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q-GENERALIZATIONS OF THE PICARD
AND GAUSS-WEIERSTRASS SINGULAR INTEGRALS

Ali Aral and Sorin G. Gal

Abstract. Introducing a higher order modulus of smoothness based on q-
integers, in this paper first we obtain Jackson-type estimates in approximation
by Jackson-type generalizations of the q-Picard and q-Gauss-Weierstrass sin-
gular integrals and give their global smoothness preservation property with
respect to the uniform norm. Then, we study approximation and geometric
properties of the complex variants for these q -singular integrals attached to an-
alytic functions in compact disks. Finally, we prove approximation properties
of these q-singular integrals attached to vector-valued functions.

1. INTRODUCTION

First we present some well known definitions and formulas for the q− calculus
used throughout the paper.

For q > 0, the q-real [λ]q, where λ is any real number, is defined

[λ]q :=


1 − qλ

1 − q
, q �= 1

λ, q = 1
and [0]q := 0.

If λ is an integer, i.e. λ = n for some n, we write [n]q and call it q−integer. Also,
the q−factorial is defined as

[n]q! :=

{
[n]q [n − 1]q · · · [1]q , n = 1, 2, ...

1 , n = 0
.
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The q−binomial coefficients are given by[
n
k

]
q

=
[n]q!

[k]q! [n − k]q!
.

for integers 0 ≤ k ≤ n, and as zero otherwise. Also, the q−binomial coefficients
satisfy the following Pascal-type relation

(1.1)
[

n

k

]
q

= qn−k

[
n − 1
k − 1

]
q

+
[

n − 1
k

]
q

.

The q−extension of exponential function ex is

(1.2) Eq (x) :=
∞∑

n=0

q
n(n−1)

2

(q; q)n

xn = (−x; q)∞ ,

where (a; q)n = Πn−1
k=0

(
1 − aqk

)
and (−x; q)∞ = Π∞

k=0

(
1 + xqk

)
.

Furthermore, the q-binomial expansion is defined as

(1.3) Πn−1
k=0

(
1 + qkx

)
= (−x; q)n =

n∑
k=0

qk(k−1)/2

[
n

k

]
q

xk

More details on these can be found in [16] and [15].
The following two integrals will play an important role throughout the paper. For

0 < q < 1, the first integral ,called the q−extension of Euler integral representation
for the gamma function given in [13] and [2] that we use to define the q−Picard
singular integral, is

(1.4) cq (x) Γq (x) =
1 − q

ln q−1
q

x(x−1)
2

∫ ∞

0

tx−1

Eq ((1 − q) t)
dt , Rx > 0

where Γq (x) is the q−gamma function defined by

Γq (x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x , 0 < q < 1

and cq (x) satisfies the following conditions: cq (x + 1) = cq (x), cq (n) = 1, n =
0, 1, 2, ... and lim

q→1−
cq (x) = 1.

When x = n + 1 with n a non-negative integer, we obtain

(1.5) Γq (n + 1) = [n]q!.
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The second integral that we use to define the q−Gauss-Weierstrass singular integral
is given in [14], by

(1.6)
∫ ∞

−∞

t2k

Eq (t2)
dt = π

(
q1/2; q

)
1/2

q−
k2

2

(
q1/2; q

)
k
, k = 0, 1, 2...

where we have (a; q)α = (a; q)∞ / (aqα; q)∞, for any α ∈ R.
In [9], the first author generalizes the Picard and Gauss-Weierstrass singular

integrals, to the so-called q-Picard and q -Gauss-Weierstrass singular integrals. In
this paper, first we introduce q-Jackson type generalizations of these q-Picard and
q-Gauss-Weierstrass singular integrals and obtain Jackson type error estimate in
approximation and global smoothness preservation properties with respect to a rth
q-uniform moduli of smoothness.

These results generalize and improve some results for classical Picard and Gauss-
Weierstrass singular integrals and their Jackson type generalization in [3], [4], [5]
and [17].

Then, we consider the complex versions of these q-singular integrals and study
their approximation and geometric properties in the unit disk. The last section deals
with approximation properties of these q-singular integrals attached to vector-valued
functions.

2. q-JACKSON TYPE GENERALIZATION

First we give the q analogous of the rth-modulus of smoothness of f as it is
defined in e.g. [17].

Definition 1. For f ∈ C (R) , r ∈ N and q ∈ (0, 1) we introduce the following
rth order q-moduli of smoothness of f defined by

ωr,q (f ; t) = sup{∣∣∆r
q,hf (x)

∣∣ ; x, x + [r]q h ∈ R, 0 ≤ h ≤ t},

where

∆r
q,hf (x) =

r∑
k=0

(−1)r−k q(r−k)(r−k−1)/2

[
r

k

]
q

f
(
x + [k]q h

)
.

The modulus ω1,q (f ; t) is denoted by ω (f ; t) as in classical case.

Note that for q = 1 one reduces to the classical rth order moduli of smoothness
defined as in e.g. [17] and [4, Chapter 2 ].

Reasoning as in the classical case (see e.g. [1]), we easily get
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Lemma 1. For f ∈ C (R) we have ωr,q (f ; γt) ≤ (γ + 1)r ωr,q (f ; t).

Definition 2. Let f : R → R. For λ > 0, r ∈ N
⋃{0} and 0 < q < 1, the q-

Jackson type generalization of q-Picard and q-Gauss-Weierstrass singular integrals
of f are

Prλ (f ; q, x) ≡ Prλ (f ; x) :=

− (1 − q)
2 [λ]q ln q−1

r+1∑
k=1

(−1)k
q(r−k+1)(r−k)/2

q(r+1)r/2

[
r + 1

k

]
q

∫ ∞

−∞

f
(
x + [k]q t

)
Eq

(
(1−q)|t|

[λ]q

) dt

and

Wrλ (f ; q, x) ≡ Wrλ (f ; x) := − 1

π
√

[λ]q
(
q1/2; q

)
1/2

·

r+1∑
k=1

(−1)k q(r−k+1)(r−k)/2

q(r+1)r/2

[
r + 1

k

]
q

∫ ∞

−∞

f
(
x + [k]q t

)
Eq

(
t2

[λ]q

) dt.

Note that for q = 1, the above definition one reduces to the classical Jackson-
type generalization of Picard and Gauss-Weierstrass singular integrals of f defined
in [17] and [4, Chapter 16], while for r = 0 we get the q singular integrals defined
in [9].

Next we give approximation results with rates and global smoothness preserva-
tion properties.

Theorem 1. If f ∈ C (R) , r ∈ N
⋃{0} and 0 < q < 1, then we have

|f (x) − Prλ (f ; q, x)| ≤ ωr+1,q

(
f ; [λ]q

) 1
q(r+1)r/2

r+1∑
k=0

(
r + 1

k

) [k]q!

q
k(k+1)

2

and∣∣f (x)− W(2r−1)λ (f ; q, x)
∣∣ ≤ ω2r,q

(
f ;
√

[λ]q
)

22r−1

(
1 + q−

r2

2

(
q1/2; q

)
r

)
.

Proof. Since (1−q)
2[λ]q ln q−1

∞∫
−∞

1

Eq

(
(1−q)|t|

[λ]q

)dt = 1, we can write

|f (x) − Prλ (f ; q, x)| ≤ (1 − q)
2 [λ]q ln q−1

1
q(r+1)r/2

∫ ∞

−∞

ωr+1,q (f ; |t|)
Eq

(
(1−q)|t|

[λ]q

) dt.
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By the properties of the modulus of smoothness of a function given in Lemma 1,
(1.4) and (1.5), we get

|f (x) − Prλ (f ; q, x)|

≤ ωr+1,q

(
f ; [λ]q

) (1 − q)
[λ]q ln q−1

1
q(r+1)r/2

∫ ∞

0

(
1 + t/ [λ]q

)r+1

Eq

(
(1−q)t
[λ]q

) dt

= ωr+1,q

(
f ; [λ]q

) 1
q(r+1)r/2

r+1∑
k=0

(
r + 1

k

) [k]q!

q
k(k+1)

2

.

Theorem 2. Let f ∈ C (R) , with ωr,q (f ; δ) < ∞ for r ∈ N
⋃{0}, q ∈ (0, 1)

and any δ > 0. We have

ωr,q (Prλf ; δ) ≤ q−(r+1)r/2
(
(−1, q)r+1 − 1

)
ωr,q (f ; δ)

and
ωr,q (Wrλf ; δ) ≤ q−(r+1)r/2

(
(−1, q)r+1 − 1

)
ωr,q (f ; δ) .

Proof. We have for each 0 ≤ h ≤ δ

∆r
q,h (Prλf) (x) = − (1 − q)

2 [λ]q ln q−1
·

r+1∑
k=1

(−1)r−k+1 q(r−k+1)(r−k)/2

q(r+1)r/2

[
r + 1

k

]
q

∫ ∞

−∞

∆r
q,hf

(
x + [k]q t

)
Eq

(
(1−q)|t|

[λ]q

) dt.

By (1.3), we have desired result. The proof in the case of Wrλ (f ; x) is similar.

3. COMPLEX Q-PICARD AND Q-GAUSS-WEIERSTRASS INTEGRALS

In this section we extend the results in the case of classical complex Picard and
Gauss-Weierstrass singular integrals proved in [6], [7], to their q-analogues.

Let us consider the open disk of radius R > 0, DR = {z ∈ C; |z| < R},
A(DR) = {f : DR → C; f is analytic on DR, continuous on DR} and A∗(DR) =
{f ∈ A(DR); f(0) = 0, f ′(0) = 1}. Therefore, if f ∈ A∗(DR) then we have

f(z) = z +
∞∑

k=2

akzk for all z ∈ DR.
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For f ∈ A(DR), λ ∈ R, λ > 0, 0 < q < 1, r ∈ N
⋃{0} and z ∈ DR, let us

define the q-complex singular integrals

Prλ (f ; q, z) ≡ Prλ (f ; z) :=

− (1 − q)
2 [λ]q ln q−1

r+1∑
k=1

(−1)k q(r−k+1)(r−k)/2

q(r+1)r/2

[
r + 1

k

]
q

∫ ∞

−∞

f
(
zei[k]qt

)
Eq

(
(1−q)|t|

[λ]q

)dt

and

Wrλ (f ; q, z) ≡ Wrλ (f ; z) := − 1

π
√

[λ]q
(
q1/2; q

)
1/2

·

r+1∑
k=1

(−1)k q(r−k+1)(r−k)/2

q(r+1)r/2

[
r + 1

k

]
q

∫ ∞

−∞

f
(
zei[k]qt

)
Eq

(
t2

[λ]q

) dt.

called as the complex q- Jackson type generalization of the q-Picard and q-Gauss-
Weierstrass singular integrals, respectively. For r = 0 we denote these singular
integrals by Pλ (f ; q, z) ≡ Pλ (f ; z) and Wλ (f ; q, z) ≡ Wλ (f ; z), respectively.

First we present the approximation properties.

Theorem 3. Let f ∈ A∗(DR), i.e. f(z) =
∑∞

k=0 akzk, z ∈ DR with a0 =
0, a1 = 1 and λ > 0, 0 < q < 1. We have :

(i) Pλ(f ; q, z) := Pλ(f ; z) is continuous in DR, analytic in DR so that

Pλ(f ; z) =
∞∑

k=0

akck(λ, q)zk, z ∈ DR, Pλ(f ; 0) = 0 and

ck(λ, q) =
(1 − q)

[λ]q ln q−1

∞∫
0

cos(ku)

Eq

(
(1−q)u

[λ]q

)du, k = 0, 1, ...

Also, there exists q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1) we have c 1(λ, q) > 0
and if we choose qλ such that 0 < qλ < 1 and qλ → 1 as λ → 0, then we
have limλ→0c1(λ, qλ) = 1 ;

(ii) |Pλ(f ; z)− f(z)| ≤ (R + 1)(1 + 1
q )ω1(f ; [λ]q)DR

, for all z ∈ DR, where

ω1(f ; δ)DR
= sup{|f(z1) − f(z2)|; z1, z2 ∈ DR, |z1 − z2| ≤ δ}.

Proof. (i) Let z0, zn ∈ DR be with lim
n→∞ zn = z0. Since |eiu| = 1, we get

|Pλ(f ; zn) − Pλ(f ; z0)| ≤
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(1 − q)
2 [λ]q ln q−1

∫ +∞

−∞
|f(zneiu) − f(z0e

iu)| · 1

Eq

(
(1−q)|u|

[λ]q

) du

≤ (1 − q)
2 [λ]q ln q−1

∫ +∞

−∞
ω1(f ; |zn − z0|)DR

· 1

Eq

(
(1−q)|u|

[λ]q

) du = ω1(f ; |zn − z0|)DR
.

Passing to limit with n → ∞, it follows that Pλ(f ; z) is continuous at z0 ∈ DR,
since f is continuous on DR. It remains to prove that Pλ(f ; z) is analytic in DR.

For f ∈ A∗(DR), we can write f(z) =
∞∑

k=0

akzk, z ∈ DR. For fixed z ∈ DR,

we get f(zeiu) =
∞∑

k=0

ake
ikuzk and since |ake

iku| = |ak|, for all u ∈ R and the

series
∞∑

k=0

akzk is absolutely convergent, it follows that the series
∞∑

k=0

ake
ikuzk is

uniformly convergent with respect to u ∈ R. This immediately implies that the
series can be integrated term by term, i.e.

Pλ(f ; z) =
(1 − q)

2 [λ]q ln q−1

∞∑
k=0

akzk

∫ ∞

−∞
eiku · 1

Eq

(
(1−q)|u|

[λ]q

) du


=

∞∑
k=0

akck(λ, q)zk, where ck(λ, q) =
(1 − q)

[λ]q ln q−1

∞∫
0

cos(ku)

Eq

(
(1−q)u

[λ]q

)du.

Since a0 = 0, we get Pλ(f ; 0) = 0.
Then we have

c1(λ, q) =
(1− q)

[λ]q ln q−1

∫ ∞

0

cos(u)

Eq

(
(1−q)u

[λ]q

)du =
(1 − q)
ln q−1

∫ ∞

0

cos([λ]q u)
Eq ((1− q)u)

du.

Now, if we choose qλ → 1 as λ → 0, then we get [λ]qλ
→ 0 (see [9]). Since

lim
q→1−

Eq ((1 − q) t) = et (see [16, p. 9, (1.3.16)]) and limq→1− [λ]q = λ, by

Lebesgue’s Dominated Convergence theorem, we obtain

limλ→0c1(λ, qλ) =

∞∫
0

e−tdu = 1 and

lim
q→1−

c1(λ, q) =
∫ ∞

0

cos(λu)
eu

du > ( by e.g. [6, p.4]) > 0.

Thus, there exists q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1) we have c1(λ, q) > 0.
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(ii) By the Maximum Modulus Principle, it suffices to take |z| = R. Since
|eiu − 1| ≤ 2|sinu

2 | ≤ |u| for all u ∈ R, we easily get

|Pλ(f ; z)− f(z)|

≤ (1 − q)
2 [λ]q ln q−1

∫ ∞

−∞
ω1(f ; |zeiu − z|)DR

· 1

Eq

(
(1−q)|u|

[λ]q

) du

≤ (1 − q)
2 [λ]q ln q−1

∫ ∞

−∞
ω1(f ; R|u|)DR

· 1

Eq

(
(1−q)|u|

[λ]q

) du

≤ ω1(f ; [λ]q)DR
(R + 1)

(1 − q)
2 [λ]q ln q−1

∫ ∞

−∞

(
1 +

|u|
[λ]q

)
· 1

Eq

(
(1−q)|u|

[λ]q

) du

≤ ( by [9]) ≤ (R + 1)
(

1 +
1
q

)
ω1(f ; [λ]q)DR

.

Theorem 4.

(i) If f(z) =
∞∑

k=0

akz
k is analytic in DR, then for all λ > 0, 0 < q < 1,

Wλ(f ; q, z) := Wλ(f ; z) is analytic in DR and we have in DR

Wλ(f ; z) =
∞∑

k=0

akdk(λ, q)zk,

where
dk(λ, q) =

2

π
√

[λ]q
(
q1/2; q

)
1/2

∫ ∞

0

cos(ku)

Eq

(
u2

[λ]q

) du.

Also, there exists q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1) we have d 1(λ, q) > 0
and if we choose qλ such that 0 < qλ < 1 and qλ → 1 as λ → 0, then we
have limλ→0d1(λ, qλ) = 1.
In addition, if f is continuous on D R then Wλ(f ; z) is continuous on DR.

(ii) |Wλ(f ; z)− f(z)| ≤ (R + 1)
(

1 +
√

q−1/2(1− q1/2)
)

ω1

(
f ;
√

[λ]q

)
DR

,

for all z ∈ DR.

Proof.
(i) Reasoning as for the Pλ(f) operator, we easily deduce

Wλ(f ; z) =
1

π
√

[λ]q
(
q1/2; q

)
1/2

∫ +∞

−∞

∞∑
k=0

akz
keiuk · 1

Eq

(
u2

[λ]q

) du
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=
∞∑

k=0

akdk(λ, q)zk, where dk(λ, q)=
2

π
√

[λ]q
(
q1/2; q

)
1/2

∫ +∞

0

cos(ku)

Eq

(
u2

[λ]q

) .

Similar results with those for c1(λ, q) (in Theorem 3), can be obtained for
d1(λ, q) too. Indeed, if we choose qλ such that 0 < qλ < 1 and qλ → 1 as
λ → 0, then from Lebesgue’s Dominated Convergence theorem, we get

lim
λ→0

d1(λ, qλ) = limλ→0
2

π
√

[λ]q
(
q1/2; q

)
1/2

∫ ∞

0

cos(u)

Eq

(
u2

[λ]q

) du

= lim
λ→0

2
π
(
q1/2; q

)
1/2

∫ ∞

0

cos(
√

[λ]qu)

Eq (u2)
du = ( see e.g. [2, p.132]) = 1

Similarly we can see that limq→1− d1(λ, q) > 0, which implies that there
exists q̂ ∈ (0, 1) such that for all q ∈ (q̂, 1) we have d1(λ, q) > 0.

The proof of continuity of Wλ(f ; z) is similar to that for Pλ(f ; z).
(ii) Reasoning as in the case of Pλ(f ; z), we can write

|Wλ(f ; z)− f(z)|

≤ 1

π
√

[λ]q
(
q1/2; q

)
1/2

∫ +∞

−∞
|f(ze−iu)− f(z)| 1

Eq

(
u2

[λ]q

) du

≤ ω1(f ;
√

[λ]q)DR
(R + 1)

1

π
√

[λ]q
(
q1/2; q

)
1/2∫ +∞

−∞

(
1 +

|u|√
[λ]q

)
1

Eq

(
u2

[λ]q

) du

≤ ( see [9]) ≤ (R + 1)
(

1 +
√

q−1/2(1− q1/2)
)

ω1

(
f ;
√

[λ]q

)
DR

.

Theorem 5. For R > 0, z ∈ DR, λ ∈ (0, 1], 0 < q < 1 and r ∈ N, we have

|Prλ(f ; z)− f(z)| ≤ 1
q(r+1)r/2

r+1∑
k=0

(
r + 1

k

) [k]q!

q
k(k+1)

2

ωr+1,q (f ; [λ]q)∂DR
,

|W(2r−1)λ(f ; z)− f(z)| ≤ 22r−1

(
1 + q−

r2

2

(
q1/2; q

)
r

)
ω2r,q

(
f ;
√

[λ]q

)
∂DR

,

where
ωr,q(f ; δ)∂DR

= sup
{|∆r

uf(Reix)|; |x| ≤ π, |u| ≤ δ
}
.
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Proof. Let z ∈ DR, |z| = R be fixed. Because of the Maximum Modulus
Principle, it suffices to estimate |Prλ(f ; z) − f(z)|, for this |z| = R, z = Reix.
Reasoning now exactly as in the proof of Theorem 3, we get

f(z) − Prλ(f ; z) =
(1 − q)

2 [λ]q ln q−1

(−1)r+1

q(r+1)r/2

∫ ∞

−∞

∆r+1
q,t f

(
Reix

)
Eq

(
(1−q)|t|

[λ]q

) dt,

which implies

|f(z) − Prλ(f ; z)| ≤ (1 − q)
2 [λ]q ln q−1

1
q(r+1)r/2

∫ ∞

−∞

ωr+1,q (f ; |t|)∂DR

Eq

(
(1−q)|t|

[λ]q

) dt

≤ ωr+1,q

(
f ; [λ]q

)
∂DR

1
q(r+1)r/2

r+1∑
k=0

(
r + 1

k

) [k]q!

q
k(k+1)

2

.

The proof in the case of W(2r−1)λ(f ; z) is similar.

The geometric properties are consequences of Theorems 3 and 4 and are ex-
pressed by the following.

Theorem 6. Let us suppose that G ⊂ C is open, such that D 1 ⊂ G and
f : G → C is analytic in G. Denote by (Bλ(f)(z))λ>0 any from (Pλ(f ; q, z))λ>0,
(Wλ(f ; q, z))λ>0, where we choose q := qλ such that 0 < qλ < 1 and qλ → 1 as
λ → 0.

(i) If f is univalent in D1, then there exists λ0 > 0 sufficiently small (depending
on f ), such that for all λ ∈ (0, λ0), Bλ(f)(z) are univalent in D1.

(ii) Let γ ∈ (−π/2, π/2). If f(0) = f ′(0) − 1 = 0 (and f(z) �= 0, for all
z ∈ D1 \ {0} in the case of spirallikeness of order γ) and f is starlike
(convex, spirallike of order γ , respectively) in D1, that is for all z ∈ D1

Re

(
zf ′(z)
f(z)

)
> 0

(
Re

(
zf ′′(z)
f ′(z)

)
+ 1 > 0, Re

(
eiγ zf ′(z)

f(z)

)
> 0, resp.

)
,

then there exists λ0 > 0 sufficiently small (depending on f , and on f and
γ in the case of spirallikeness), such that for all λ ∈ (0, λ 0), Bλ(f)(z) are
starlike (convex, spirallike of order γ , respectively) in D1.
If f(0) = f ′(0) − 1 = 0 (and f(z) �= 0, for all z ∈ D1 \ {0} in the case
of spirallikeness of order γ) and f is starlike (convex, spirallike of order γ ,
respectively) only in D1 (that is the corresponding inequalities hold only in
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D1), then for any disk of radius 0 < ρ < 1 and center 0 denoted byD ρ , there
exists λ0 > 0 sufficiently small (depending on f and D ρ, and in addition on
γ for spirallikeness), such that for all λ ∈ (0, λ 0), Bλ(f)(z) are starlike
(convex, spirallike of order γ , respectively) in Dρ (that is, the corresponding
inequalities hold in Dρ).

Proof. (i) Reasoning as in [9, Theorem 2.3], we get uniform convergence (as
λ → 0) in Theorems 3 and 4, which together with a well-known results concerning
sequences of analytic functions converging locally uniformly to an univalent function
(see e.g. [20], p. 130, Theorem 4.1.17) implies the univalence of Bλ(f)(z) for
sufficiently small λ.

For the proof of the conclusions in (ii), let us make some general useful consid-
erations. By Theorems 3 and 4 (reasoning again as in [9, Theorem 2.3]), it follows
that for λ → 0, we have Bλ(f)(z) → f(z), uniformly in any compact disk in-
cluded in G. By the well-known Weierstrass’ result (see e.g. [20], p. 18, Theorem
1.1.6), this implies that B ′

λ(f)(z) → f ′(z) and B′′
λ(f)(z) → f ′′(z), uniformly in

any compact disk in G and therefore in D1 too, when λ → 0. In all what follows,
denote Pλ(f)(z) = Bλ(f)(z)

b1(λ,qλ) , where b1(λ, qλ) > 0 (for λ sufficiently small) is the
coefficient of z in the Taylor series representing the analytic function Bλ(f)(z).

If f(0) = f ′(0)− 1 = 0, then we get Pλ(f)(0) = f(0)
b1(λ,qλ) = 0 and P ′

λ(f)(0) =
B′

λ(f)(0)

b1(λ,qλ) = 1. Also, if f(0) = 0 and f ′(0) = 1, then b1(λ, qλ) converges to f′(0) =
1 as λ → 0, which obviously implies that for λ → 0, we have Pλ(f)(z) → f(z),
P ′

λ(f)(z) → f ′(z) and P ′′
λ (f)(z) → f ′′(z), uniformly in D1.

(ii) Suppose first that f is starlike in D1. By hypothesis we get |f(z)| > 0 for
all z ∈ D1 with z �= 0, which from the univalence of f in D1, implies that we can
write f(z) = zg(z), with g(z) �= 0, for all z ∈ D1, where g is analytic in D1 and
continuous in D1.

Write Pλ(f)(z) in the form Pλ(f)(z) = zQλ(f)(z). For |z| = 1 we have

|f(z)− Pλ(f)(z)|=|z| · |g(z)− Qλ(f)(z)|=|g(z)− Qλ(f)(z)|,
which by the uniform convergence in D1 of Pλ(f) to f and by the maximum
modulus principle, implies the uniform convergence in D1 of Qλ(f)(z) to g(z), as
λ → 0.

Since g is continuous in D1 and |g(z)| > 0 for all z ∈ D1, there exist an index
λ0 > 0 and a > 0 depending on g, such that |Qλ(f)(z)| > a > 0, for all z ∈ D1

and all λ ∈ (0, λ0). Also, for all |z| = 1, we have

|f ′(z) − P ′
λ(f)(z)| = |z[g′(z) − Q′

λ(f)(z)] + [g(z)− Qλ(f)(z)]|
≥ | |z| · |g′(z)− Q′

λ(f)(z)| − |g(z)− Qλ(f)(z)| |
= | |g′(z) − Q′

λ(f)(z)| − |g(z)− Qλ(f)(z)| |,
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which from the maximum modulus principle, the uniform convergence of P′
λ(f) to

f ′ and of Qλ(f) to g, evidently implies the uniform convergence of Q′
λ(f) to g′,

as λ → 0. Then, for |z| = 1, we get

zP ′
λ(f)(z)
Pλ(f)

=
z[zQ′

λ(f)(z) + Qλ(f)(z)]
zQλ(f)(z)

=
zQ′

λ(f)(z) + Qλ(f)(z)
Qλ(f)(z)

→ zg′(z) + g(z)
g(z)

=
f ′(z)
g(z)

=
zf ′(z)
f(z)

,

which again from the maximum modulus principle, implies

zP ′
λ(f)(z)
Pλ(f)

→ zf ′(z)
f(z)

, uniformly in D1.

Since Re
(

zf ′(z)
f(z)

)
is continuous in D1, there exists α ∈ (0, 1), such that

Re

(
zf ′(z)
f(z)

)
≥ α, for all z ∈ D1.

Therefore
Re

[
zP ′

λ(f)(z)
Pλ(f)(z)

]
→ Re

[
zf ′(z)
f(z)

]
≥ α > 0

uniformly on D1, i.e. for any 0 < β < α, there is λ0 > 0 such that for all
λ ∈ (0, λ0) we have

Re

[
zP ′

λ(f)(z)
Pλ(f)(z)

]
> β > 0, for all z ∈ D1.

Since Pλ(f)(z) differs from Bλ(f)(z) only by a constant, this proves the starlikeness
in D1.

If f is supposed to be starlike only in D1, the proof is identical, with the only
difference that instead of D1, we reason for Dρ.

The proofs in the cases when f is convex or spirallike of order γ are similar
and follows from the following uniform convergences (on D1 or on Dρ)

Re

[
zP ′′

λ (f)(z)
P ′

λ(f)(z)

]
+ 1 → Re

[
zf ′′(z)
f ′(z)

]
+ 1.

and
Re

[
eiγ zP ′

nλ(f)(z)
Pλ(f)(z)

]
→ Re

[
eiγ zf ′(z)

f(z)

]
,

The proof is complete.
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Remark 1. By using Theorem 5 and reasoning as above, it is not difficult to
prove that the geometric properties in Theorem 6 remain valid for Prλ(f ; z) and
Wrλ(f ; z) too.

4. q-SINGULAR INTEGRALS ATTACHED TO VECTOR VALUED FUNCTIONS

In this section we extend some of the above results to vector-valued functions.
Note that the case of classical singular integrals attached to vector valued functions
was considered in [7].

If (X, ‖·‖) is a complex Banach space andR > 0, let us denote byA(DR; X) the
space of all functions f : DR → X , which are continuous in DR and holomorphic
in DR. Recall that according to e.g. [19], p. 97), any f ∈ A(DR; X) has the
Taylor expansion

f(z) =
∞∑

n=0

f (n)(0)
n!

zn, z ∈ DR,

where the series converges uniformly on any compact subset of DR.

We will use the following well-known result in Functional Analysis.

Theorem 7. Let (X, ‖ · ‖) be a normed space over R of C and denote by
X∗ the conjugate of X . Then ‖x‖ = sup{|x∗(x)|; x∗ ∈ X∗, |||x∗||| ≤ 1}, for all
x ∈ X , where ||| · ||| represents the usual norm in the dual space X ∗.

Now we are in position to prove our result. We present

Theorem 8. Let f ∈ A(DR; X), (X, ‖ · ‖) a complex normed space. If for
λ > 0, 0 < q < 1, we consider the operators

Pλ (f ; q, z) ≡ Pλ (f ; z) :=
(1 − q)

2 [λ]q ln q−1

∞∫
−∞

f
(
zeit
)

Eq

(
(1−q)|t|

[λ]q

)dt,

Wλ (f ; q, z) ≡ Wλ (f ; z) :=
1

π
√

[λ]q
(
q1/2; q

)
1/2

∞∫
−∞

f
(
zeit
)

Eq

(
t2

[λ]q

)dt,

then we have

||Pλ(f ; z)− f(z)|| ≤ (R + 1)(1 +
1
q
)ω1(f ; [λ]q)DR

,

||Wλ(f ; z)− f(z)|| ≤ (R + 1)
(

1 +
√

q−1/2(1− q1/2)
)

ω1

(
f ;
√

[λ]q

)
DR

,
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for all z ∈ DR, where ω1(f ; δ)DR
= sup{||f(z1)−f(z2)||; z1, z2 ∈ DR, |z1−z2| ≤

δ}.

Proof. Let x∗ ∈ B1 and define g(z) = x∗[f(z)], g : DR → C. By Theorem 3
we have |Pλ(g; z)− g(z)| ≤ 2(1 + 1

q )ω1(g; [λ]q)DR
, for all z ∈ DR, where

ω1(g; δ)DR
= sup{|x∗[f(z1)− f(z2)]|; z1, z2 ∈ DR, |z1 − z2| ≤ δ}

≤ sup{||f(z1) − f(z2)||; z1, z2 ∈ DR, |z1 − z2| ≤ δ} = ω1(f ; δ)DR
.

Therefore, we obtain |x∗[Pλ(f ; z)−f(z)]| ≤ 2(1+ 1
q )ω1(f ; [λ]q)DR

, for all x∗ ∈ B1,
and passing here to supremum, according to Theorem 7 it follows the required
estimate. The proof in the case of Wλ(f ; z) is similar.

Remark 2. By using the method in the proof of Theorem 8, analogous results
can easily be proved for Prλ(f ; z) and Wrλ(f ; z).
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5. G. A. Anastassiou and S. G. Gal, Convergence of generalized singular integrals to
the unit, univariate case, Math. Inequalities and Applications, 3(4) (2000), 511-518.

6. G. A. Anastassiou and S. G. Gal, Geometric and approximation properties of some
singular integrals in the unit disk, J. Ineq. Appl., 2006, Article ID 17231, 19 pages.

7. G. A. Anastassiou and S. G. Gal, Geometric and approximation properties of gen-
eralized singular integrals in the unit disk, J. Korean Math. Soc., 43(2) (2006),
425-443.



q-Picard and q-Gauss-Weierstrass Singular Integrals 2515

8. G. A. Anastassiou, Quantitative Approximations, Chapman and Hall/CRC, Boca Ra-
ton, FL, 2001.

9. A. Aral, On the generalized Picard and Gauss Weierstrass singular Integrals, J. Comp.
Anal. and Appl., 8(3)(2006), 246-261.

10. A. Aral, q−derivative and applications to the q−Sz ász Mirakyan Operators, Calcolo,
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