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ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
v′′(x) + q(x) sin v(x) = 0

Tzy-Wei Hwang and Shin-Feng Hwang

Abstract. In this paper we study the asymptotic behavior of the solu-
tion v(x) of initial value problem (1.1) which arises from a mathematical
model describing the large deformations of a nonumiform cantilever.

1. Introduction

In this paper we are concerned with the asymptotic behavior of the solu-
tions of the following initial value problem:

v′′(x) + q(x) sin v(x) = 0,

v′(0) = 0,

v(0) = a, a ∈ R.

(1.1)

where q(0) ≥ 0 and q′(x) > 0 for all x ∈ (0,∞). The qualitative behavior
of the solution v(x, a) of (1.1) is important to the studies of the following
mathematical model (1.2) which can describe the deformation of a nonuniform
cantilever [6, 8].

v′′(x) + q(x) sin v(x) = 0,

v′(0) = 0,

v(K) = α− π, −π ≤ α ≤ π, K > 0.

(1.2)
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We shall study the two-point boundary value problem (1.2) by using shoot-
ing method. From the uniqueness of the solution of the initial value problem
(1.1), it follows that

v(x, 2π + a) = 2π + v(x, a),

v(x, 2π − a) = 2π − v(x, a),

v(x, a) = −v(x,−a),

v(x, 0) = 0,

v(x, π) = π.

(1.3)

From (1.3), we shall consider v(x, a) only for the case 0 < a < π.

Lemma 1.1. Let 0 < a < π. If q(0) ≥ 0, q′(x) > 0 for all x ∈ (0,∞),
then we have

( i ) −π/2 < v(x, a) < π/2 for 0 < a < π/2, x ≥ 0.

(ii) −π < v(x, a) < π for π/2 ≤ a < π, x ≥ 0.

(iii) |v(x, a)| ≤ a for all x ≥ 0, moreover, v(x, a) is oscillatory over [0,∞)
with the decreasing amplitudes.

Proof. Multiplying (1.1) by v′(x) and integrating the resulting equation
from 0 to x, we obtain

1
2
(v′(x))2 = q(x) cos v(x)− q(0) cos a−

∫ x

0
q′(ξ) cos v(ξ) dξ ≥ 0.(1.4)

If 0 < a < π/2, then cos a = cos v(0) > 0. We claim that cos v(x) > 0
for all x ≥ 0. If not, then there exists x0 > 0 such that cos v(x) > 0 for all
0 ≤ x < x0 and cos v(x0) = 0. Then this contradicts (1.4) with x = x0 and
we complete the proof for (i).

If π/2 ≤ a < π, then cos a = cos v(0) ∈ (−1, 0]. We claim that cos v(x) 6=
−1 for all x ≥ 0. If not, then there exists x0 > 0 such that cos v(x0) = −1 and
cos v(x) > −1 for 0 ≤ x < x0. Again from (1.4) we obtain a contradiction.
Hence −π < v(x, a) < π for all x ≥ 0 and we established (ii).

Next we introduce the following Liapunov function

V (x) = (1− cos v(x)) +
1
2

(v′(x))2

q(x)
(1.5)

where v(x) = v(x, a). It is easy to verify that
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V ′(x) = −q′(x)
2

(v′(x))2

(q(x))2
≤ 0.(1.6)

Then we have

1− cos v(x, a) ≤ V (x) ≤ V (0) = 1− cos a.(1.7)

We note that V (0) = 1− cos a follows directly from L’Hospital rule. So from
(1.7) follows that | v(x, a) | ≤ a for all x ≥ 0. We rewrite the equation in (1.1)
as

v′′(x, a) + q(x)
(

sin v(x)
v(x)

)
v(x) = 0.(1.8)

Let 0 < δ < min0≤v≤a( sin v
v ). Using Sturm’s comparison theorem, we

compare (1.8) with (1.9)

φ′′(x) + δq(x) φ(x) = 0(1.9)

which is oscillatory over [0,∞). Thus the solution v(x, a) is oscillatory over
[0,∞) for 0 < a < π. Moreover, from (1.6) and (1.7) the solution v(x, a) is
oscillatory with the decreasing amplitudes, so we established (iii). Q.E.D.

In the next section we shall given some condition on q(x), so that

lim
x→∞ v(x, a) = 0.(1.10)

Consequently, if we denote the zeros of v(x) by x1 < x2 < · · · < xl < · · · ,
then we have

lim
l→∞

|xl − xl−1| = 0.(1.11)

2. Main results

The purpose of this section is to establish (1.10). For all 0 < a < π, the
initial value problem

v′′(x) + q(x) sin v(x) = 0,

v′(0) = 0,

v(0) = a, a ∈ (0, π),

(2.1)
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where q(x) ∈ C1([0,∞))∩C2((0,∞)) and satisfies the following assumptions:

(A1) : q(0) ≥ 0 and q′(x) > 0 for all x ∈ (0,∞);

(A2) : limx→∞ q(x) = ∞;

(A3) : ∃x0 ≥ 0 such that q′′(x)q(x)− 5
4(q′(x))2 ≤ 0 for all x ∈ [x0,∞);

(A4) : limx→∞
q′′(x)√
q(x)q′(x)

= 0.

There are so many functions which satisfy condition (A1), (A2), (A3) and
(A4), for example q(x) = eAx; A > 0 [7], and q(x) = xp; p > 0 [8].

Theorem 2.1. Assume that q(x) satisfies conditions (A1), (A2), (A3), (A4).
Then the solution of (2.1) satisfies

lim
x→∞ v(x, a) = 0, for all a ∈ (0,∞).(2.2)

Moreover, the zeros of v, denoted by x1 < x2 < · · · < xl < · · ·, satisfy

lim
l→∞

|xl − xl−1| = 0.(2.3)

We let x∗ > x0 be the 1-st zero such that v′(x∗, a) = 0 and v(x∗, a) > 0.
From lemma 1.1, we have |v(x, a)| ≤ v∗ = v(x∗, a) for all x ≥ x∗. Consider
y(x) =

∫ x
x∗

√
q(t) dt and x(y) the inverse of y(x). Let ψ(y) = [q(x(y))]

1
4 . Then

we have

ψ′(y)
ψ(y)

=
1
4

q′(x)

q
3
2 (x)

,(2.4)

ψ′′(y)
ψ′(y)

=
y′′′(x)

y′(x)y′′(x)
− 3

2
y′′(x)

(y′(x))2
,(2.5)

ψ′′(y)
ψ(y)

=
q′′(x)
4q2(x)

− 5
16

(q′(x))2

q3(x)
.(2.6)

Before we prove the main Theorem 2.1, we need several lemmas.

Lemma 2.1. Assume that q(x) satisfies conditions (A1), (A2), (A3).
Then

lim
y→∞

ψ′(y)
ψ(y)

= lim
x→∞

1
4

q′(x)

q
3
2 (x)

= 0.
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Proof. By conditions (A1) and (A3), we have
(

q′(x)

q
5
4 (x)

)′
=

q′′(x)q(x)− 5
4(q′(x))2

q
9
4 (x)

< 0

for all x ≥ x0, so q′(x)

q
5
4 (x)

is decreasing for all x ≥ x0. Then we have

q′(x) ≤ q′(x0)

q
5
4 (x0)

q
5
4 (x) for all x ≥ x0.(2.7)

Multiplying (2.7) by q−
3
2 (x) we have

0 < q′(x)q−
3
2 (x) ≤ q′(x0)

q
5
4 (x0)

q−
1
4 (x)

for all x ≥ x0. By applying (A2) we have

lim
x→∞

q′(x)

q
3
2 (x)

= 0. Q.E.D

Lemma 2.2. Assume that q(x) satisfies condition (A4). Then

lim
y→∞

ψ′′(y)
ψ′(y)

= lim
x→∞(

y′′′(x)
y′(x)y′′(x)

− 3
2

y′′(x)
(y′(x))2

) = 0.

Proof. Since y′(x) = q
1
2 (x), y′′(x) = 1

2 q′(x)q−
1
2 (x), and y′′′(x) = 1

2q−
3
2 (x)

[q′′(x)q(x)− 1
2(q′(x))2], we have

y′′′(x)
y′(x)y′′(x)

− 3
2

y′′(x)
(y′(x))2

=
q′′(x)√

q(x)q′(x)
− q′(x)

q
3
2 (x)

.

Now apply (A4) and Lemma 2.1, and we obtain the desired result. Q.E.D.

Lemma 2.3. Assume that q(x) satisfies condition (A3). Then

d

dy

(
ψ′(y)
ψ(y)

)
< 0.

Proof. Since

d

dy

(
ψ′(y)
ψ(y)

)
=

ψ′′(y)
ψ(y)

−
(

ψ′(y)
ψ(y)

)2

=
−6(q′(x))2 + 4q(x)q′′(x)

16q3(x)
< 0 (by condition (A3)). Q.E.D.
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Lemma 2.4. Assume that q(x) satisfies condition (A3). Then

ψ′′(y)
ψ(y)

≤ 0.

Proof. From (2.6) we have

ψ′′(y)
ψ(y)

=
1

4q3
[q′′(x)q(x)− 5

4
(q′(x))2]

< 0 (by condition A3).

Q.E.D.
Now, let u(y, a) = v(x, a). Then (2.1) becomes

uyy + 2
ψ′(y)
ψ(y)

uy + sin u(y) = 0,

uy(0) = 0,

u(0) = v(x∗).

(2.8)

We note that uy(0) = 0 follows directly from L’Hospital rule. Let w(y) =
q

1
4 (x(y))u(y). Then (2.8) becomes

wyy +
(
−ψ′′(y)

ψ(y)
+

sin u(y)
u(y)

)
w = 0.(2.9)

Since |u(y)| = |v(x(y))| ≤ v∗ = v(x∗, a) < π for all y ≥ 0, we have

sin u(y)
u(y)

≥ sin v∗

v∗
= δ = δ(a) > 0.(2.10)

From Lemma 2.4 and (2.10) we compare (2.9) with

$yy(y) + δ$(y) = 0.

Let z1 < z2 < · · · < zl < · · · be the zeros of $(y). Then from Sturm’s
comparison theorem it follows that

| zl − zl−1 | ≤ π√
δ

.(2.11)

Let 0 = γ0 < γ2 < γ4 < · · · < γ2k < · · · < and γ1 < γ3 < · · · < γ2k+1 < · · ·, be
the local maxima and local minima of u(y, a), respectively. Thus from (2.11)
we have the following lemma.

Lemma 2.5. Assume that q(x) satisfies conditions (A1) and (A3). Then
there exists D = D(a) > 0 such that |γk − γk−1| ≤ D for all k ≥ 0.
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Since v(x, a) is oscillatory over [0,∞) with decreasing amplitudes, from
u(y, a) = v(x, a) so is u(y, a). Assume

lim
k→∞

u(γ2k, a) = ξ ≥ 0(2.12)

and

lim
k→∞

u(γ2k−1, a) = η ≤ 0.(2.13)

Now we prove Theorem 2.1.

Proof of Theorem 2.1. From (2.12), (2.13), Lemma 2.5 and the Cauchy
Schwarz inequality it follows that for each k ≥ 1

ξ − η ≤ |u(γ2k)− u(γ2k−1)| =
∣∣∣∣∣
∫ γ2k

γ2k−1

uy(y) dy

∣∣∣∣∣ ≤
∫ γ2k

γ2k−1

|uy(y)| dy

≤ (γ2k − γ2k−1)
1
2

[∫ γ2k

γ2k−1

(uy(y))2 dy

] 1
2

≤ D
1
2

[∫ γ2k

γ2k−1

(uy(y))2 dy

] 1
2

or

(ξ − η)2

D
≤

∫ γ2k

γ2k−1

(uy(y))2 dy(2.14)

Multiplying uy on both side of (2.8) and integrating the resulting identity from
c to d yields

1
2
(u′(d))2− 1

2
(u′(c))2+

∫ d

c
2
ψ′(y)
ψ(y)

(u′(y))2 dy+cos u(c)−cos u(d) = 0.(2.15)

Let c = 0, d = γk in (2.15) and let k →∞, we have that
∫ ∞

0
2

ψ′(y)
ψ(y)

(u′(y))2 dy < ∞.(2.16)

From Lemma 2.3 and (2.14), we have the following inequality

2
∫ γ2k

γ2k−1

ψ′(y)
ψ(y)

(u′(y))2 dy ≥ 2
ψ′(γ2k)
ψ(γ2k)

∫ γ2k

γ2k−1

(u′(y))2dy

≥ 2
ψ′(γ2k)
ψ(γ2k)

(ξ − η)2

D
.

(2.17)
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By Mean Value Theorem and Lemma 2.3, we have

0 ≤ ψ′(γ2k−1)
ψ(γ2k−1)

− ψ′(γ2k)
ψ(γ2k)

= (γ2k−1 − γ2k)
(

ψ′

ψ

)′
(qk), where qk ∈ (γ2k−1, γ2k),

= (γ2k − γ2k−1)

((
ψ′(qk)
ψ(qk)

)2

− ψ′′(qk)
ψ(qk)

)

= (γ2k − γ2k−1)
ψ′(qk)
ψ(qk)

[
ψ′(qk)
ψ(qk)

− ψ′′(qk)
ψ′(qk)

]

≤ D

[
ψ′(qk)
ψ(qk)

− ψ′′(qk)
ψ′(qk)

]
ψ′(γ2k−1)
ψ(γ2k−1)

.

By Lemma 2.1 and Lemma 2.2, there exists k0 > 0 such that

ψ′(γ2k)
ψ(γ2k)

≥ 1
2

ψ′(γ2k−1)
ψ(γ2k−1)

.(2.18)

for all k ≥ k0. From (2.14), (2.18), and Lemma 2.3, we have that for k ≥ k0

∫ γ2k

γ2k−1

2
ψ′(y)
ψ(y)

(u′(y))2 dy ≥ 2
ψ′(γ2k)
ψ(γ2k)

(ξ − η)2

D

≥ ψ′(γ2k−1)
ψ(γ2k−1)

(ξ − η)2

D

≥
(

ξ−η
D

)2
∫ γ2k

γ2k−1

ψ′(y)
ψ(y)

dy,

=
(

ξ − η

D

)2 [
ln

ψ(γ2k)
ψ(γ2k−1)

]
.

(2.19)

Summing up (2.19) over k ≥ k0 yields

∫ ∞

γk0−1

2
ψ′(y)
ψ(y)

(u′(y))2 dy ≥
(

ξ − η

D

)2 ∞∑

k=k0

[ln ψ(γ2k)− ln ψ(γ2k−1)].(2.20)

Therefor ξ−η = 0, since otherwise (2.16) and limy→∞ ln ψ(y) = limx→∞ 1
4 ln

q(x) = ∞ would lead to a contradiction. Since ξ ≥ 0 and η ≤ 0 , we have that
ξ = η = 0, that is limx→∞ v(x, a) = 0.
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Since w(y) and u(y) have exactly the same zeros in (0,∞), by lemma 2.5
and u(y, a) = v(x, a), we have

2D ≥ |y(xk)− y(xk−1)| =
∫ xk

xk−1

√
q(t) dt

= q
1
2 (ck)|xk − xk−1|,

(2.21)

where ck ∈ (xk−1, xk). So (2.3) follows from (2.21) and limx→∞ q(x) = ∞.
Thus we complete the proof. Q.E.D.
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