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ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
v"(x) + q(x) sin v(z) =0

Tzy-Wei Hwang and Shin-Feng Hwang

Abstract. In this paper we study the asymptotic behavior of the solu-
tion v(x) of initial value problem (1.1) which arises from a mathematical
model describing the large deformations of a nonumiform cantilever.

1. INTRODUCTION

In this paper we are concerned with the asymptotic behavior of the solu-
tions of the following initial value problem:

V"(z) 4+ q(z) sinv(z) = 0,
(1.1) v'(0) = 0,
v(0) = a, a€R.

where ¢(0) > 0 and ¢/(z) > 0 for all x € (0,00). The qualitative behavior
of the solution v(z,a) of (1.1) is important to the studies of the following
mathematical model (1.2) which can describe the deformation of a nonuniform
cantilever [6, 8].

V"(z) + q(z)sin v(z) = 0,
(1.2) v'(0) = 0,
oK) = a-7m, —n<a<m,K>0.
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We shall study the two-point boundary value problem (1.2) by using shoot-
ing method. From the uniqueness of the solution of the initial value problem

(1.1), it follows that

(1.3) v(z,

From (1.3), we shall consider v(z,a)

21 4 v(z, a),
21 —v(z, a),
—v(z, —a),
0,

.

only for the case 0 < a < 7.

Lemma 1.1. Let 0 < a < w. If ¢(0) > 0,¢'(z) > 0 for all z € (0,00),
then we have

(i) —7/2 <wv(z,a) <7/2 for 0 <a<m/2,x > 0.
(il)) —7m <wv(z,a) <m form/2 <a<m,z>0.

(iii) |v(x,a)| < a for all x > 0, moreover, v(z,a) is oscillatory over [0, 00)
with the decreasing amplitudes.

Proof. Multiplying (1.1) by v'(x) and integrating the resulting equation
from 0 to x, we obtain

(1.4)

x
S0 @) = a(e) cos v(a) — 0) cos a— [ /() cos u(€) de > 0.

If 0 < a < /2, then cos a = cos v(0) > 0. We claim that cos v(z) > 0
for all > 0. If not, then there exists xy > 0 such that cos v(z) > 0 for all
0 <z < z9 and cos v(zg) = 0. Then this contradicts (1.4) with z = x¢ and
we complete the proof for (i).

If 7/2 < a < m, then cos a = cos v(0) € (—1,0]. We claim that cos v(x) #
—1 for all z > 0. If not, then there exists xy > 0 such that cos v(xy) = —1 and
cos v(x) > —1 for 0 < x < zp. Again from (1.4) we obtain a contradiction.
Hence —m < v(z,a) < 7 for all z > 0 and we established (ii).

Next we introduce the following Liapunov function

1 (v'(x))*

NERTE

(1.5) V(z) = (1 - cos v(z))

where v(z) = v(x,a). It is easy to verify that
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(1.6) Vi(z)=— < 0.

Then we have

(1.7) 1 —cos v(z,a) < V(z) <V(0)=1-cos a.

We note that V(0) = 1 — cos a follows directly from L’Hospital rule. So from
(1.7) follows that |v(z,a)| < a for all z > 0. We rewrite the equation in (1.1)
as

sin v(x)
v(z)
Let 0 < & < ming<y<q(®2Y). Using Sturm’s comparison theorem, we
compare (1.8) with (1.9)

(1.8) V" (z,a) + q(z) ( ) v(x) = 0.

(1.9) ¢"(x) + dq(x) ¢(z) =0

which is oscillatory over [0,00). Thus the solution v(x,a) is oscillatory over
[0,00) for 0 < a < 7. Moreover, from (1.6) and (1.7) the solution v(zx,a) is
oscillatory with the decreasing amplitudes, so we established (iii). Q.E.D.

In the next section we shall given some condition on ¢(x), so that

(1.10) xILHgO v(z,a) =0.
Consequently, if we denote the zeros of v(z) by 71 < x2 < -+ - < a3 < -+ -,

then we have

(111) lim ’.’L’l - xlfl‘ =0.
l—o0

2. MAIN RESULTS

The purpose of this section is to establish (1.10). For all 0 < a < =, the
initial value problem

v"(z) + q(x)sin v(z) = 0,
(2.1) V'(0) = 0,
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where g(z) € C1([0,00)) N C?((0,0)) and satisfies the following assumptions:
(A1) : ¢(0) >0 and ¢/(z) > 0 for all z € (0,00);
(A2) 1 limg oo g(x) = 00;
(A3) : 3Jzo > 0 such that ¢"(2)g(z) — 3(¢'())* < 0 for all = € [z, 00);
(Ad) 1 limg_oo L& =0

There are so many functions which satisfy condition (Al), (A2), (A3) and
(A4), for example g(x) = e; A > 0 [7], and ¢(z) = 2P;p > 0 [8].

Theorem 2.1. Assume that q(x) satisfies conditions (A1), (A2), (A3), (A4).
Then the solution of (2.1) satisfies

(2.2) Jim v(z,a) =0, for all a€ (0,00).

Moreover, the zeros of v, denoted by r1 < x9 < --- < x1 < ---, satisfy

(2.3) lim |z; — z;-1| = 0.
l—o0

We let * > z¢ be the 1-st zero such that v'(z*,a) = 0 and v(z*,a) > 0.
From lemma 1.1, we have |v(z,a)| < v* = v(z*,a) for all x > z*. Consider

y(z) = [7. \/q(t) dt and z(y) the inverse of y(z). Let ¢(y) = [q(m(y))]% Then

we have

V) 1 d(z)
24 Uy) 4 q%(x)7
V'(y) _ y"(@) 3 y'(@)
(25) Py Y@y@ 2 WP
(2.6) V'(y) _ ") 5 (d@)?

Oly)  4¢%(x) 16 ¢3(x)

Before we prove the main Theorem 2.1, we need several lemmas.
Lemma 2.1. Assume that q(x) satisfies conditions (Al), (A2), (A3).

fhen W (y) 1 ()
)N S
v (y) oo d gF(p)

=0.
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Proof. By conditions (A1) and (A3), we have

< /(@) > _ "(@)a@) - 3¢ (@))?

5 5 <0
qi(z) q* ()

for all z > xg, so @ is decreasing for all x > xy. Then we have
q4(z)
, 4
(2.7) q(z) < qs(aro) qi(z) for all x> .
q% (o)

Multiplying (2.7) by qu(a:) we have

/
0< @) < T i)
q(zo)
for all x > z¢. By applying (A2) we have
/
im 2 QED
g2 (x)

Lemma 2.2. Assume that q(z) satisfies condition (A4). Then

i W) _ lim ( y"(z) 3 y'(=)
y—oo P (y) ey (x)y"(z) 2 (Y (x))?

) =0.

Proof. Since y/(z) = q%(x), y'(z) = %q’(x)q_%(:r), and y" (x) = %q_%(x)
[¢"(z)g(z) — 3(¢'(x))?], we have

y’”(a:) _§ y//(x) _ q//(m) - q’(x)
y@@y'(@) 2 @) Val@)d(@) i)

Now apply (A4) and Lemma 2.1, and we obtain the desired result.  Q.E.D.

Lemma 2.3. Assume that q(z) satisfies condition (A3). Then

iv (i) =°

Proof. Since

d <w’(y)> _ ¢”<y)_<w’<y>>2

dy \ (y) Ply) ()
_ —6(d'(2))* + 4q(x)q" (=)
16¢3(z)
< 0 (by condition (A3)). Q.E.D.
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Lemma 2.4. Assume that q(x) satisfies condition (A3). Then
)

o) =
Proof. From (2.6) we have
PO - sl - @)
< 0 (by condition A3).
QED.
Now, let u(y,a) = v(z,a). Then (2.1) becomes
Uyy + 2 vy Uy + sin u(y) 0,
b(y)
(2.8) uy(0) = 0,
u(0) = wv(x*).

We note that u,(0) = 0 follows directly from L’Hospital rule. Let w(y) =
qi(x(y))u(y) Then (2.8) becomes

V') | sinuly)y
(29) wn+ ( o) T ) Ju=o

Since |u(y)| = |v(z(y))| < v* =v(z*,a) < 7 for all y > 0, we have

sin u(y) S sin v*
u(y) — vt
From Lemma 2.4 and (2.10) we compare (2.9) with

(2.10) =65 =0(a) > 0.

wyy(y) + dw(y) = 0.

Let 21 < 29 < --+ < 2z < --- be the zeros of w(y). Then from Sturm’s
comparison theorem it follows that

s
Ve
Let 0=y <m<mu< - <yp<---<andy <73 < -+ < Yopy1 < -+, be

the local maxima and local minima of u(y, a), respectively. Thus from (2.11)
we have the following lemma.

(2.11) |21 — z1-1] <

Lemma 2.5. Assume that q(x) satisfies conditions (A1) and (A3). Then
there exists D = D(a) > 0 such that |vx — yx—1| < D for all k > 0.
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Since v(z,a) is oscillatory over [0,00) with decreasing amplitudes, from
u(y,a) = v(z,a) so is u(y,a). Assume

(2.12) klim u(yor,a) =6 >0
and
(2.13) lim u(yz1,0) =7 < 0.

Now we prove Theorem 2.1.

Proof of Theorem 2.1. From (2.12), (2.13), Lemma 2.5 and the Cauchy
Schwarz inequality it follows that for each £ > 1

E-n < Ju(yn) — ulrmet)| = /f'“ uy(y) dy| < /f'“ fuy (y)| dy
< (721@—7%—1)% [/m (Uy(y))Zdyr
Y2k—1
< D [/ <uy<y>>2dyr
—m)2 2k
(2.14) E_" [ twray

Multiplying u, on both side of (2.8) and integrating the resulting identity from
c to d yields

(2.15) %(u'(d)) —I—/ w y))? dy+cos u(c)—cos u(d) = 0.

Let ¢ = 0,d = 7y in (2.15) and let k& — oo, we have that

(2.16)

(y))* dy < .

From Lemma 2.3 and (2.14), we have the following inequality

w2k A (y) o, W(’Y%) 2k

217) 2 P = 2 [ )Py
' S 2¢'(72k)( )
— lyw) D
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By Mean Value Theorem and Lemma 2.3, we have

V' (yor—1) ¢ (k)

0= V(yor-1) (o)
= (Y2k—-1 — V2k) <wl> (qr), where qp € (Vor—1,72k)s
_ _ V' (qk) 2_ V" (qx)
= (2 = 726) <<w<qk>) ¢<qk>>
B B V(gw) [¥' (@) " (ak)
= G = o) ) Yo - e
Vg  ¥"(a)] ¥ (v2k-1)
< D\ ) o

By Lemma 2.1 and Lemma 2.2, there exists kg > 0 such that

(k) o 1 ¢ (26-1)
V(var) — 2 Y(yak-1)

for all k£ > ko. From (2.14), (2.18), and Lemma 2.3, we have that for £ > kg

(2.18)

/;% YO (gzay > 2% 02 E—n)°

2k—1 w(y) o ¢(72k) D
> Y (yar—1) (€ —n)?
(2.19) Y(yok-1) D
>

() o

= (557) [m ).

Summing up (2.19) over k > kg yields

* V'), §—n 2 &
e [* 2psewraz (557) . nbtom) = i)

Therefor {—n = 0, since otherwise (2.16) and limy—. In 9(y) = lim, . § In
q(z) = oo would lead to a contradiction. Since £ > 0 and n < 0, we have that
& =n=0, that is lim,_,. v(x,a) = 0.
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Since w(y) and u(y) have exactly the same zeros in (0, 00), by lemma 2.5
and u(y,a) = v(z,a), we have

2D 2 [y(an) — yann)| = [ Ja(t)a

1
= q2(c)|TK — 1],

(2.21)

where ¢ € (xp—1,2%). So (2.3) follows from (2.21) and lim, .~ g(z) = 0.
Thus we complete the proof. Q.E.D.
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