{p+1} d x d y \quad \text { for } t>0 .
$$

Then for $n=1,2, \cdots$

$$
\begin{aligned}
& Q_{n}(t) \text { is an increasing function of } \mathrm{t}, \\
& \lim _{t \rightarrow \infty} Q_{n}(t)=1 \\
& \lim _{t \rightarrow 0^{+}} Q_{n}(t)=0
\end{aligned}
$$

By the Helly Theorem, we may choose a subsequence $\left\{Q_{n}\right\}$ such that

$$
\lim _{n \rightarrow \infty} Q_{n}(t)=Q(t) \text { for } t>0
$$

where Q is a nondecreasing function in t with $0 \leq Q \leq 1$. Claim that $\lim _{t \rightarrow \infty} Q(t) \neq 0$. For otherwise, assume $\lim _{t \rightarrow \infty} Q(t)=0$, then $Q \equiv 0$ and consequently $\lim _{n \rightarrow \infty} Q_{n}(t)=0$ for $t>0$. Take q and r such that $p+1<q<r<\frac{2 N}{N-2}$. By the Hölder Inequality and the Sobolev Imbedding Theorem,

$$
\begin{aligned}
\int_{\mathbf{R}^{N}}\left|u_{n}\right|^{q} & =\sum_{j=-\infty}^{\infty} \int_{\mathbf{R}^{N-1} \times[2 j-1,2 j+1]}\left|u_{n}\right|^{q} \\
& \leq \sum_{j=-\infty}^{\infty}\left[\int_{\mathbf{R}^{N-1} \times[2 j-1,2 j+1]}\left|u_{n}\right|^{p+1}\right]^{\frac{r-q}{r-p-1}}\left[\int_{\mathbf{R}^{N-1} \times[2 j-1,2 j+1]}\left|u_{n}\right|^{\mid}\right]^{\frac{q-p-1}{-p-1}} \\
& \leq c Q_{n}(1)^{\frac{r-q}{r-p-1}} \sum_{j=-\infty}^{\infty}\left[\int_{\mathbf{R}^{N-1} \times[2 j-1,2 j+1]}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right)\right]^{\frac{r(q-p-1)}{2(r-p-1)}} .
\end{aligned}
$$

Since $\lim _{r \rightarrow q} \frac{r(q-p-1)}{2(r-p-1)}=\frac{q}{2}>\frac{p+1}{2}>1$, we can choose r so close to q that

$$
\frac{r(q-p-1)}{2(r-p-1)}>1
$$

We have

$$
\begin{aligned}
\sum_{j=-\infty}^{\infty} & {\left[\int_{R^{N-1} \times[2 j-1,2 j+1]}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right)\right]^{\frac{r(q-p-1)}{2(r-p-1)}} } \\
& \leq\left[\sum_{j=-\infty}^{\infty} \int_{R^{N-1} \times[2 j-1,2 j+1]}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right)\right]^{\frac{r(q-p-1)}{2(r-p-1)}} \\
& =\left[\int_{R^{N}}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right)\right]^{\frac{r(q-p-1)}{2(r-p-1)}} \\
& =\alpha_{n}^{\frac{r(q-p-1)}{2(r-p-1)}} .
\end{aligned}
$$

Therefore

$$
\int_{\mathbf{R}^{N}}\left|u_{n}\right|^{q} \leq c \alpha_{n}^{\frac{r(q-p-1)}{2(r-p-1)}} Q_{n}(1)^{\frac{r-q}{r-q-1}}=o(1) \quad \text { as } n \rightarrow \infty .
$$

By the interpolation property, $\left\|u_{n}\right\|_{L^{p+1}}=o(1)$ as $n \rightarrow \infty$, a contradiction. Therefore $\lim _{t \rightarrow \infty} Q(t)=\beta>0$. Consequently there is $R_{0}>0$ such that $Q\left(R_{0}\right)>\frac{\beta}{2}$. Take $n_{0}>0$ such that $n \geq n_{0}$ implies $Q_{n}\left(R_{0}\right)>\frac{\beta}{2}$. Choose $\left\{y_{n}\right\}_{n=n_{0}}^{\infty} \subset \mathbf{R}$ such that

$$
\int_{\mathbf{R}^{N-1} \times\left[y_{n}-R_{0}, y_{n}+R_{0}\right]}\left|u_{n}(x, y)\right|^{p+1} \geq \frac{\beta}{2} .
$$

Let $\widetilde{u_{n}}(x, y)=u_{n}\left(x, y+y_{n}\right)$. Then

$$
\begin{equation*}
\int_{\mathbf{R}^{N-1} \times\left[-R_{0}, R_{0}\right]}\left|\widetilde{u_{n}}\right|^{p+1} \geq \frac{\beta}{2} \quad \text { for } n \geq n_{0} . \tag{2}
\end{equation*}
$$

By Proposition 8 , if necessary, replace R_{0} by $R_{0}+1$, then we can take a subsequence $\left\{\widetilde{u_{n}}\right\}$ and \widetilde{u} such that

$$
\lim _{n \rightarrow \infty} \widetilde{u_{n}}=\widetilde{u} \quad \text { in } L^{p+1}\left(\mathbf{R}^{N-1} \times\left[-R_{0}, R_{0}\right]\right)
$$

By $(2), \not \equiv 0$. But since $\widetilde{u_{n}}(x) \in H_{s}\left(B_{n}\right)$, we have

$$
\lim _{n \rightarrow \infty} \widetilde{u_{n}}(z)=0 \text { for } z \in \mathbf{R}^{N}
$$

a contradiction. Therefore

$$
\lim _{r \rightarrow \infty} \alpha_{s}\left(B_{r}\right)=\infty
$$

3. Solvability of A_{l}

Note that by Lemma 10 and the Maximum Principle, $\alpha\left(A_{l}\right)$ does not admit any minimizer. However, in the following we will prove that $\alpha_{s}\left(A_{l}\right)$ admits a minimizer.

Main Theorem. A_{l} is solvable and $\alpha_{s}\left(A_{l}\right)$ admits a minimizer.
Proof. Take $r_{1}>0$ such that $\mathrm{I}_{r_{1}}=\left\{(x, y) \in \Omega| | x \mid<r_{1}\right\} \neq \emptyset$. For $r \geq r_{1}$, decompose

$$
\Omega=\mathrm{I}_{r+1} \cup \mathrm{II}_{r},
$$

where

$$
\begin{aligned}
\mathrm{I}_{s} & =\{(x, y) \in \Omega| | x \mid<s\}, \\
\mathrm{I}_{r} & =\{(x, y) \in \Omega| | x \mid>r\} .
\end{aligned}
$$

Then $\alpha_{s}\left(\mathrm{I}_{r}\right)$ is decreasing in r and $\alpha_{s}\left(\mathrm{II}_{r}\right)$ is increasing in r. Let

$$
B_{r}=\left\{(x, y) \in R^{N}| | x \mid>r\right\} .
$$

By Theorem 11

$$
\lim _{r \rightarrow \infty} \alpha_{s}\left(B_{r}\right)=\infty
$$

Take $r_{2} \geq r_{1}$ such that

$$
\alpha_{s}\left(B_{r_{2}}\right) \geq \alpha_{s}\left(\mathrm{I}_{r_{1}}\right) .
$$

Therefore

$$
\alpha_{s}\left(\mathrm{I}_{r_{2}+1}\right) \leq \alpha_{s}\left(\mathrm{I}_{r_{1}}\right) \leq \alpha_{s}\left(B_{r_{2}}\right) \leq \alpha_{s}\left(\mathrm{II}_{r_{2}}\right) .
$$

Since

$$
\lim _{r \rightarrow \infty} \inf \{|x||(x, y) \in \Omega,|y| \geq r\}=\infty
$$

$\mathrm{I}_{r_{2}+1}$ is bounded and axial symmetric. Therefore $\alpha_{s}\left(\mathrm{I}_{r_{2}+1}\right)$ admits a minimizer. By Theorem $4, \alpha_{s}\left(A_{l}\right)$ admits a minimizer.

Remark 1. By the Main Theorem and the Maximum Principle, let A_{l} be as in the Main Theorem, we have

$$
\alpha_{s}\left(A_{l}\right)>\alpha\left(A_{l}\right) .
$$

Similar proof as in the Main Theorem can be applied to obtain the following:

Corollary 12. For $r>0$, let either

1. $\Omega=\left\{(x, y) \in \mathbf{R}^{N-1} \times\left.\mathbf{R}| | x\right|^{2}-r<y<|x|^{2}+r\right\}$, or
2. $\Omega=\left\{(x, y)\left|0<y<|x|^{2}+2 r\right\}\right.$.

Then $\alpha_{s}(\Omega)$ admits a minimizer.

References

1. J. M. Coron, Topologie et cas limite des injections de Sobolev, C. R. Acad. Sc. Paris 299, Ser. I (1984), 209-212.
2. M. J. Esteban, Nonlinear elliptic problems in strip-like domains, symmetric of positive vortex rings, Nonlinear Analysis TMA, 7 (1983), 365-379.
3. M. J. Esteban, P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains, Proc. Royal Soc. Edinburgh 93A (1982), 1-12.
4. W. C. Lien, S. Y. Tzeng, and H. C. Wang, Existence of solutions of semilinear elliptic problems on unbounded domains, Diff. and Int. Eq. 6 (1993), 12811298.

Shyuh-yaur Tzeng
Department of Mathematics, Changhua University of Education
Changhua, Taiwan
Hwai-chiuan Wang
Department of Mathematics, Tsing Hua University
Hsinchu, Taiwan

