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EXISTENCE AND ASYMPTOTIC BEHAVIOR
OF SINGULAR SOLUTIONS OF QUASILINEAR

ELLIPTIC EQUATIONS IN Rn

Jann-Long Chern*

Abstract. In this paper we consider the quasilinear elliptic equation

div(|∇u|m−2∇u) + f(u) = 0(1)

where n > m > 1. We obtain a necessary and sufficient condition for the
existence of positive radial solutions u = u(r) on [r0,∞), where r0 > 0.
If f satisfies a further condition, then Eq. (1) possesses infinitely many
singular ground state solutions u(r) satisfying u(r) ∼ r

−(n−m)
m−1 at ∞ and

u(r) → ∞ as r → 0+. We also obtain some important conclusions via
our main results.

1. Introduction

In this paper we consider the quasilinear elliptic equation

div(|∇u|m−2∇u) + f(u) = 0(1.1)

in Ωr0 = Rn\Dr0 , where n > m > 1, r0 ≥ 0, Dr0 = {(x1, · · · , xn) ∈ Rn|x2
1 +

· · · + x2
n ≤ r2

0} and f ∈ C[0,∞). We are concerned with the problem of
finding positive solutions u of (1.1) in Ωr0 . When m = 2, (1.1) is known as
the Lane-Emden type equation and plays an important role in astrophysics.
When r0 = 0, Ni and Serrin [12] used the generalized Pohozaev identity to
derive a nonexistence theorem for singular ground state solution of (1.1) in
Rn \ { 0 }. They proved that : if f is positive at infinity, nonpositive near
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zero, and satisfies some suitable nonlinearities, then (1.1) does not possess
any radial solution in Rn\{ 0 } which is positive near the origin and tends to
0 at infinity. The study of equations of the form (1.1) has been the subject of
many papers. Here we mention only a part of this literature. See [1], [3], [4],
[5], [7], [9], [10], [11], and [12].

The main purpose of this paper is to study the existence of positive radial
solutions u = u(|x|) of (1.1) in Ωr0 . Let r = |x|. Then, in this case, (1.1)
reduces to the ordinary differential equation

(rn−1|u′|m−2u′)′ + rn−1f(u) = 0, r > r0, u > 0.(1.2)

For the case m = 2, (1.2) reduces to the semilinear elliptic equation

u′′ +
n− 1

r
u′ + f(u) = 0, r > r0.(1.3)

For equations (1.3), T. Makino [9] obtained several interesting results. Now
we consider the more general equation (1.2) and obtain the following Theorem
1.1.

We shall assume throughout this paper that

n > m > 1, f ∈ C[0,∞) and f(u) > 0 for all u > 0.(fa)

Our first result is a necessary and sufficient condition for the existence of
positive solutions u = u(r) on [r0,∞), where r0 > 0.

Theorem 1.1. If (1.2) possesses a positive solution u = u(r) on [r0,∞),
then

∫ 1

0
f(u)u−

m(n−1)
n−m du < ∞.(1.4)

Conversely, if inequality (1.4) holds, then for any positive constant C there
exists r0 > 0 such that (1.2) possesses a positive solution u = u(r) on [r0,∞)
and u satisfies

u(r) ∼ r−
n−m
m−1 at ∞(1.5)

and

lim
r→∞ r

n−1
m−1 u′(r) = −n−m

m− 1
C.(1.6)

In this paper we use the notation “g ∼ h at ∞ (at 0)” to denote that
“there exists two positive constants C1, C2 such that C1h ≥ g ≥ C2h at ∞
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(at 0)”. Now if f satisfies a further condition, then (1.2) possesses infinitely
many singular ground state solutions u(r). By a singular ground state we
mean a positive classical solution in Rn\{ 0 } which tends to zero at ∞ and
tends to ∞ at the origin. Our second result is

Theorem 1.2. Assume that f satisfies the inequality (1.4) and

nF (u) ≥ n−m

m
uf(u) for all u > 0.(1.7)

where F (u) =
∫ u
0 f(t)dt. Then (1.1) possesses infinitely many singular ground

state solutions u which satisfy (1.5)− (1.6) and

u(r) →∞ as r → 0+.(1.8)

We will obtain some important conclusions via Theorem 1.2 in the following
remarks.

Remark 1.3. Let f(u) = αup + βuq, where α > 0 and β > 0 are two
positive constants, and 1 < p < q. Then (1.1) becomes

div(|∇u|m−2∇u) + αup + βuq = 0 in Rn.(1.9)

When β = 0, then (1.9) becomes

div(|∇u|m−2∇u) + αup = 0 in Rn.(1.10)

Let u be a positive radial solution of (1.9) or (1.10) which tends to zero at ∞.
Then from [11] we know that

C1r
−n−m

m−1 ≤ u(r) ≤ C2r
− m

p−m+1 at ∞.(1.11)

Using the similar method in [LN] we can prove that

either u(r) ∼ r
− m

p−m+1 at ∞ (slow decay) ,

or u(r) ∼ r−
n−m
m−1 at ∞ (fast decay) .

(1.12)

From Theorem 1.2 we obtain the existence of the singular ground state with
fast decay solutions. We have

Corollary 1.4 Suppose that α and β are any two positive constants, and
(m−1)n

n−m < p < q ≤ (m−1)n+m
n−m in (1.9) (or (m−1)n

n−m < p ≤ (m−1)n+m
n−m in (1.10)).

Then equation (1.9) (or equation (1.10)) possesses infinitely many singular
ground state with fast decay solutions which satisfy (1.5), (1.6) and (1.8).
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Remark 1.5 When m = 2, equations (1.9) and (1.10) reduce to the
following equations (1.14) and (1.15), respectively.

4u + αup + βuq = 0 in Rn, α > 0, β > 0,(1.14)

4u + αup = 0 in Rn, α > 0.(1.15)

If n
n−2 < p < q ≤ n+2

n−2 , then from [13] we know that (1.14) has no positive
radial entire solutions. From the following Corollary 1.6, we obtain that the
singular ground state solutions do exist. From Corollary 1.4, we obtain that

Corollary 1.6. Suppose that n
n−2 < p < q ≤ n+2

n−2 in (1.14) (or n
n−2 < p ≤

n+2
n−2 in (1.15)). Then for any positive constant C, Eq. (1.14) (or Eq.(1.15))
possesses a singular ground state solution u(r) which satisfies

u(r) ∼ r−(n−2) at ∞,(1.16)

lim
r→∞ rn−1u′(r) = −(n− 2)C.(1.17)

We organize this paper as follows. In Section 2, we study the initial value
problem of (1.2) and obtain a theorem about the estimates and nonexistence
of solutions of (1.2). Applying the information of Section 2, we give a detailed
proof of Theorem 1.1 in Section 3. Finally in Section 4, we give a complete
proof of Theorem 1.2.

2. Preliminaries

In this section we consider the initial-value problem
{

(rn−1|u′|m−2u′)′ + rn−1f(u) = 0, r > r0;
u(r0) = u0 > 0, u′(r0) = u′0, u > 0 on [r0,∞),

(2.1)

where r0 > 0 and m and f satisfy the assumption (fa) in Section 1. We have
the following theorem.

Theorem 2.1. Let u(r) be a positive solution of (2.1) defined on [r0,∞).
Then there exists r1 > r0 such that

u′(r)
u(r)

≥ −n−m

m− 1

(
1
r

)
for all r ≥ r1,(2.2)
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therefore u(r) satisfies

u(r) ≥ u(r1)
(

r1

r

)n−m
m−1

for all r ≥ r1.(2.3)

On the other hand, if the initial data in (2.1) satisfy

u′0
u0

< −n−m

m− 1

(
1
r0

)
,(2.4)

then (2.1) does not possess any positive solution on [r0,∞).
From (2.3) in Theorem 2.1 we obtain that every positive solution u(r) of

(2.1) defined on [r0,∞) cannot be more rapid than that of the fundamental
p-harmonic singularity. On the other hand, if the initial data satisfies (2.4),
then every positive solution u(r) of (2.1) must have a finite zero on [r0,∞).

The proof of (2.3) in Theorem 2.1 can be easily obtained by standard
method. See, for example, [6, Lemma 1.1]. For the sake of completeness,
here we give the proof of the second part of Theorem 2.1. First we need the
following lemma.

Lemma 2.1. If u is a positive solution of (2.1) defined on [r0,∞), then
u(r) is bounded on [r0,∞) and u(r) is strictly decreasing to 0 as r →∞.

Proof. From Eq. (2.1), it is easy to see that u(r) is bounded on [r0,∞)
and there exists r1 ≥ r0 such that u′(r) < 0 for all r ≥ r1. Hence u(r) is
strictly decreasing to u∞. We have to prove that u∞ = 0. Suppose that this
is not true, i.e., u∞ > 0. Then for all r ≥ r1 we have

u′(r) = −
[(

r1

r

)n−1 (
−u′(r1)

)m−1
+

∫ r

r1

(
s

r

)n−1

f
(
u(s)

)
ds

] 1
m−1

(2.5)

and

u(r) = u(r1)−
∫ r

r1

[(
r0

t

)n−1(
−u′(r1)

)m−1
+

∫ t

r1

(
s

t

)n−1(
u(s)

)
ds

] 1
m−1

dt()

≤ u(r1)−m
n−1
m−1

∫ r

r1

[∫ t

r1

(
s

t

)n−1

ds

] 1
m−1

dt

≤ u(r1)− Cr
m

m−1 for r large

< 0 for r large.

(2.6)
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This contradicts u(r) > 0 for all r. The proof of this Lemma is complete.
Q.E.D.

Lemma 2.2. If the initial data in (2.1) satisfies

u′0
u0

< −n−m

m− 1
1
r0

,(2.7)

then (2.1) does not possess any positive solution on [r0,∞).

Proof. Suppose that the conclusion of the lemma is false. Then (2.1) has
a positive solution u(r) on [r0,∞). Let

v(r) = −ru′(r)
u(r)

.(2.8)

Then v satisfies




rv′ +
n−m

m− 1
v − v2 =

1
m− 1

r2f(u)
u

|u′|2−m > 0, r > r0;

v(r0) = −r0u
′
0

u0
>

n−m

m− 1
. (by the assumption (2.7))

(2.9)

Let

w(r) =

n−m

m− 1
1− Tr

n−m
m−1

, T =
v(r0)− n−m

m− 1
v(r0)r0

n−m
m−1

> 0.(2.10)

Then w blows up as r → T0 = T−
n−m
m−1 and w satisfies





rw′ +
n−m

m− 1
w − w2 = 0, r > r0;

w(r0) = v(r0).
(2.11)

By the comparison theorem we obtain

v(r) ≥ w(r) > 0 for all r ≥ r0.

This proves that v(r) also blows up as r → T0. This contradiction completes
the proof of Lemma 2.2. Q.E.D.

Now we are in a position to proof Theorem 2.1.

Proof of Theorem 2.1. Suppose that u(r) is a positive solution of (2.1)
defined on [r0,∞). Then applying Lemma 1.1 of [6], we can obtain the result
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(2.3). The rest of the proof of Theorem 2.1 is just the consequence of Lemma
2.2. The proof is complete. Q.E.D.

3. Proof of Theorem 1.1

In this section, we give a complete proof of Theorem 1.1.

Proof of Theorem 1.1. First we shall prove that if (1.2) admits a positive
solution u = u(r) on [r0,∞), then (1.4) holds. From Lemma 2.1, there exists
r1 ≥ r0 such that u′(r) < 0 for all r ≥ r1. Let

J(ε) =
∫ u(r1)

ε
f(u)u−

m(n−1)
n−m du.(3.1)

We want to prove that J(ε) is bounded as ε → 0+. If we change the integration
variable from u to r along the solution u = u(r), then

J(ε) =
∫ r1

r(ε)
f(u(r))(u(r))−

m(n−1)
n−m u′(r)dr

=
∫ r(ε)

r1

f(u(r))(u(r))−
n(m−1)

n−m v(r)r−1dr,

(3.2)

where r(ε) stands for the solution of u(r) = ε and v(r) = − ru′(r)
u(r) . From

Theorem 2.1 and Lemma 2.1 we have r(ε) →∞ as ε → 0+ and 0 < v(r) ≤ n−m
m−1

for all r ≥ r1. Then we have

f(u)u−
n(m−1)

n−m vr−1 = {r2 f(u)
u }u−nm+m−2n

n−m vr−3

=
{

(m− 1)|u′|m−2

[
rv′ +

(
n−m

m− 1
− v

)
v

]}
u−

nm+m−2n
n−m vr−3 (by (2.10))

≤ (m− 1)
(

n−m

m− 1

)m−1 [
v′ +

(
n−m

m− 1
− v

)
vr−1

]
u−

m(m−1)
n−m r−m (by (2.2)).

(3.3)

Let

X(r) = u−
m(m−1)

n−m r−m.(3.4)

Then

dX

dr
=

X

r

(
−m(m− 1)

n−m

)(
n−m

m− 1
− v(r)

)
.(3.5)

Integrating (3.5) from r1 to r we obtain
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(
u(r)

)−m(m−1)
n−m r−m

=
(
u(r1)

)−m(m−1)
n−m r−m

1 exp
(
−m(m− 1)

n−m

∫ r

r1

(n−m

m− 1
− v(s)

)
s−1ds

)
.

(3.6)

From (3.3) and (3.6) we conclude that

f(u(r))
(
u(r)

)−n(m−1)
n−m v(r)r−1

≤ C1

[
v′(r) +

(
n−m

m− 1
− v(r)

)
v(r)r−1

]

· exp
(
−m(m− 1)

n−m

∫ r

r1

(n−m

m− 1
− v(s)

)
s−1ds

)

≤ C1
d
dr

{[
v(r)− (n−m)(m2 − 2m + n)

m(m− 1)2

]

· exp
(
−m(m− 1)

n−m

∫ r

r1

(
n−m

m− 1
− v(s)

)
s−1ds

)}
,

(3.7)

where C1 = (m− 1)(n−m
m−1 )m−1(u(r1))

−m(m−1)
n−m r1

−m. Thus from (3.2) and (3.7)
we have

J(ε) ≤ C1

[(
−(n−m)(m2 − 2m + n)

m(m− 1)2
+ v(r(ε))

)

· exp
(
−m(m− 1)

n−m

∫ r(ε)

r1

(n−m

m− 1
− v(s))s−1ds

)

−v(r1) +
(n−m)(m2 − 2m + n)

m(m− 1)2

]

≤ (n−m)(m2 − 2m + n)
m(m− 1)2

C1

(3.8)

(
using : v ≤ n−m

m−1 ≤ n−m
m−1

(m2−2m+n)
m(m−1)

)
.

Hence J(ε) is bounded as ε → 0+. Thus (1.4) holds.
Now if (1.4) holds, then for any positive constant C we want to construct

a positive solution u which exists for sufficiently large r and satisfies (1.5) and
(1.6). First we make the following change of variables:

y = r−
n−m
m−1 , z = −r

n−1
m−1

du

dr
.(3.9)
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Then y, z satisfies




dy

du
=

n−m

m− 1
z−1,

dz

du
= − 1

m− 1
f(u)y−

m(n−1)
n−m z1−m.

(3.10)

We want to prove that (y(u), z(u)) exists for u small and

y(u) ∼ u

C
, z(u) → n−m

m− 1
C as u → 0+.(3.11)

Let

Y =

{(
y(u), z(u)

)
∈ C[0, u0]× C[0, u0]

∣∣∣∣

u

C
≤ y(u) ≤ 2u

C
,

1
2

n−m

m− 1
C ≤ z(u) ≤ n−m

m− 1
C, 0 ≤ u ≤ u0

}
,

(3.12)

where u0 is a positive constant to be determined later. It is easy to see that
Y is a closed convex subset of C[0, u0] × C[0, u0] in the usual topology. We
define a mapping T on Y by

T

(
y
z

)
(u) =




n−m

m− 1

∫ u

0

1
z(s)

ds,

n−m

m− 1
C − 1

m− 1

∫ u

0
f(s)(y(s))−

m(n−1)
n−m (z(s))1−mds




≡
(

y∗(u)
z∗(u)

)
.

(3.13)

We shall verify that T is a compact continuous mapping from Y into Y . Let
(y(u), z(u)) ∈ Y, 0 ≤ u ≤ u0. We have

u

C
≤ y∗(u) ≤ 2u

C
,

n−m

m− 1
C − 2m−1

m− 1

(
m− 1
n−m

)m−1

C
m(m−2)+n

n−m g(u) ≤ z∗(u) ≤ n−m

m− 1
C,

(3.14)

where
g(u) ≡

∫ u

0
f(s)s−

m(n−1)
n−m ds.
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Choose u0 > 0 so small that

g(u0) ≤ n−m

2m

(
n−m

m− 1

)m−1

C−m(m−1)
n−m .(3.15)

This is possible since (1.4) holds. Hence (y∗(u), z∗(u)) ∈ Y for 0 ≤ u ≤ u0.
This proves that T maps Y into Y . It is easy to see that T is continuous. To
prove that T is compact, we let {(ym, zm)} ⊂ Y be a sequence of functions.

From (3.14) we obtain that
{

T

(
ym

zm

)}
is uniformly bounded. Moreover if

0 ≤ u ≤ u + h ≤ u0, then

|y∗m(u + h)− y∗m(u)|= n−m

m− 1

∫ u+h

u

1
zm(s)

ds ≤ 2h

C

|z∗m(u + h)− z∗m(u)|= 1
m− 1

∫ u+h

u
f(s)(ym(s))−

m(n−1)
n−m (zm(s))1−mds

≤ 2m−1

m− 1

(
m− 1
n−m

)m−1

C
m2−2m+n

n−m [g(u + h)− g(u)].

(3.16)

From (3.14) and (3.16) we conclude that
{

T

(
ym

zm

)}
is a uniformly bounded

and equicontinuous sequence of functions. This proves that T is a compact

mapping. Schauder’s fixed point theorem then ensures that there is a
(

y
z

)
∈

Y such that (
y
z

)
= T

(
y
z

)
.

This
(

y(u)
z(u)

)
, 0 ≤ u ≤ u0, is a solution of (3.10). Since dy

du = n−m
m−1

1
z(u) >

0, y(u) is strictly monotone, and also so is r(u) = (y(u))−
m−1
n−m . Moreover

r(u) →∞ as u → 0+. Thus the inverse function u = u(r) is well-defined and
is a solution of (1.2) for all r ≥ r0, where r0 = (y(u0))

−m−1
n−m . From (3.11) we

obtain (1.5) and (1.6). The proof of Theorem 1.1 is complete. Q.E.D.

4. Proof of Theorem 1.2

In this section, we give a complete proof of Theorem 1.2. First, we need
the following lemma.
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Lemma 4.1 Assume that f satisfies the inequality (1.4). Let u be a
positive solution of (1.2) on [r0,∞) which was obtained in Theorem 1.1. Then
for all r ≥ r0, we have the Pohozaev identity

∫ ∞

r
[nF (u(s))− n−m

m
u(s)f(u(s))]sn−1ds

= −rn

[
m− 1

m
|u′(r)|m + F (u(r)) +

n−m

m

|u′(r)|m−2u′(r)u(r)
r

]
.

(4.1)

Proof. Let

V (r) = rn

[
m− 1

m
|u′(r)|m + F (u(r)) +

n−m

m

|u′(r)|m−2u′(r)u(r)
r

]
.

From the proof of Theorem 1.1, we know that u′(r) < 0 for all r ≥ r0. Using
this observation and (1.2), we can calculate V ′(r) and obtain

dV (r)
dr

= [nF (u(r))− n−m

m
u(r)f(u(r))]rn−1.(4.2)

Integrating (4.2) from r to ∞ and using the fact of (1.5) − (1.6), we finally
obtain (4.1). This completes the proof of Lemma 4.1. Q.E.D.

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. For any positive constant C, from Theorem 1.1
we obtain that : there exists a positive r0, which is depending on f and C,
such that (1.2) possesses a positive solution u(r) on [r0,∞) and u satisfies
(1.5) − (1.6) and u′(r) < 0 for all r ≥ r0. Now we extend this solution u(r)
backward into the region r < r0. Let

ξ = inf{δ > 0|u(r) satisfies (1.2) and u′(r) < 0 for all r ∈ (δ,∞)}

First we claim that ξ = 0. Assume ξ > 0. From (1.2) we obtain that, for all
ξ < r < r0,

rn−1|u′(r)|m−2u′(r) = rn−1
0 |u′(r0)|m−2u′(r0) +

∫ r0

r
sn−1f(u(s))ds

> rn−1
0 |u′(r0)|m−2u′(r0).

(4.3)
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Since u′(r) < 0 for all ξ < r < r0, we have

0 > u′(r) >

(
r0

r

) n−1
m−1

u′(r0) > −∞.

Hence u′(r) remains bounded as r → ξ+. So we obtain that u(ξ) remains
bounded. From (4.3) we also obtain that lim

r→ξ+
u′(r) exists and u′(ξ) ≤ 0.

From the definition of ξ and the assumption ξ > 0, we must have u′(ξ) =
0. Therefore, u(r) is a classical positive solution of (1.2) on [ξ,∞) and
u′(ξ) = 0. From (4.1) in Lemma 4.1, we obtain that 0 ≤ ∫∞

ξ [nF (u(s)) −
n−m

m u(s)f(u(s))]sn−1ds = −ξnF (u(ξ)) < 0, a contradiction. Hence ξ = 0.
Again by (4.1) in Lemma 4.2, it is easy to conclude that u(r) must be singular
at r = 0. The proof is complete. Q.E.D.
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