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ON THE SOLVABILITY OF THE FIRST MIXED PROBLEM
FOR STRONGLY HYPERBOLIC SYSTEM
IN INFINITE NONSMOOTH CYLINDERS

Bui Trong Kim and Nguyen Manh Hung

Abstract. The purpose of this paper is to establish some new results on the
unique solvability of solution of the first mixed problem for strongly hyperbolic
systems in infinite cylinders with nonsmooth base.

1. INTRODUCTION

The boundary value problems for elliptic equation in domains with smooth
boundary have been well studied by S. Agmons, A. Douglis and L. Nirenberg
in [2]. The authors considered the normal solvability of the problems with Sapiro-
Lopatinsky’s condition. Besides, they also studied the smoothness of solutions which
depend on coefficients of the right hand part of the equation and the boundary of
considered domains.

The general elliptic boundary valued problems in nonsmooth domains were con-
sidered by V. A. Kondratiev [4], where author established important results on the
unique existence of solutions and asymptotic expansion of solutions for the problems
in the weight Sobolev spaces.

In this paper we consider the first mixed problem for strongly hyperbolic system
in infinite cylinders with the nonsmooth base. We establish some results on the
unique existence of generalized solution of the problem by using the method of
approximate Galerkin. It is noted that the problem for the case of finite cylinders
has been studied in the work [3], where the author investigated the solvability of this
problem and the asymptotic expansion of generalized solutions in a neighbourhood
of the conical point.

Received November 7, 2007, accepted January 15, 2008.

Communicated by J. C. Yao.

2000 Mathematics Subject Classification: 34105, 35L15, 35L.20.

Key words and phrases: Strongly hyperbolic system, First mixed problem, Nonsmooth domains,
Generalized solutions, Galerkin method.

2601



2602 Bui Trong Kim and Nguyen Manh Hung

The rest of the paper consists of two sections. Section 2 is devoted to some no-
tations and formulation of the problem. In section 3 we will establish the uniqueness
and existence of the solution in Sobolev spaces.

2. FORMULATION OF THE PROBLEM

Let 2 be a bounded domain in R™ with the boundary 9€). For each T, 0 <
T < oo, we put
QT = x (O,T), ST = 00} X (O,T)

We use notation:
Qoo = Q2 % (0,00), Soo = IN x (0, 00),
U= (U1, U2y ey Us)y Uk = (Ugghy Usgh, ooy Uggh ), Wjph = ﬁkuj/ﬁtk,

ool
o a2 Qn ?
0x ' 0xy” - - - Oz

D% = (D%uy, D%us, ..., D%), D%; =

where o = (Oq, a2, ..., Oén) and ’a’ =a;+as+ -+,
Throughout the paper we will use the following functional spaces:

(1) H™(Q) is the space of complex vector functions u = u(z), € € having
generalized derivatives D®u € L?(§2) with the norm

1/2
lllgmiey = | 30 / |D%uf?dz

la|<m o

(2) H™Fk(Qr) is the space of complex vector functions u = u(w,t), (x,t) € Qr
having generalized derivatives D% € L?(Q7), |a| < m and uy € L?(Q7),
1 <[ < k with the norm

k
sy = [ | 3 10%0P + 3 el | doct.

Qp \lalsm =1

In particular,

HUH%{WO(QT) = Z /\Do‘u\dedt.
o] <y,

(3) H™*(Q7) is the closure in H™*(Qr) of the set of all infinitely differentiable
complex vector functions on 27 which vanish near St.
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(4) H™Fk(e=7; Qo) is the space of complex vector functions u = u(x, ) on Oy
which have generalized derivatives D%u, || < m, uu, 1 <1 < k such that

k

rwﬁmw%%ﬂ:/ SO0+ Jug? | e Pdadt < oo,
Qoo la|<m =1

where v is a positive constant.

(5) H™F(e™, Q) is the closure in H™F(e=7 Q) of the set containing all
infinitely differentiable complex vector functions on {2, which vanish near
Soo-

(6) L°°(0,00; L(R)) is the space of measurable complex valued functions u :
(0,00) — L2(Q);t — u(-, t) satisfying

ol 0sae) = esssup ) ) < oo,

We introduce the differential operator

(21) Lz, t,D):= Y Daas(z,)D’) + > an(z,t)D* + a(w,1),
lal, 8] <m la|=1

where an3 = aap(2,t), aq = aa(z,t),a = a(z,t) are s x s matrices of measurable
complex functions which are bounded in Q; aop = (—1)|O‘|+|ﬂ|a2a, aj, are
complex conjugate transportation matrices of a,g with continuous elements in .
Let f belong to L>(0, 00; L%(£2)). We consider the following in the cylinder
Qoo

(22) (_1)m_1L(x7t7 D)u_utt = f7
with the initial condition
(23) u‘tio = 07 ut‘t:O - 07

and boundary conditions

du
2.4 — =0;7=0,....,(m—-1),
(2.4) 15 =07 = 0, (m— 1)
where 2% s derivative with respect to the outer unit normal of S...

BV]'
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Definition 2.1. The differential operator L is said to be strongly hyperbolic in
Q) if there exists a constant hq such that

(2.5) D aapl@, ) > hol¢ P nf?,
o], |Bl=m
for al £ € R"\{0}, n € C*\{0} and (=,t) € Q.

Definition 2.2. A function u(x,t) is called a generalized solution of the
problem (2.2)-(2.4) in the space H™ (e~ Q), if and only if u(z,t) belongs to
0
H™Y (e 7 Qy), u(z,0) = 0, and for each T > 0 the equality

m m
(_1)m—1 Z (_1)|a|aaﬂDﬂumgp+Z a,aDa’U,@ + aup dxdt
(2.6) ar \ebo -
+ /ut@dxdt: /f@dxdt.
QT QT

holds for all p € H™(Qr) satisfying (-, T) = 0.

3. SOLVABILITY OF THE PROBLEM

In this section we establish theorems on the uniqueness and existence of a
generalized solution of problem (2.2)-(2.4). First we prove the following lemma
which is a generalization of the Garding inequality (see [8]).

Lemma 3.1.  Assume that L is strongly hyperbolic in Qo and anp(x,t) are
continuous in x € S uniformly with respect to t € [0, co) whenever |a| = |5| = m.
Then there exist constants g > 0 and Mg > 0 such that

(3.1) (=1)"B(u, w)(t) > pol[u(- ) Fpme) = Aollul- ) Z2q)

for all w € H™(e™; Q.), where B is defined by

(3.2) B = S (- / G D D udz.

lel,|8]=1 Q

Proof. We use the notation 35 = (—1)H+™qy, for |I| + |s| < 2m and rewrite

(—=1)"B(u,u)(t) = Z /aagDﬂuDaudx—i— Z by D*uDludz.
la|=[8]=m g 1] +s|<2m &
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Since 2 is bounded, there exists a cube IT C R"™ such that Q C II. We now consider
the following cases.

Case 1. by, = 0 for all [, s satisfying |I| + |s| < 2m and ang(x,t) = aag(t).

[¢]
For each u € H™ (), using the Fourier expansion, we have

o0
u(z,t) = (2m) /2 Z cre*,
k=—o0
where
cr = cx(t) = (2m) ”/2/u(x t)e e dy
Q
Hence
e .
D= (2m)™2 Y illkoeget,
k=—oc0
e .
aagDﬂu = (27r)_”/2 Z ilﬂlkﬂaagckem.
k=—o0

Using Parseval equality, the strongly hyperbolic condition of L and Friedrichs in-
equality we obtain

(—D)™B(u,u)(t) = (2m)™™2 > Y aagk®kerer

h=—o0 |a|=|Bl=m

o
>ho Y [K*"erl?
k=—00
> MOHU('vt)H%{m(Q)v

hoC

where pg = —O—(mesﬂ)2 T

C is a constant depending on n only.
Case 2. We put
G:={x € Q:u(zx,t)#0}
and assume that DiamG < &, for some & > 0. Let (z°,¢) € G. than there exists

a positive constant C; which is independent of (2, ¢) such that

(3.3) CrlluC, ) Fmey < D aag(2°, t) DPuDudz.
lal=15l=m &
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On the other hand we have

Z aap(2°, t) DPuDudz

le|=8]=m ¢
= Z aup(, t) DPuDudz + Z bis(z, t) D*uDludx
la|=[8]=m g 1] +]s|<2m &
+ Z [aas(2°,t) — anp(z, t)]| DPuDudx
lel=I8]=m &
— Z bis(x, t) D*uDludx
l1]+]s|<2m &

< (=1)"B(u, u)(t) + Collu(-, ) | zm@yllul- )] gm-1(0)
+C3 max D laap(@t) = aap(@, )] ¢ l[ul, D)lI7m),
loo|=|Bl=m

where Cy and Cj are positive constants. Since a,s(,t) is continuous in z € Q
uniformly with respect to ¢ € (0, 00), for dy > 0 sufficiently small, we have

maxq Y laap(a®,t) — aaplx,t)| p < C1/2Cs.
la|=||=m

Combining this with (3.3) we get

Sl ) gy < (<1 B, u)(t) + Callul, )l my (-, ) |10y
By the interpolation inequality (see [8]) we obtain the desired inequality.

Case 3. Consider the general case. We choose a partition of unity in €,

Z Y2 = 1,4y, € C*™(Q), diam(supp)y < d,
1<h<N

where §g is chosen such that

Z |laag(x',t) — anp(x?,t)] p < C1/2C3

la|=[Bl=m

1

for |zt — 22| < 6.
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Using the partition of unity above we have

(—=1)"B(u,u)(t)= Z /Zw%awDﬂumdm

la|=|8l=m g h=1
+ Z bisD*uD'udzx

[1|+]s|<2m q
N [
=> 2: /QWWDWWMD%mew% 2:(/%prwm
h=1 |a|= [+Is]<2m
N

- / s D ) DG + Ol eyl )
h=1 |a|=I8l=m )

From the second case we have
[onue, )| Fmey <Ca Y aop D’ (Y1) D (Ynu)da+Cs | wnu(-, 1) |7 20,
la|=|8l=m o

where Cy, C5 are positive constants. Therefore we have

N
(=D)™B(u,u)(t) 2 Y (Collnul, ) Fm(gy — Crllvnul7z(g))

_C8Hu”Hm(Q HuHHm—l(Q)

62 Z/Dawhu Vda 072/ )2z — O |l eyl

h=1 \ |a|<mg h=1%

— oY Z/ Do) 2da 072/ ) 2diz—Cs [ gy 1l -1y

la|<m \h=1g h=1¢
> Y /( Do) dx) 07/\u\2dx—cguuuHm(Q T —
ol

Cs
= —Ful O Fm) — CrllulZai) — Csllullmm@)llul gm-1(0)
N ) )

where Cg, C7, Cs — const > 0.
Using arguments as in the proof at the end of Case 2, we obtain the conclusion of
the lemma. The proof is complete. ]

Theorem 3.2. (Uniqueness of genrealized solution). Assume that the coefficients
of operator L satisfy conditions of lemma 3.1 and there exists a positive constant |
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such that |daag|, |0aa|, |0t], |a| < p for 1 < |al,|8| < m and (z,t) € Qoo. Then
the problem (2.2)-(2.4) has at most generalized solution in H™(e™7; Q) for all
v > 0.

Proof- Suppose that there exists v > 0 such that the problem (2.2) -(2.4) has
two generalized u; and up belong to H™!(e™7%; Q). Putting u = u1 — ug, we

see that u € H™! (e Q) and u(z,0) = 0. Moreover, u satisfies (2.6) for any
T >0.

Define a function ¢ by

0 ifth<t<T,
t

ol 1) = /u(x,’i')d’i' if0<t<b.
b
Applying ¢ to (2.6) and noting that ¢; = u, we obtain

m

0" [ aunlD D%
(3.4) &, lallsl=1
+ > aa(D%0)P + apip)ddt + / ougrdadt = 0.
|a|=1 Q
Put

m
By (u,u)(t) = B(u,u)(t) + 2Re > | an(Du)udz.
lol=1¢
From lemma 3.1 and Cauchy’s inequality we have

(=)™ B (u,u)(t) = pullull oy = Allull?, o)

where 117 and A; are constants, 1 > 0. We denote by I the s X s unit matrix and
define apo, al by app = (—1)m)\1[ and aj = a — aqg.
From equality (3.4) we have

m m
(—1)”‘1/ Z aap(DPo) DY + Z aa(D%p)@ + a19:P | dadt
0, \lakl8/=0 lo|=1
+/(Ptt@d$dt =0.

Qp

Since an3 = (—1)|°‘|+|ﬂ|a;§a, adding this equality to its complex conjugate we
receive the following equality.
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m a
|a|+m—1 8 o
/ 5 @t@t)dm'dt—i-Re/( > (-1 57 (dapD" 0D )) dxdt

9 ol |8]=0

(3.5) Re/< i (1)a+mlagjﬂp%m)) dxdt

|exl,|8]=0

(—1)m_12Re/ ( Z ao(D% )P + a1<pt<p) dzdt = 0.

la]=1

Since 9
/aa(Do‘apt)adxdt :/a(aa(Do‘ap)a)dxdt
Qp Qp
Oag, _ o
W(Do‘ap)apdxdt— a0 (D) prdxdt
Qp Qp
and

Bi(p, ¢)(0) + (=1)" Al (-, 0) [ 7q)

m

3.6 _
6 _ Z (— )lo‘l/a sDPoDp),— de—i—QReZ/aa ©)P|e=odz,

|Oé|,|ﬂ| 0 (9] |Oé| IQ

(3.5) implies

[ o 0P e+ (0" B0 )0+ Ml 0)

+ (—1)m2Re/a1<pt¢dxdt

Q
(3.7) m olimet [ Oas 5 =
_ —1)lelTm=— el g Do
Re Z (-1) / 5 DP pD*pdxdt+
la,|8]=0 Q
ﬁaa o
1)™2Re Z ©)@ + aaDp)pr)dxdt = 0.

lee|= 1Qb

0
Put v, (z,t) = [ D%z, 7)dr for 0 < 7 < b. It is clear that
t

D%%(z,t) = vo(x,b) — vo(z) ).
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Therefore we have

(1 Bi6,0)0) + Moy 2 1 Y [ a0
la[=0¢

From (3.7) we obtain

/\aptxb\dx—i—mZ/\vaxb\dx

lo|=0
<O /\va x,t) \dedt—i—/\apt x,t)|*dxdt)
la|= OQb Q
b m
20 [(X [ lvate0)Paz)ar,
0 lal=0g

where (' and Cs are positive constants. This is equivalent to

/ (e )2+ (1 = 6Co) 3 Jvalw, b) P

Q |a|=0

< /(\apt(x,t)\2+ S Jva(e, t)[)dadt.

Qb || =0

m
Putting y(t) = [(Jee(z, t)>+ Y |va(z,t)[?)dz, we obtain y(b) < ny t)dt for
Q |a|=0
almost b € (0,55;] C (0, &). Hence from the Gronwall-Bellman 1nequallty we
have y(b) = 0 for a.e. b € (O, 3¢; |- Consequently, u(z,b) = 0 for a.e. b € [0,34].
Using the similar arguments as the above we can prove that u(x,b) = 0 for a.e.
b € [45;, &]. By the same procedure, after some steps we obtain u(z,b) = 0 for
a.e. belo, T] Since T' is arbitrary, we obtain u; = us. The proof of the theorem
is complete. u

Theorem 3.3. (The existence of generalized solution). Suppose that f €
L>(0, 00; L*(Q)) and hypothesis of theorem 3.2 are satisfied.
Then there exists vo > 0 such that for all v > ~q, problem (2.2)-(2.4) has at least
a generalized solution in H™"'(e™", Q). Moreover

[l g1 et,000) < Cllf Lo 0,00522(2))5
where C'is a positive constant which is independent of u and f.

Proof. We shall use the Galerkin’s approximate method to prove the existence
of generalized solutions.
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Let {1} C C5°(9) be an orthogonal system in L?(£2) such that its linear closure

in H™(2) coincides with H™(2). For each natural number N, we consider the

function
N
t)=> e (Or(x
k=1

where cj (t) are the solution of the system of ordinary differential equations of
second order:

/ (un+ > (=1)"aqsDPuN Do) dw + agu™ ) dz

Q laf,|3]=0
(3.8) —|—(—1)m/< Z aaDuN +a0uN>%dx
Q la=1
—/f%dx, 1=1,2,....,N
Q

with the initial conditions
d

(3.9) e (0) = dtcf,j(o) 0.
Here we use the notations agyp = (—1)™Agl, ag = a — agp and A is the constant
as in Lemma 3.1.

Since (3.8) is a 1inear system with initial condition (3.9), it has unique solution

N

cl. Moreover, dt2 € L%(0,T). Multiplying (3.8) by “ —k-, taking the sum with
respect to [ and integrating the obtained equality with respect to ¢ on (0,77 , we get

/ uttut + Z 1)mHelg, s DPu NDau )dzdt+

QO |0<| |8|=0
/ Z aoDu’Y ut + agu™Nu] )dwdt /f@dwdt.
QT | | 1 QT

Adding this equality to its complex conjugate and integrating by part we obtain

/\ut x,t)| 2dw—|—/ Z mHelg, 5z, t) Dy NDauN)dx

Q  lell8|=0
3.10) (=1 m2Re/<Z aa D*uNul + agu™Nu] )dwdt
QT =1

5 a
Re / Z 1ol Ddas ﬂ DN DauN>dxdt——2Re ful dadt.
o, Bt0 Qr
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By Lemma 3.1 we have

m

Z (=)™ Flelg5(a, t)DﬂuNDO‘uN> dx
Q lallgl=0

= (=1)"B(u", u™)(t) + Aoflu™ (-, ) Z2(q)
> ol (- )| -

Combing this with (3.10) and using the Causchy inequality yields

Hut HL2 Q) "’MOHUNHH"L Q
(V) (V)

<o / (S Do | 4 ) dact
Qp lal=1

m

+u/( > \DﬂuNHDO‘uN\)dxdt—i—Q/\fHus\dxdt
Qrp

Gy lalla=0

- 2M/Z ZelDr el dadt

m

+u/( Z \Dﬁ N|| D% N\)dmdt—i—Q/ \f\fl\ut |dxdt
(3.11) oy lalIB1=0

1
Su/( Z(E\DO‘U,N\ + eluy |?) dadt
Qp |a|=0

—|—u/HuNHHm(Q dt+61/\uiv\2dxdt+ /\f\dedt

T
1 *
= i 16 + DI ooy + (em + )

0
+—/\f\2dxdt,
€1
Qr

m
where m* = > 1, e > 0and ¢; > 0. This implies that
|a|=0
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Hui\[H%Q(Q) + MOHUNH%{"L(Q)
T

x N2 1(1+¢) N2
(312) < (em 1% +€1) / (Hut HLQ(Q) + m”’u HHm(Q))dt
0
T oo
+ a”f”L‘X’(O,oo;LQ(Q))'
Choosing € such that % = Jig, we get

1 — erpo + v/ (e1po — p)? + 4pPpom*
2ppom*

€ =

Put
In (1) = ud (2,032 + Hollu™ (@, )3 q)-
From (3.12) we have

T
N T
IN(t) < (em™p+ 61)/0 JIn(t)dt + aHfH%‘X’(O,oo;LQ(Q))'
From this and the Gronwal- Bellman inequality, we obtain

g (2, )17 2y + mollu™ (2, )|3mq)
(3.13) c .
< o exp((em"p+ €1)T) Hf”%‘”(O,oo;LQ(Q))

If pg > 1 then (3.13) implies

¢ N
g (2, )12y + 1™ (@, )| Fm ey < o expllemp+ ) DF oo 0.00122(2)

If 0 < pp < 1 then we have

¢ 5
" (2, )72y + ™ (@, O ) < 0y Cp((em pt €)1 0,002

Thus there exist a constant C' > 0 such that
lup (2, ) 1720y + 1w (2, 8) [ Fm(qy < Cexp((em*u+ e) T FII7 o (0,00:2(02))-

)T

Put vy(e1) = % Multiplying both sides of the later inequality by e~7(¢)” and

integrating with respect to ¢ € (0, c0), we have

2
1V 12 s e gy < CIE oo 0 ez
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where C' depends on g and €;. Since

(1) = V(e1po — p)? + 4P pom* + erpo — p
4/ (erpo — p)? + 4pPpom*
p(+v/T+pem*)

4po
€1 > 0 such that v > v(e;) > 9. Consequently,

> 0,

we have ingfy(el) = 79 = . Hence for all v > 79, there exists
€

(3.14) a1t (et 0y < ClF T 00,0012

where C' depends on v and jo. Thus we have shown that {u"V} is bounded in

0
H™Y(e 7 Q). By extracting further subsequence, we can assume that u” — u

weakly. Since v’ € H™! (e Q) and u(z,0) = 0 on Q, u € H™! (e Q).
It remains to show that u is a generalized solution of the problem. In fact, we
define the set My by

N
My ={p=> dpp:d € H(0,T),d(T)=0}.
=1

N
Taking any ¢ € My, we have ¢ = > dj3;. By multiplying (3.8) by d;, taking the
=1

sum with respect to [ and integratingiin t € (0,T), we obtain

m

/uﬁ@dwdt—i—(—l)m/( Z (—1)|O‘|aa5DﬁuND0‘<p
laf,B]=1
(3.15) o “r
+ Z aoD°uNG + au®N <p dxdt /fapdxdt

la]=1

Integrating by part with respective to ¢ in the first term of (3.15) yields

m m
(—1)m1 /( Z (-1)lela, s DPuNDagp + Z a0 DG + auN ) dxdt
o lehlsl=1 o] =1
- / uN @, )dxdt = / fodadt.
Qr Q
By letting N — oo, we obtain
m m
—1)m-t —Dl*lay s DPuDog + ao D*up + aup)dzdt
B
o lellsl=1 o] =1

(3.16)
+/ut¢t)dxdt: /f@dxdt.
Q

Qr
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It is noted that the set M := |J3_; My is dense in the space of functions ¢ €

H™Y(Qr), p(x, T) = 0. Therefore (3.16) is valid for all ¢ € H™!(Q7) satisfying
o(z,T) = 0. This implies that u is a generalized solution of (2.2)-(2.4). Moreover,
from (3.14) we have

2 I
HuHHnL,l(e—’yt’Qoo) < l}ﬁloréf H’UJNH?'—[m’l(E_'Yt,Qoo) < CHf”%oo(O’OO;LQ(Q)).

The proof is complete. u

4. APPLICATIONS

In this section we will apply the previous results to the study of generalized
solution existence of elasticity problems.

Let us assume that v and f be real vector functions which defined on Q) C R™.
Consider the differential operators:

-~ 0 oul
4.1 Lg D)(u) = a’* Y s=1,...
( ) ((L‘,t, )(u) jl%:l a(L'h( sh( t)axk)v S ) ,

ih . . — . . ..
where a’, are continuous real functions on  satisfying condition

ik ik h
(4'2) aih - a?w = a’jk
Put

1 0u ouyp,
4.3 esh = = (=
(4.3) sh 2(8xh 81‘8)
and
(4.4) W(z,t,e) Z asheshejk
s,h,j,k=1

Assume that W (z, ¢, e) is an elastic potential which is a positive definite quadratic
form with respect to eg,, 1 < s < h < n for every (z,t) € Q.
According to [4], for any u(z,t) satisfying u(-,t) € H*(Q) for ¢t € (0, 00) we

have
ﬁus 8uh
> [G B2 Clate Dl

s,h=1¢

where C' is a positive constant which is independent of « and ¢. From this inequality
we obtain
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n

0 Oug Ou;

ik s J 2

(45) =[S S > Clute Ol
s,h,3,k=1

where C' is a positive constant which is independent of u and ¢. It follows that the
elastic potential satisfies the inequality (3.1) with Ao = 0.
We now consider the following problem in 2.

(4.6) Ly(z,t,D)u—uy = f(x,t),s=1,2,..,n
with the initial conditions
(4.7) U == u¢ |t=0=0
and boundary condition
(4.8) uls,=0.
From Theorem 3.1, Theorem 3.2 and (4.5) we obtain the following result.

Theorem 4.1. Assume that W (x,t,e) is a positive definite quadratic form
with respect to the variable eg,, 1 < s < h < n, for all (z,t) € Qo. Assume
further the following conditions:

(i) 10alf /0t < pa, (1) € Qe
(ii) f € L°(0, 00; L*()).

Then there exists vo > 0 such that for all v > ~q problem (4.6)-(4.8) has a
unique generalized solution u(x,t) in the space H 1''(e™" Q). Moreover

ullrrre=rt 00) < Cllf Il Lo 0,00,22(02)
where C' is independent of u and f.
Now we study the differential operator of the Lame’s type
A + (X + p)grad(div)

where A is the Laplace operator, ;& > 0, A and p + A > 0. Consider the following
problem in Q.

(4.9) pAu + (A + p)grad(divu) — uy = f(x,t)

(410) u ‘tzoz Ut ‘tzoz 0
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(4.11) u g, = 0.

Putals = A+, a h—ahs—uwnhs;&h a;j’® —Owiths%janda?g:()
with jk # sh. Hence we have

2W (z,t,e) Z aheshejk
s,h,j,k=1

(4.12) = (2u+ ) Zess +)\Zessehh —|—uZeh8

h#s h+#s
—2M2635+)‘Zess +Mzehs
h#s

Since p > 0 and g+ A > 0 we can find € > 0 such that y—e > 0 and p+XA—e€ > 0.
Hence (4.12) implies

2w xte—QGZess—i—Q —€ Zess—i—)\Zess —|—uZeh8

h#s
n

(4.13) > 262(388 +uZehs (=D ess)? +)\(Zess)2

h;és s=1 s=1

n
_262688+/’Lzeh8 - _€)+)\)(Zess)2

h#s s=1

This implies that b
n

(4.14) Wz, t,e) > o Z 2,

s,h=1

where g is a positive constant. Therefore system (4.9) satisfies conditions of
Theorem 3.1 and Theorem 3.2, where we can choose pp = 0. From Theorem 3.1
and Theorem 3.2 we obtain

Theorem 4.2. Let f be a function which belongs to L™ (0, co; L2(Q2)). Then
for each € > 0 problem (4.9)-(4.11) has a unique generalized solution u = u(x,t)
in HY (e~ Q). Moreover,

HuHHLl(e_et,Qoo) < CHf”L‘X’(O,oo;LQ(Q))v

where C' is a positive constant which is independent of u and t.
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