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WEAK AND STRONG CONVERGENCE FOR SOME OF
NONEXPANSIVE MAPPINGS

Alireza Medghalchi and Shahram Saeidi*

Abstract. In this paper, we deal with a class of nonexpansive mappings with
the property D(coF 1

n
(T ), F (T )) → 0, as n → ∞, where D is the Hausdorff

metric. We show that nonexpansive mappings with compact domains enjoy this
property and give some examples of this kind of mappings with noncompact
domains in l∞. Then we prove a nonlinear ergodic theorem, and a convergence
theorem of mann’s type for this kind of mappings.

1. INTRODUCTION

The first nonlinear ergodic theorem for nonexpansive mappings with bounded
domains in a Hilbert space was established by Baillon [5]: Let C be a nonempty
closed convex subset of a Hilbert spaceH and let T be a nonexpansivemapping of C
into itself. If the set F (T ) of fixed points of T is nonempty, then for each x ∈ C, the
Cesaro means Sn(x) = 1

n

∑n
k=0 T kx converge weakly to some y ∈ F (T ). Bruck

[7] extended Baillon’s theorem to a uniformly convex Banach space whose norm is
Frechet differentiable. Before that, Edeleshtein [9] had obtained a nonlinear strong
ergodic theorem for nonexpansive mappings with compact domains in a Banach
space. Atsushiba and Takahashi [2] improved the Edelestein’s theorem: Let C be
a nonempty compact convex subset of a strictly convex Banach space and let T be
a nonexpansive mapping of C into itself. Then for each x ∈ C, the Cesaro means
Sn(x) = 1

n

∑n
k=0 T k+hx converge strongly to some y ∈ F (T ), uniformly in h.

The first purpose of this paper is to prove a nonlinear ergodic theorem for a
specific class of nonexpansive mappings from a nonempty closed convex subset of
a Bananch space into itself, which extends the Atsushiba and Takahashi’s theorem.
Our second goal is to prove a strong convergence theorem of mann’s type [11] for
this specific class of mappings.
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2. PRELIMINARIES

Let E be a real Banach space and let C be a nonempty closed convex subset
of E . A mapping T : C → C is said to be nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖
for each x, y ∈ C. We denote by Fε(T ) the ε-approximate fixed points of T ; i.e.
Fε(T ) = {x ∈ C : ‖x − Tx‖ ≤ ε}. If C is bounded, then Fε(T ) �= ∅ for each
ε > 0 (see [6]). A Banach space E is said to be strictly convex if ‖ x+y

2 ‖ < 1
for x, y ∈ E with ‖x‖ = ‖y‖ = 1 and x �= y. Let E∗ be the topological dual of
E . The value of x∗ ∈ E∗ at x ∈ E will be denoted by x∗(x). The open ball of
radius r centered at 0 is denoted by Br . For a subset A of E , we denote by coA
and Ā the closed convex hull and the closure of A, respectively. The distance from
x to A is denoted by dist(x, A). We denote by Γ the set of all strictly increasing,
continuous convex functions γ : R+ → R+ with γ(0) = 0. For each γ ∈ Γ, a
mapping T : C → C is said to be of type (γ), if for every x, y ∈ C and λ ∈ [0, 1],
γ (‖λTx+ (1− λ)Ty − T (λx+ (1− λ)y)‖) ≤ ‖x− y‖ − ‖Tx− Ty‖. Obviously,
if T is of type (γ) for some γ ∈ Γ, then T is nonexpansive and F (T ) is a convex
set. Moreover if C is also weakly compact, then F (T ) �= ∅ (see [10]). If C is
compact and E is a strictly convex Banach space, then every nonexpansive mapping
T : C → C is of type (γ) (see [2, 7]).

3. CONVERGENCE TO THE FIXED POINT SET

First, we prove a lemma which we need in the following.

Lemma 3.1. Let E be a locally convex space and A1 ⊇ A2 ⊇ · · · ⊇ An ⊇
· · · be a decreasing sequence of nonempty compact subsets. Then co(

∞⋂
i=1

Ai) =
∞⋂
i=1

(coAi).

Proof. Obviously co(
⋂∞

i=1Ai) ⊆ ⋂∞
i=1(coAi). Let a ∈ ⋂∞

i=1(coAi) and
a �∈ co(

⋂∞
i=1Ai). Since

⋂∞
i=1 Ai �= ∅, there exist ϕ ∈ E∗, r ∈ R and ε > 0 such

that

(1) ϕ(a) < r − ε and r + ε < ϕ(x)

for every x ∈ co(
⋂∞

i=1Ai). Let Hr = {x ∈ E; ϕ(x) ≤ r} and A∗
i := Ai

⋂
Hr for

every i ∈ N. By compactness of Ai’s we conclude that A∗
i ’s are compact. We show

that A∗
i �= ∅ for every i. To see this, let A∗

j = ∅ for one j ∈ N. Then r < ϕ(b)
for every b ∈ Aj and so r ≤ ϕ(b) for every b ∈ coAj . But a ∈ ⋂∞

i=1(coAi), hence
a ∈ co(Aj) and we have r ≤ ϕ(a); but this is a contradiction to (1). Therefore
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A∗
1 ⊇ A∗

2 ⊇ · · · ⊇ A∗
i ⊇ · · · is a decreasing sequence of nonempty compact

subsets of E . Hence, (
⋂

i Ai)
⋂

Hr =
⋂

i(Ai
⋂

Hr) =
⋂

i A
∗
i �= Ø. But, for

x ∈ (
⋂

i Ai)
⋂

Hr we have ϕ(x) ≤ r. This contradicts (1), and hence the assertion
follows.

It should be noted that in general the convex hull of a compact set is not even
closed (see [1, p. 173]. In a normed vector space, it is possible to apply Lemma
3.1 with the norm and weak topologies.

The following definition is well known:

Definition 3.2. Let (M, ρ) be a complete metric space and Ω denotes the family
of all nonempty, bounded closed subsets of M . For X, Y ∈ Ω, set d(X, Y ) =
sup{dist(y, X) : y ∈ Y }, d(Y, X) = sup{dist(x, Y ) : x ∈ X} and let D(X, Y ) =
max{d(X, Y ), d(Y, X)}. Then D provides a metric for Ω called the Hausdorff
metric.

Let C be a nonempty closed convex subset of a Banach space E and T :
C → C be a nonexpansive mapping with F (T ) �= ∅. It is easy to verify that
D(coF 1

n
(T ), F (T )) → 0 as n → ∞ iff dist(xn, F (T )) → 0 as n → ∞, for all

sequences {xn} with xn ∈ coF 1
n
(T ), ∀n. So, if C is compact, it is easy to see

that D(coF 1
n
(T ),

⋂
i coF 1

i
(T )) → 0 as n → ∞; and applying Lemma 3.1, we have⋂

i coF 1
i
(T ) = coF (T ). Therefore, we have shown

D(coF 1
n
(T ), F (T )) → 0

as n → ∞, in case that F (T ) is convex.
In this stage, we give some examples satisfying the convergence property above,

however C is not compact.

Example 3.3.

(i) Let C =
∏

i∈N
[0, 1] ⊂ l∞. Then C is not compact!. Now, let T : C → C be

a nonexpansive mapping defined by T (x1, x2, x3, . . . ) = (f(x1), 0, 0, . . .),
where f : [0, 1] → [0, 1] is an arbitrary nonexpansive mapping. Since R is
strictly convex and [0, 1] is compact, f is of type (γ) andD(coF 1

n
(f), F (f)) →

0. On the other hand, F 1
n
(T ) = F 1

n
(f) × (

∏
i∈N−{1}[0, 1

n ]). So coF 1
n
(T ) =

coF 1
n
(f) × (

∏
i∈N−{1}[0, 1

n ]) and D(coF 1
n
(T ), F (T )) → 0, since F (T ) =

{(x1, 0, 0, . . .) : x1 ∈ F (f)}. Also it is easy to see that F (T ) is compact
and T is of type (γ).

(ii) Let C =
∏

i∈N
[0, 1

2 ] ⊂ l∞ and T (x1, x2, . . .) = (x1
2

2 , x2
2

2 , . . . ). One notes
that both C and T (C) are not compact!. Obviously T is a nonexpansive
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mapping on C and F 1
n
(T ) =

∏
i∈N

[0, 1−
√

1 − 2
n ], for n ≥ 2. Therefore,

D(coF 1
n
(T ), F (T )) → 0, where F (T ) = {0}. The mapping T is of type (γ),

where γ is the identity mapping: Let x, y ∈ C and 0 ≤ λ ≤ 1. Then ‖λTx+
(1−λ)Ty−T (λx+(1−λ)y)‖= supi(

1
2 |λx2

i + (1 − λ)y2
i − (λxi + (1 − λ)

yi)2|) = λ(1−λ)
2 supi(xi−yi)2. So, ‖Tx−Ty‖+‖λTx+(1−λ)Ty−T (λx+

(1 − λ)y)‖ = 1
2 supi|x2

i − y2
i | + λ(1−λ)

2 supi(xi − yi)2 ≤ 1
2 supi|xi − yi| +

1
2supi|xi − yi| = ‖x − y‖, since 0 ≤ xi, yi ≤ 1

2 for each i ∈ N. Therefore T
is of type (γ), where γ is the identity mapping. By an elementary computation
we can show Tn is also of type (γ), for which γ is the identity mapping.

(iii) Let f : [0, 1
2 ] → [0, 1

2 ] be an nonexpansive mapping of type (γ), where γ is the
identity mapping, and C be as in (ii). Define T : C → C by T (x1, x2, . . . ) =
(f(x1), x2

2

2 , x3
2

2 , . . . ). As in (ii), it is easy to show that for each n, Tn is a
nonexpansive mapping of type (γ) such that D(coF 1

n
(T ), F (T )) → 0, where

F (T ) = {(x1, 0, 0, . . .) : x1 ∈ F (f)}.
(iv) Let C be as in (i) and T : C → C be a nonexpansive mapping defined by

T (x1, x2, x3, . . . ) = (x1,
x2
2
2 ,

x2
3
2 , . . . ). Then we have F (T ) = {(x1, 0, 0, . . .) :

x1 ∈ [0, 1]} is a compact convex set. Also, we have F 1
n
(T ) = [0, 1] ×

(
∏

i∈N−{1}[0, 1−
√

1 − 2
n ]), for n ≥ 2. Hence, it is easy to noteD(coF 1

n
(T ),

F (T )) → 0, as n → ∞.

In the above examples coF 1
n
(T )’s are not compact; however, F (T )’s are com-

pact and we have D(coF 1
n
(T ), F (T )) → 0, as n → ∞. We can apply some results

of this paper to examples like above.

4. CLUSTER POINT OF MEANS

The following lemmas are essential to our purpose.

Lemma 4.1. Let C be a nonempty closed, convex subset of a Banach space
E and T : C → C be a nonexpansive mapping such that F (T ) �= ∅ and
D(coF 1

n
(T ), F (T )) → 0, as n → ∞. Then, for any ε > 0, there exists δ > 0 such

that coFδ(T ) ⊂ Fε(T ).

Proof. Let ε > 0. Since D(coF 1
n
(T ), F (T )) → 0 there exists δ > 0 such that

coFδ(T ) ⊂ F (T ) + B ε
2
. On the other hand, we have F (T ) + B ε

2
⊂ Fε(T ). Hence

the assertion follows.
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Lemma 4.2. Let C, E and T be as in Lemma 4.1. If C is bounded and T is
of type (γ), then for each η > 0 there exists δ > 0 and N > 0, such that for every
sequence {xn} in C satisfying ‖xn+1 − Txn‖ ≤ δ for all n,

1
n

n∑
i=1

xi ∈ Fη(T )

for all n ≥ N .

Proof. The proof is essentially the same as Theorem 1.3 of [8]. First, choose
ε > 0 using Lemma 4.1, so that coFε(T ) ⊂ Fη

3
(T ) and εd < η

6 where d =

diamC . We choose a natural number p such that d < p ε2

2 . Next, put q(t) =
γ−1(2t) + t and qn(t) = γ−1( d

n + 2t) + t and choose 0 < δ < η
3 so small that

qp−1(δ) < ε2

2 . Finally, choose N so large that p
N < ε and qp−1

n (δ) < ε2

2 for all
n ≥ N . Put wi = 1

p

∑p−1
j=0 xj+i. Paralleling the proof of Lemma 1.5 of [7], we find

1
n

∑n−1
j=0 ‖wj+1 −Twj‖ ≤ q

p−1
n (δ) provided ‖xi+1 −Txi‖ ≤ δ for all i. Obviously

‖wi+1 − wi‖ ≤ d
p for all i. So by using the triangle inequality we have,

(2)
1
n

n−1∑
i=0

‖wi − Twi‖ ≤ ε2

for every n ≥ N . Put A(n) = {i ∈ Z : 0 ≤ i ≤ n − 1 , ‖wi − Twi‖ ≥ ε} and
B(n) = {0, 1, . . . , n− 1} − A(n). Then |A(n)|

n ≤ ε by (2). Also we have,

(3)
1
n

n−1∑
i=0

xi =
1
n

n−1∑
i=0

wi +
1
np

p−1∑
i=1

(p − i)[xi−1 − xn+i−1]

and p d
n ≤ p d

N < dε for every n ≥ N . Therefore,

‖ 1
np

p−1∑
i=1

(p − i)[xi − xn+i−1]‖ ≤ 1
np

p2d < dε <
η

6

and so, 1
n

n−1∑
i=0

xi ∈ [ 1
n

n−1∑
i=0

wi] + Bη
6
. Fix f ∈ Fε(T ). Then,

1
n

n−1∑
i=0

wi = [
1
n
|A(n)|f +

1
n

∑
i∈B(n)

wi] + [
1
n

∑
i∈A(n)

(wi − f)]

and ‖ 1
n

∑
i∈A(n)(wi − f)‖ ≤ |A(n)|

n d < εd < η
6 . So,
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1
n

n−1∑
i=0

xi ∈ coFε(T ) + Bη
6

+ Bη
6
⊂ Fη

3
(T ) + Bη

3
⊂ Fη(T )

for every n ≥ N . This completes the proof.

Lemma 4.3. In Lemma 4.2 put Sn = 1
n(I + T + · · · + T n−1). Then

limn ‖Sn(y) − TSn(y)‖ = 0 uniformly in y ∈ C. Moreover, if F (T ) is com-
pact (weakly compact), then for every sequence {yn}n≥1 in C, {Sn(yn)}n≥1 has a
cluster point (weak cluster point) in F (T ).

Proof. Set xn = T ny for each n and y ∈ C, and apply Lemma 4.2 to conclude
the first assertion. For the second assertion, let F (T ) be compact (weakly compact)
and {yn} be an arbitrary sequence in C. We note dist(Sn(yn), F (T )) → 0, as
n → ∞ by using the first part of this lemma. Then for each k ≥ 1 there exist
nk > k and fk ∈ F (T ) with ‖Snk

(ynk
) − fk‖ ≤ 1

k . Since F (T ) is compact
(weakly compact), without lose of generality we can assume that fk → f (fk ⇀ f )
for some f , as k → ∞. It is enough to conclude the result.

5. ERGODIC THEOREMS

By studying the proofs of Lemmas 2.2, 2.3 and 3.1 in [2], we obtain the fol-
lowing lemma:

Lemma 5.1. Let C be a nonempty bounded closed convex subset of a Banach
space E , T : C → C be a nonexpansive mapping such that F (T ) �= ∅ and T n is
of type (γ) for all n. Let x ∈ C. Then, there exists a sequence {in} in N such that
for each z ∈ F (T ),

lim
n→∞ ‖ 1

n

n−1∑
j=0

T j+inx − z‖ exists.

Moreover if {i′n} is a sequence in N such that i ′n ≥ in for each n ≥ N , then for
every z ∈ F (T ),

lim
n→∞ ‖ 1

n

n−1∑
j=0

T j+inx − z‖ = lim
n→∞ ‖ 1

n

n−1∑
j=0

T j+i′nx − z‖.

Recall that E is said to satisfy Opial’s condition, if for each sequence {xn} in
E , the condition that the sequence xn ⇀ x implies that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖

for all y ∈ E with y �= x.
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Theorem 5.2. Let C be a nonempty closed convex subset of a Banach space
E and T : C → C be a nonexpansive mapping such that F (T ) �= ∅ and T n is of
type (γ) for all n and D(coF 1

n
(T ), F (T )) → 0, as n → ∞. Let x ∈ C. Then,

(i) If F (T ) is compact, then 1
n

∑n−1
i=0 T i+hx converges strongly to a fixed point

of T uniformly in h ≥ 0.
(ii) If F (T ) is weakly compact and E satisfies Opial’s condition, then 1

n

∑n
k=0

T k+inx converges weakly to some y ∈ F (T ), for a sequence {in} like the
sequence in Lemma 5.1.

Proof. Let z be an arbitrary element of F (T ). Set D = {y ∈ C : ‖y − z‖ ≤
‖x−z‖}. We note that x ∈ D, T (D) ⊂ D andD is a bounded closed convex subset
of C. So we can assume that C is bounded. By Lemma 5.1, there exists a sequence
{in} in N such that for each f ∈ F (T ), limn→∞ ‖ 1

n

∑n−1
j=0 T j+inx − f‖ exists.

Now put {Φn} = { 1
n

∑n−1
j=0 T j+inx}. We first prove (i). If F (T ) is compact, then

{Φn} has a cluster point y0 in F (T ) by Lemma 4.3.
Consequently, we have Φn → y0; and from the last part of Lemma 5.1,

1
n

∑n−1
j=0 T j+h+inx converges strongly to y0 uniformly in h ≥ 0. Let ε > 0. Then,

there exists m ∈ N such that ‖ 1
n

∑n−1
j=0 T j+h+inx − y0‖ < ε for every n ≥ m and

h ∈ N ∪ {0}. Then, it follows from the equality (3) that ‖ 1
n

n−1∑
i=0

T i+hx − y0‖

= ‖[ 1
n

n−1∑
i=0

1
m

m−1∑
j=0

T i+j+hx − y0] + [ 1
nm

m−1∑
i=1

(m− i)(T i+h−1x − T i+h+n−1x)]‖

≤ 1
n

n−1∑
i=0

‖ 1
m

m−1∑
j=0

T j+h+ix − y0‖+ 1
nm

m−1∑
i=1

(m − i)‖T i+h−1x − T i+h+n−1x‖

= 1
n

im−1∑
i=0

‖ 1
m

m−1∑
j=0

T j+h+ix − y0‖+ 1
n

n−im−1∑
i=0

‖ 1
m

m−1∑
j=0

T j+h+i+imx − y0‖

+ 1
nm

m−1∑
i=1

(m − i)‖T i+h−1x − T i+h+n−1x‖ ≤ imM
n + (n−im)ε

n + mM
n ,

for every n > im and h ∈ N ∪ {0}, where

M = sup{‖T ix − y0‖ : j ∈ N ∪ {0}}.

Since ε > 0 is arbitrary, 1
n

∑n−1
i=0 T i+hx converges strongly to y0 uniformly in

h ∈ N∪{0}, and so the proof of (i) is completed. To prove (ii) we assume F (T ) is
weakly compact and E satisfies Opial’s condition. Then {Φn} has a weak cluster
point f in F (T ), by Lemma 4.3. We show Φn ⇀ f as n → ∞. Let Φnk

⇀ f1,
Φmk

⇀ f2 and f1 �= f2. Since f1, f2 ∈ F (T ), we put r1 := limn→∞ ‖Φn − f1‖
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and r2 := limn→∞ ‖Φn − f2‖. By Opial’s condition, we conclude
r1 = lim

k→∞
‖Φnk

− f1‖ < lim
k→∞

‖Φnk
− f2‖ = r2

= lim
k→∞

‖Φmk
− f2‖ < lim

k→∞
‖Φmk

− f1‖ = r1,

which is a contradiction. It means that f1 = f2. This leads to the desired conclu-
sion.

The following example shows that the condition D(coF 1
n
(T ), F (T )) → 0 in

Theorem 5.2 can not be omitted.

Example 5.3. Let C and E be as in Example 3.3 (i). Define T : C → C by
T (x1, x2, x3, . . . ) = (λ1x1, λ2x2, λ3x3, . . . ), where 0 ≤ λi < 1 for each i ∈ N,
and limi→∞ λi = 1. Then T is a nonexpansive mapping such that T n is of type

(γ) for all n and F (T ) = {0} which is compact. Also, F 1
n
(T ) =

∞∏
i=1

([0, 1
n(1−λi)

]∩

[0, 1]). So coF 1
n
(T ) d

� F (T ). Now, by considering x = (1, 1, . . .) in C we have
‖ 1

n

∑n
i=1 T ix‖ = supk( 1

n

∑n
i=1 λi

k) = 1, since limk→∞ λk = 1. So 1
n

∑n
i=1 T ix

does not converge to a member of F (T ).

6. A STRONG CONVERGENCE THEOREM OF MANN’S TYPE

In this section, using the iterative method of Mann’s Type [11], we study how
to find a fixed point of a nonexpansive mapping as in Theorem 5.2. Let C be a
nonempty closed convex subset of a Banach space E and let T be a nonexpansive
mapping on C with F (T ) �= ∅. Consider the following iteration scheme:

(4) x1 = x ∈ C and xn+1 = αnxn + (1− αn)Sn(xn)

for every n ∈ N, where Sn = 1
n(I + T +T 2 + · · ·+ T n−1) and {αn} is a sequence

in [0, 1]. For any ω ∈ F (T ) we can prove

(5) ‖xn+1 − ω‖ ≤ ‖xn − ω‖
for every n ∈ N and hence limn→∞ ‖xn − ω‖ exists (see [3]).
The following lemma is essential.

Lemma 6.1. Let C be a nonempty closed convex subset of a Banach space E

and T : C → C be a nonexpansive mapping of type (γ) such that F (T ) �= ∅ and
D(coF 1

n
(T ), F (T )) → 0, as n → ∞. Let {αn} be a sequence in [0, 1] such that∑∞

n=1(1− αn) = ∞. Suppose that x1 = x ∈ C and let {xn} be as in (4). Then
lim

n→∞ ‖Txn − xn‖ = 0.
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Proof. As in Theorem 5.2 we can assume that C is bounded. Fix ε > 0
and set M0 = sup{‖z‖ : z ∈ C}. Then, by Lemma 4.1, there exists δ > 0
such that coFδ(T ) ⊂ Fε(T ). From Lemma 4.3, there exists M ∈ N such that
‖Sn(y) − TSn(y)‖ < δ for every n ≥ M and y ∈ C. Thus

(6) Sn(xn) ∈ Fδ(T )

for every n ≥ M . We have for each k ∈ N,

(7) xM+k = (
M+k−1∏

i=M

αi)xM + (1 −
M+k−1∏

i=M

αi)yk

where

yk =
1

1 − ∏M+k−1
i=M αi

(
M+k−2∑

j=M

((
M+k−1∏
i=j+1

αi)(1− αj)Sj(xj))

+(1 − αM+k−1)SM+k−1(xM+k−1))

(see [3, 4]). Now, from

M+k−2∑
j=M

((
M+k−1∏
i=j+1

αi)(1− αj)) + (1− αM+k−1) = 1 −
M+k−1∏

i=M

αi,

it follows that yk ∈ co{Sn(xn) : n ≥ M} and hence yk ∈ coFδ(T ) ⊂ Fε(T ) for
each k ∈ N, by (6). From the Abel-Dini theorem and

∑∞
i=M (1 − αi) = ∞, there

exists p ∈ N such that
∏M+k−1

i=M αi < ε
2M0

for all k ≥ p. From (7) we obtain

‖xM+k − yk‖ =
M+k−1∏

i=M

αi‖xM − yk‖ <
ε

2M0
2M0 = ε

for each k ≥ p. Hence ‖TxM+k − xM+k‖ ≤ ‖TxM+k − Tyk‖ + ‖Tyk − yk‖ +
‖yk − xM+k‖ ≤ 2‖xM+k − yk‖ + ‖Tyk − yk‖ ≤ 2ε + ε = 3ε

for every k ≥ p. So limn→∞ ‖Txn − xn‖ = 0.

Theorem 6.2. Let C be a nonempty closed convex subset of a Banach space E

and T : C → C be a nonexpansive mapping of type (γ) such that F (T ) �= ∅ and
D(coF 1

n
(T ), F (T )) → 0, as n → ∞. Let {αn} be a sequence in [0, 1] such that∑∞

n=1(1−αn) = ∞. Suppose that x1 = x ∈ C and xn+1 = αnxn+(1−αn)Sn(xn)
for every n ∈ N. Then, {xn} converges strongly to a fixed point of T .
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Proof. By Lemma 6.1, limn→∞ ‖Txn − xn‖ = 0. From the assumption
D(coF 1

n
(T ), F (T )) → 0, we have limd(xn, F (T )) → 0 as n → ∞. Hereafter, we

will prove that {xn} is a Cauchy sequence. For all ε > 0, there exists a natural
number N such that when n ≥ N d(xn, F (T )) < ε

4 . Specifically, d(xN , F (T )) <
ε
4 . Thus there exists a point y0 in F (T ) such that ‖xn − y0‖ ≤ ‖xN − y0‖ < ε

2 for
each n ≥ N , using (5) and the definition of d(xN , F (T )). It follows that for each
n ≥ N and m in N, ‖xn − xn+m‖ ≤ ‖xn − y0‖+ ‖xn+m − y0‖ < ε. This implies
that {xn} is a Cauchy sequence. Because the space is complete, the sequence {xn}
is convergent to a point that is a fixed point of T .

Remark 6.3. It is not assumed in Theorem 6.2 that C be bounded nor F (T )
be compact.
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