ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
 $v^{\prime \prime}(x)+q(x) \sin v(x)=0$

Tzy-Wei Hwang and Shin-Feng Hwang

Abstract

In this paper we study the asymptotic behavior of the solution $v(x)$ of initial value problem (1.1) which arises from a mathematical model describing the large deformations of a nonumiform cantilever.

1. Introduction

In this paper we are concerned with the asymptotic behavior of the solutions of the following initial value problem:

$$
\begin{align*}
v^{\prime \prime}(x)+q(x) \sin v(x) & =0, \\
v^{\prime}(0) & =0, \tag{1.1}\\
v(0) & =a, \quad a \in R .
\end{align*}
$$

where $q(0) \geq 0$ and $q^{\prime}(x)>0$ for all $x \in(0, \infty)$. The qualitative behavior of the solution $v(x, a)$ of (1.1) is important to the studies of the following mathematical model (1.2) which can describe the deformation of a nonuniform cantilever $[6,8]$.

$$
\begin{align*}
v^{\prime \prime}(x)+q(x) \sin v(x) & =0, \\
v^{\prime}(0) & =0, \tag{1.2}\\
v(K) & =\alpha-\pi, \quad-\pi \leq \alpha \leq \pi, K>0 .
\end{align*}
$$

Recoived March 16, 1995
Communicated by S.-B. Hsu.
1991 Mathematics Subject Classification: 34C15, 34E10.
Key words and phrases: Liapunov function, Comparison theorem.
*Research partially supported by National Science Council of Republic of China (NSC 86-2115-M-035-003)

We shall study the two-point boundary value problem (1.2) by using shooting method. From the uniqueness of the solution of the initial value problem (1.1), it follows that

$$
\begin{align*}
v(x, 2 \pi+a) & =2 \pi+v(x, a), \\
v(x, 2 \pi-a) & =2 \pi-v(x, a), \\
v(x, a) & =-v(x,-a), \tag{1.3}\\
v(x, 0) & =0, \\
v(x, \pi) & =\pi .
\end{align*}
$$

From (1.3), we shall consider $v(x, a)$ only for the case $0<a<\pi$.
Lemma 1.1. Let $0<a<\pi$. If $q(0) \geq 0, q^{\prime}(x)>0$ for all $x \in(0, \infty)$, then we have
(i) $-\pi / 2<v(x, a)<\pi / 2$ for $0<a<\pi / 2, x \geq 0$.
(ii) $-\pi<v(x, a)<\pi$ for $\pi / 2 \leq a<\pi, x \geq 0$.
(iii) $|v(x, a)| \leq a$ for all $x \geq 0$, moreover, $v(x, a)$ is oscillatory over $[0, \infty)$ with the decreasing amplitudes.

Proof. Multiplying (1.1) by $v^{\prime}(x)$ and integrating the resulting equation from 0 to x, we obtain

$$
\begin{equation*}
\frac{1}{2}\left(v^{\prime}(x)\right)^{2}=q(x) \cos v(x)-q(0) \cos a-\int_{0}^{x} q^{\prime}(\xi) \cos v(\xi) d \xi \geq 0 \tag{1.4}
\end{equation*}
$$

If $0<a<\pi / 2$, then $\cos a=\cos v(0)>0$. We claim that $\cos v(x)>0$ for all $x \geq 0$. If not, then there exists $x_{0}>0$ such that $\cos v(x)>0$ for all $0 \leq x<x_{0}$ and $\cos v\left(x_{0}\right)=0$. Then this contradicts (1.4) with $x=x_{0}$ and we complete the proof for (i).

If $\pi / 2 \leq a<\pi$, then $\cos a=\cos v(0) \in(-1,0]$. We claim that $\cos v(x) \neq$ -1 for all $x \geq 0$. If not, then there exists $x_{0}>0$ such that $\cos v\left(x_{0}\right)=-1$ and $\cos v(x)>-1$ for $0 \leq x<x_{0}$. Again from (1.4) we obtain a contradiction. Hence $-\pi<v(x, a)<\pi$ for all $x \geq 0$ and we established (ii).

Next we introduce the following Liapunov function

$$
\begin{equation*}
V(x)=(1-\cos v(x))+\frac{1}{2} \frac{\left(v^{\prime}(x)\right)^{2}}{q(x)} \tag{1.5}
\end{equation*}
$$

where $v(x)=v(x, a)$. It is easy to verify that

$$
\begin{equation*}
V^{\prime}(x)=-\frac{q^{\prime}(x)}{2} \frac{\left(v^{\prime}(x)\right)^{2}}{(q(x))^{2}} \leq 0 . \tag{1.6}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
1-\cos v(x, a) \leq V(x) \leq V(0)=1-\cos a . \tag{1.7}
\end{equation*}
$$

We note that $V(0)=1-\cos a$ follows directly from L'Hospital rule. So from (1.7) follows that $|v(x, a)| \leq a$ for all $x \geq 0$. We rewrite the equation in (1.1) as

$$
\begin{equation*}
v^{\prime \prime}(x, a)+q(x)\left(\frac{\sin v(x)}{v(x)}\right) v(x)=0 . \tag{1.8}
\end{equation*}
$$

Let $0<\delta<\min _{0 \leq v \leq a}\left(\frac{\sin v}{v}\right)$. Using Sturm's comparison theorem, we compare (1.8) with (1.9)

$$
\begin{equation*}
\phi^{\prime \prime}(x)+\delta q(x) \phi(x)=0 \tag{1.9}
\end{equation*}
$$

which is oscillatory over $[0, \infty)$. Thus the solution $v(x, a)$ is oscillatory over $[0, \infty)$ for $0<a<\pi$. Moreover, from (1.6) and (1.7) the solution $v(x, a)$ is oscillatory with the decreasing amplitudes, so we established (iii). Q.E.D.

In the next section we shall given some condition on $q(x)$, so that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} v(x, a)=0 \tag{1.10}
\end{equation*}
$$

Consequently, if we denote the zeros of $v(x)$ by $x_{1}<x_{2}<\cdots<x_{l}<\cdots$, then we have

$$
\begin{equation*}
\lim _{l \rightarrow \infty}\left|x_{l}-x_{l-1}\right|=0 \tag{1.11}
\end{equation*}
$$

2. Main results

The purpose of this section is to establish (1.10). For all $0<a<\pi$, the initial value problem

$$
\begin{align*}
v^{\prime \prime}(x)+q(x) \sin v(x) & =0, \\
v^{\prime}(0) & =0, \tag{2.1}\\
v(0) & =a, \quad a \in(0, \pi),
\end{align*}
$$

where $q(x) \in C^{1}([0, \infty)) \cap C^{2}((0, \infty))$ and satisfies the following assumptions:
(A1) : $\quad q(0) \geq 0$ and $q^{\prime}(x)>0$ for all $x \in(0, \infty)$;
(A2) : $\lim _{x \rightarrow \infty} q(x)=\infty$;
(A3): $\exists x_{0} \geq 0$ such that $q^{\prime \prime}(x) q(x)-\frac{5}{4}\left(q^{\prime}(x)\right)^{2} \leq 0$ for all $x \in\left[x_{0}, \infty\right)$;
(A4) : $\quad \lim _{x \rightarrow \infty} \frac{q^{\prime \prime}(x)}{\sqrt{q(x) q^{\prime}(x)}}=0$.
There are so many functions which satisfy condition (A1), (A2), (A3) and (A4), for example $q(x)=e^{A x} ; A>0[7]$, and $q(x)=x^{p} ; p>0[8]$.

Theorem 2.1. Assume that $q(x)$ satisfies conditions (A1), (A2), (A3), (A4). Then the solution of (2.1) satisfies

$$
\begin{equation*}
\lim _{x \rightarrow \infty} v(x, a)=0, \text { for all } a \in(0, \infty) \tag{2.2}
\end{equation*}
$$

Moreover, the zeros of v, denoted by $x_{1}<x_{2}<\cdots<x_{l}<\cdots$, satisfy

$$
\begin{equation*}
\lim _{l \rightarrow \infty}\left|x_{l}-x_{l-1}\right|=0 \tag{2.3}
\end{equation*}
$$

We let $x^{*}>x_{0}$ be the 1-st zero such that $v^{\prime}\left(x^{*}, a\right)=0$ and $v\left(x^{*}, a\right)>0$. From lemma 1.1, we have $|v(x, a)| \leq v^{*}=v\left(x^{*}, a\right)$ for all $x \geq x^{*}$. Consider $y(x)=\int_{x^{*}}^{x} \sqrt{q(t)} d t$ and $x(y)$ the inverse of $y(x)$. Let $\psi(y)=[q(x(y))]^{\frac{1}{4}}$. Then we have

$$
\begin{gather*}
\frac{\psi^{\prime}(y)}{\psi(y)}=\frac{1}{4} \frac{q^{\prime}(x)}{q^{\frac{3}{2}}(x)}, \tag{2.4}\\
\frac{\psi^{\prime \prime}(y)}{\psi^{\prime}(y)}=\frac{y^{\prime \prime \prime}(x)}{y^{\prime}(x) y^{\prime \prime}(x)}-\frac{3}{2} \frac{y^{\prime \prime}(x)}{\left(y^{\prime}(x)\right)^{2}}, \tag{2.5}\\
\frac{\psi^{\prime \prime}(y)}{\psi(y)}=\frac{q^{\prime \prime}(x)}{4 q^{2}(x)}-\frac{5}{16} \frac{\left(q^{\prime}(x)\right)^{2}}{q^{3}(x)} . \tag{2.6}
\end{gather*}
$$

Before we prove the main Theorem 2.1, we need several lemmas.
Lemma 2.1. Assume that $q(x)$ satisfies conditions (A1), (A2), (A3). Then

$$
\lim _{y \rightarrow \infty} \frac{\psi^{\prime}(y)}{\psi(y)}=\lim _{x \rightarrow \infty} \frac{1}{4} \quad \frac{q^{\prime}(x)}{q^{\frac{3}{2}}(x)}=0 .
$$

Proof. By conditions (A1) and (A3), we have

$$
\left(\frac{q^{\prime}(x)}{q^{\frac{5}{4}}(x)}\right)^{\prime}=\frac{q^{\prime \prime}(x) q(x)-\frac{5}{4}\left(q^{\prime}(x)\right)^{2}}{q^{\frac{9}{4}}(x)}<0
$$

for all $x \geq x_{0}$, so $\frac{q^{\prime}(x)}{q^{\frac{5}{4}}(x)}$ is decreasing for all $x \geq x_{0}$. Then we have

$$
\begin{equation*}
q^{\prime}(x) \leq \frac{q^{\prime}\left(x_{0}\right)}{q^{\frac{5}{4}}\left(x_{0}\right)} q^{\frac{5}{4}}(x) \text { for all } x \geq x_{0} \tag{2.7}
\end{equation*}
$$

Multiplying (2.7) by $q^{-\frac{3}{2}}(x)$ we have

$$
0<q^{\prime}(x) q^{-\frac{3}{2}}(x) \leq \frac{q^{\prime}\left(x_{0}\right)}{q^{\frac{5}{4}}\left(x_{0}\right)} q^{-\frac{1}{4}}(x)
$$

for all $x \geq x_{0}$. By applying (A2) we have

$$
\lim _{x \rightarrow \infty} \frac{q^{\prime}(x)}{q^{\frac{3}{2}}(x)}=0
$$

Q.E.D

Lemma 2.2. Assume that $q(x)$ satisfies condition (A4). Then

$$
\lim _{y \rightarrow \infty} \frac{\psi^{\prime \prime}(y)}{\psi^{\prime}(y)}=\lim _{x \rightarrow \infty}\left(\frac{y^{\prime \prime \prime}(x)}{y^{\prime}(x) y^{\prime \prime}(x)}-\frac{3}{2} \frac{y^{\prime \prime}(x)}{\left(y^{\prime}(x)\right)^{2}}\right)=0 .
$$

Proof. Since $y^{\prime}(x)=q^{\frac{1}{2}}(x), y^{\prime \prime}(x)=\frac{1}{2} q^{\prime}(x) q^{-\frac{1}{2}}(x)$, and $y^{\prime \prime \prime}(x)=\frac{1}{2} q^{-\frac{3}{2}}(x)$ $\left[q^{\prime \prime}(x) q(x)-\frac{1}{2}\left(q^{\prime}(x)\right)^{2}\right]$, we have

$$
\frac{y^{\prime \prime \prime}(x)}{y^{\prime}(x) y^{\prime \prime}(x)}-\frac{3}{2} \frac{y^{\prime \prime}(x)}{\left(y^{\prime}(x)\right)^{2}}=\frac{q^{\prime \prime}(x)}{\sqrt{q(x)} q^{\prime}(x)}-\frac{q^{\prime}(x)}{q^{\frac{3}{2}}(x)} .
$$

Now apply (A4) and Lemma 2.1, and we obtain the desired result. Q.E.D.
Lemma 2.3. Assume that $q(x)$ satisfies condition (A3). Then

$$
\frac{d}{d y}\left(\frac{\psi^{\prime}(y)}{\psi(y)}\right)<0 .
$$

Proof. Since

$$
\begin{aligned}
\frac{d}{d y}\left(\frac{\psi^{\prime}(y)}{\psi(y)}\right) & =\frac{\psi^{\prime \prime}(y)}{\psi(y)}-\left(\frac{\psi^{\prime}(y)}{\psi(y)}\right)^{2} \\
& =\frac{-6\left(q^{\prime}(x)\right)^{2}+4 q(x) q^{\prime \prime}(x)}{16 q^{3}(x)} \\
& <0 \quad(\text { by condition }(\mathrm{A} 3)) . \quad \text { Q.E.D. }
\end{aligned}
$$

Lemma 2.4. Assume that $q(x)$ satisfies condition (A3). Then

$$
\frac{\psi^{\prime \prime}(y)}{\psi(y)} \leq 0
$$

Proof. From (2.6) we have

$$
\begin{aligned}
\frac{\psi^{\prime \prime}(y)}{\psi(y)} & =\frac{1}{4 q^{3}}\left[q^{\prime \prime}(x) q(x)-\frac{5}{4}\left(q^{\prime}(x)\right)^{2}\right] \\
& <0 \quad(\text { by condition } \mathrm{A} 3)
\end{aligned}
$$

Q.E.D.

Now, let $u(y, a)=v(x, a)$. Then (2.1) becomes

$$
\begin{align*}
u_{y y}+2 \frac{\psi^{\prime}(y)}{\psi(y)} u_{y}+\sin u(y) & =0 \\
u_{y}(0) & =0 \tag{2.8}\\
u(0) & =v\left(x^{*}\right)
\end{align*}
$$

We note that $u_{y}(0)=0$ follows directly from L'Hospital rule. Let $w(y)=$ $q^{\frac{1}{4}}(x(y)) u(y)$. Then (2.8) becomes

$$
\begin{equation*}
w_{y y}+\left(-\frac{\psi^{\prime \prime}(y)}{\psi(y)}+\frac{\sin u(y)}{u(y)}\right) w=0 \tag{2.9}
\end{equation*}
$$

Since $|u(y)|=|v(x(y))| \leq v^{*}=v\left(x^{*}, a\right)<\pi$ for all $y \geq 0$, we have

$$
\begin{equation*}
\frac{\sin u(y)}{u(y)} \geq \frac{\sin v^{*}}{v^{*}}=\delta=\delta(a)>0 \tag{2.10}
\end{equation*}
$$

From Lemma 2.4 and (2.10) we compare (2.9) with

$$
\varpi_{y y}(y)+\delta \varpi(y)=0
$$

Let $z_{1}<z_{2}<\cdots<z_{l}<\cdots$ be the zeros of $\varpi(y)$. Then from Sturm's comparison theorem it follows that

$$
\begin{equation*}
\left|z_{l}-z_{l-1}\right| \leq \frac{\pi}{\sqrt{\delta}} \tag{2.11}
\end{equation*}
$$

Let $0=\gamma_{0}<\gamma_{2}<\gamma_{4}<\cdots<\gamma_{2 k}<\cdots<$ and $\gamma_{1}<\gamma_{3}<\cdots<\gamma_{2 k+1}<\cdots$, be the local maxima and local minima of $u(y, a)$, respectively. Thus from (2.11) we have the following lemma.

Lemma 2.5. Assume that $q(x)$ satisfies conditions (A1) and (A3). Then there exists $D=D(a)>0$ such that $\left|\gamma_{k}-\gamma_{k-1}\right| \leq D$ for all $k \geq 0$.

Since $v(x, a)$ is oscillatory over $[0, \infty)$ with decreasing amplitudes, from $u(y, a)=v(x, a)$ so is $u(y, a)$. Assume

$$
\begin{equation*}
\lim _{k \rightarrow \infty} u\left(\gamma_{2 k}, a\right)=\xi \geq 0 \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{k \rightarrow \infty} u\left(\gamma_{2 k-1}, a\right)=\eta \leq 0 . \tag{2.13}
\end{equation*}
$$

Now we prove Theorem 2.1.
Proof of Theorem 2.1. From (2.12), (2.13), Lemma 2.5 and the Cauchy Schwarz inequality it follows that for each $k \geq 1$

$$
\begin{aligned}
\xi-\eta & \leq\left|u\left(\gamma_{2 k}\right)-u\left(\gamma_{2 k-1}\right)\right|=\left|\int_{\gamma_{2 k-1}}^{\gamma_{2 k}} u_{y}(y) d y\right| \leq \int_{\gamma_{2 k-1}}^{\gamma_{2 k}}\left|u_{y}(y)\right| d y \\
& \leq\left(\gamma_{2 k}-\gamma_{2 k-1}\right)^{\frac{1}{2}}\left[\int_{\gamma_{2 k-1}}^{\gamma_{2 k}}\left(u_{y}(y)\right)^{2} d y\right]^{\frac{1}{2}} \\
& \leq D^{\frac{1}{2}}\left[\int_{\gamma_{2 k-1}}^{\gamma_{2 k}}\left(u_{y}(y)\right)^{2} d y\right]^{\frac{1}{2}}
\end{aligned}
$$

or

$$
\begin{equation*}
\frac{(\xi-\eta)^{2}}{D} \leq \int_{\gamma_{2 k-1}}^{\gamma_{2 k}}\left(u_{y}(y)\right)^{2} d y \tag{2.14}
\end{equation*}
$$

Multiplying u_{y} on both side of (2.8) and integrating the resulting identity from c to d yields

$$
\begin{equation*}
\frac{1}{2}\left(u^{\prime}(d)\right)^{2}-\frac{1}{2}\left(u^{\prime}(c)\right)^{2}+\int_{c}^{d} 2 \frac{\psi^{\prime}(y)}{\psi(y)}\left(u^{\prime}(y)\right)^{2} d y+\cos u(c)-\cos u(d)=0 \tag{2.15}
\end{equation*}
$$

Let $c=0, d=\gamma_{k}$ in (2.15) and let $k \rightarrow \infty$, we have that

$$
\begin{equation*}
\int_{0}^{\infty} 2 \frac{\psi^{\prime}(y)}{\psi(y)}\left(u^{\prime}(y)\right)^{2} d y<\infty \tag{2.16}
\end{equation*}
$$

From Lemma 2.3 and (2.14), we have the following inequality

$$
\begin{align*}
2 \int_{\gamma_{2 k-1}}^{\gamma_{2 k}} \frac{\psi^{\prime}(y)}{\psi(y)}\left(u^{\prime}(y)\right)^{2} d y & \geq 2 \frac{\psi^{\prime}\left(\gamma_{2 k}\right)}{\psi\left(\gamma_{2 k}\right)} \int_{\gamma_{2 k-1}}^{\gamma_{2 k}}\left(u^{\prime}(y)\right)^{2} d y \tag{2.17}\\
& \geq 2 \frac{\psi^{\prime}\left(\gamma_{2 k}\right)}{\psi\left(\gamma_{2 k}\right)} \frac{(\xi-\eta)^{2}}{D}
\end{align*}
$$

By Mean Value Theorem and Lemma 2.3, we have

$$
\begin{aligned}
0 & \leq \frac{\psi^{\prime}\left(\gamma_{2 k-1}\right)}{\psi\left(\gamma_{2 k-1}\right)}-\frac{\psi^{\prime}\left(\gamma_{2 k}\right)}{\psi\left(\gamma_{2 k}\right)} \\
& =\left(\gamma_{2 k-1}-\gamma_{2 k}\right)\left(\frac{\psi^{\prime}}{\psi}\right)^{\prime}\left(q_{k}\right), \text { where } q_{k} \in\left(\gamma_{2 k-1}, \gamma_{2 k}\right) \\
& =\left(\gamma_{2 k}-\gamma_{2 k-1}\right)\left(\left(\frac{\psi^{\prime}\left(q_{k}\right)}{\psi\left(q_{k}\right)}\right)^{2}-\frac{\psi^{\prime \prime}\left(q_{k}\right)}{\psi\left(q_{k}\right)}\right) \\
& =\left(\gamma_{2 k}-\gamma_{2 k-1}\right) \frac{\psi^{\prime}\left(q_{k}\right)}{\psi\left(q_{k}\right)}\left[\frac{\psi^{\prime}\left(q_{k}\right)}{\psi\left(q_{k}\right)}-\frac{\psi^{\prime \prime}\left(q_{k}\right)}{\psi^{\prime}\left(q_{k}\right)}\right] \\
& \leq D\left[\frac{\psi^{\prime}\left(q_{k}\right)}{\psi\left(q_{k}\right)}-\frac{\psi^{\prime \prime}\left(q_{k}\right)}{\psi^{\prime}\left(q_{k}\right)}\right] \frac{\psi^{\prime}\left(\gamma_{2 k-1}\right)}{\psi\left(\gamma_{2 k-1}\right)} .
\end{aligned}
$$

By Lemma 2.1 and Lemma 2.2, there exists $k_{0}>0$ such that

$$
\begin{equation*}
\frac{\psi^{\prime}\left(\gamma_{2 k}\right)}{\psi\left(\gamma_{2 k}\right)} \geq \frac{1}{2} \frac{\psi^{\prime}\left(\gamma_{2 k-1}\right)}{\psi\left(\gamma_{2 k-1}\right)} . \tag{2.18}
\end{equation*}
$$

for all $k \geq k_{0}$. From (2.14), (2.18), and Lemma 2.3, we have that for $k \geq k_{0}$

$$
\begin{align*}
\int_{\gamma_{2 k-1}}^{\gamma_{2 k}} 2 \frac{\psi^{\prime}(y)}{\psi(y)}\left(u^{\prime}(y)\right)^{2} d y & \geq 2 \frac{\psi^{\prime}\left(\gamma_{2 k}\right)}{\psi\left(\gamma_{2 k}\right)} \frac{(\xi-\eta)^{2}}{D} \\
& \geq \frac{\psi^{\prime}\left(\gamma_{2 k-1}\right)}{\psi\left(\gamma_{2 k-1}\right)} \frac{(\xi-\eta)^{2}}{D} \tag{2.19}\\
& \geq\left(\frac{\xi-\eta}{D}\right)^{2} \int_{\gamma_{2 k-1}}^{\gamma_{2 k}} \frac{\psi^{\prime}(y)}{\psi(y)} d y \\
& =\left(\frac{\xi-\eta}{D}\right)^{2}\left[\ln \frac{\psi\left(\gamma_{2 k}\right)}{\psi\left(\gamma_{2 k-1}\right)}\right]
\end{align*}
$$

Summing up (2.19) over $k \geq k_{0}$ yields

$$
\begin{equation*}
\int_{\gamma_{k_{0}-1}}^{\infty} 2 \frac{\psi^{\prime}(y)}{\psi(y)}\left(u^{\prime}(y)\right)^{2} d y \geq\left(\frac{\xi-\eta}{D}\right)^{2} \sum_{k=k_{0}}^{\infty}\left[\ln \psi\left(\gamma_{2 k}\right)-\ln \psi\left(\gamma_{2 k-1}\right)\right] . \tag{2.20}
\end{equation*}
$$

Therefor $\xi-\eta=0$, since otherwise (2.16) and $\lim _{y \rightarrow \infty} \ln \psi(y)=\lim _{x \rightarrow \infty} \frac{1}{4} \ln$ $q(x)=\infty$ would lead to a contradiction. Since $\xi \geq 0$ and $\eta \leq 0$, we have that $\xi=\eta=0$, that is $\lim _{x \rightarrow \infty} v(x, a)=0$.

Since $w(y)$ and $u(y)$ have exactly the same zeros in $(0, \infty)$, by lemma 2.5 and $u(y, a)=v(x, a)$, we have

$$
\begin{align*}
2 D \geq\left|y\left(x_{k}\right)-y\left(x_{k-1}\right)\right| & =\int_{x_{k-1}}^{x_{k}} \sqrt{q(t)} d t \tag{2.21}\\
& =q^{\frac{1}{2}}\left(c_{k}\right)\left|x_{k}-x_{k-1}\right|
\end{align*}
$$

where $c_{k} \in\left(x_{k-1}, x_{k}\right)$. So (2.3) follows from (2.21) and $\lim _{x \rightarrow \infty} q(x)=\infty$. Thus we complete the proof.
Q.E.D.

References

1. C. Y. Wang, Large deformation of heavy cantilever, Quart. Appl. Math. 39 (1981), 261-274.
2. S. B. Hsu and S. F. Hwang, Analysis of large deformation of a heavy cantilever, SIAM J. Math. Anal. 19 (1988), 854-866.
3. E. L. Ince, Ordinary Differential Equation, Dover Publication, Inc., 1926.
4. P. Hartman, Ordinary Differential Equation, John Wiley \& Sons, Inc., 1964.
5. W. M. Ni and S. B. Hsu, On the asymptotic behavior of solution of $v^{\prime \prime}(x)+$ $x \sin v(x)=0$, Bull. Inst. Math. Acad. Sinica 16 (1988), 109-114.
6. S. B. Hsu and W. M. Ni, Uniqueness property of large deformation of a heavy cantilever, Bull. Inst. Math. Acad. Sinica 17 (1989), 193-204.
7. S. F. Hwang, T. J. Chen, and J. T. Lin, On the asymptotic behavior of solutions of $v^{\prime \prime}(x)+e^{A x} \sin v(x)=0 ; A>0$, J. Feng Chia, to appear.
8. S. F. Hwang, T. J. Chen, and J. T. Lin, The global bifurcation phenomena of $v^{\prime \prime}(x)+q(x) \sin v(x)=0, v^{\prime}(0)=0 ; v(K)=\alpha-\pi$, Chinese J. Math. 24 (1996), 285-296.

Tzy-Wei Hwang
Department of Mathematics, Kaohsiung Normal University
Kaohsiung, Taiwan
Shin-Feng Hwang
Department of Applied Mathematics, Feng-Chia University
Taichung, Taiwan

