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PERTURBATION OF EIGENVALUES FOR PERIODIC
MATRIX PAIRS VIA JOINT SPECTRUM

Eric King-Wah Chu and Alan J. Pryde

Abstract. We shall link the well-established concept of joint spectrum with
the interesting and practical periodic eigenvalue problems (PEVPs). A Bauer-
Fike perturbation theory, incorporating a Clifford algebra technique, for joint
spectrum is applied to PEVPs, producing new perturbation results.

1. INTRODUCTION

The Bauer-Fike technique has been applied to the ordinary eigenvalue problem
(OEP) [6]

Ax = λx

Let λ(·) denote the spectrum and ‖ · ‖ be any Hölder norm. For OEPs, we have the
perturbation result that for any perturbed eigenvalue λ̃ ∈ λ(Ã) (with \tilde (̃·)
indicating perturbation from now on),

(1) min
j

|λ̃ − λj| ≤ max{θ, θ1/q}

where
θ = C‖X‖ · ‖Y ‖ · ‖δA‖ , δA ≡ Ã − A

with C being some constant, X and Y = X−H denoting respectively matrices
containing right- and left-eigenvectors in their columns, and q being the size of
the largest Jordan block for A. The result applies to perturbations of any size and
eigenvalues of any multiplicity and structure. The quantity κX ≡ ‖X‖ · ‖Y ‖ can
then be considered to be a condition number for the OEP. With small (asymptotic)
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perturbations, the result still holds for individual or clusters of eigenvalues, where
X and Y are respectively replaced by individual or group of corresponding eigen-
vectors, and q is the size of the largest Jordan block for the cluster. These results
are consistent with many well-known results (see, e.g., [28, 31]).

For the generalized eigenvalue problem (GEP) [7]

Ax = λBx

and the matrix polynomial eigenvalue problem (MPEP) [10]
m∑

k=0

λkAkx = 0

the possibility of infinite eigenvalues requires eigenvalues to be represented by or-
dered pairs (αi, βi) (assume w.l.o.g. that α2

i + β2
i = 1), with the traditional eigen-

values represented by the quotients αi/βi. The MPEP generalizes to

(2)
m∑

k=0

αkβm−kAkx = 0

If we use the more convenient scaling convention

(αi, βi) = (sinφi, cosφi) , φi ∈
[
0,

π

2

]
and measure distances by the chordal metric ρ [26, 27], the resulting perturbation
results will be simpler. Assume that both the original and perturbed matrix pencils
are regular (to exclude the possibility of continuous spectra), we have, for any
perturbed eigenvalue (α̃, β̃) = (sin φ̃, cos φ̃),

(3)
minj ρ{(sin φ̃, cos φ̃); (sinφj, cosφj)}

= ‖α̃βk − β̃αk| = sin |φ̃ − φk| ≤ max{θ, θ1/q}
where

θ = C‖X‖ · ‖Y ‖ · ‖(δA0, · · · , δAm)‖ , δAi ≡ Ãi − Ai

with C, X and Y defined as in (1), and q equals the size of the largest Jordan block.
(Obviously, the GEP is a special case of the MPEP, with A0 = −B and A1 = A in
(2); see other details, like the exact form of C, X and Y , in [7, 10].) Again, the
result applies to a general spectrum for perturbations of any size, and to individual
or clusters of eigenvalues for asymptotic perturbations. The product of the norms
of the whole/part of the eigenvector matrices X and Y can again be considered a
condition number for individual/clusters of eigenvalues (see also [26, 27, 29, 30]
for related results).
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In [12], the traditional Bauer-Fike technique was applied to periodic matrix pairs
[4, 20, 21, 25]. The result looks essentially the same as that in (1) or (3), with θ
on the right-hand-side (RHS) somewhat modified (see §2 for more details).

The perturbation results have been applied to inverse eigenvalue or pole assign-
ment problems in [9, 8, 11]. It is hoped that the result in this paper can be applied to
similar robust pole assignment problems for periodic control systems [4, 14, 16, 25].

In this paper, we shall generalized the concept of joint spectrum to regular
PEVPs. The perturbation results by Freedman [15] can then be applied to produce
new perturbation results for PEVPs. We have to overcome two main obstacles.
Firstly, the concept of joint spectrum has to be generalized to cope with infinite
eigenvalues in PEVPs. This is attempted in §4.2. Secondly, the traditional concept
of joint spectrum requires common eigenvectors, which are absent in PEVPs. This
issue is addressed in §4.1.

The plan of the paper is as follows. We shall describe PEVPs in §2, including
some perturbation results from [12, 20]. The basic results of joint spectrum and
its perturbation are included in §3. The necessary generalizations of the concept
of joint spectrum and the application to PEVPs are contained in §4. The paper is
concluded in §5.

Some words of warning before proceeding. Comparison of perturbation results
is a risky business. Typically, error bounds and condition numbers are simplified
upper bounds of more complicated quantities and a better (worse) upper bound does
not always imply a smaller (larger) error for the eigenvalue in question. Furthermore,
optimization of such upper bounds are often possible but seldom performed because
of costs and convenience, making such comparison of perturbation results even more
perilous. Consequently, we do not claim to have found the “best” perturbation result.
Quite often, perturbation results are applied qualitatively, indicating when things go
wrong. Nevertheless, our new perturbation results via joint spectrum provide a new
tool of investigating periodic eigenvalues.

2. PERIODIC MATRIX PAIRS

We shall first introduce the basics of the periodic eigenvalue problemin this
Section. More details can be found in [12, 20, 21].

Let Ej, Aj ∈ Cn×n (j = 1, · · · , p), where Ej+p = Ej and Aj+p = Aj for all j.
We shall denote the periodic matrix pairs of periodicity p by {(Aj, Ej)}p

j=1. In this
paper, the indices j for all periodic coefficient matrices are chosen in {1, · · · , p}
modulo p. The equation

(4) βjAjxj−1 = αjEjxj

defines the nonzero right-eigenvectors xj for complex variables (αj, βj). Similarly,
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the equation

(5) βj−1yH
j Aj = αjyH

j−1Ej−1

defines the nonzero left-eigenvectors yj . The ordered pairs of products (πα, πβ) =
(
∏p

j=1 αj,
∏p

j=1 βj) then constitute the spectrum, with the traditional eigenvalues
being the quotients πα/πβ. Because of the possibility of infinite eigenvalues, we
shall deal with spectra in their ordered pair representation, with equality interpreted
in the sense of the corresponding equivalence relationship for quotients.

Using the notation col[xj]
p
j=1 ≡ [xT

1 , · · · , xT
p

]T , the eigenvalue equations (4)
and (5) can also be written as

C

(
α1, · · · , αp

β1, · · · , βp

)
col[xj]

p
j=1 =




α1E1 −β1A1

−β2A2 α2E2

. . . . . .
. . . . . .

−βpAp αpEp



col[xj]

p
j=1 = 0

and {
col[yj]

p
j=1

}H
C̃

(
α1, · · · , αp

β1, · · · , βp

)
=

{
col[yj]

p
j=1

}H




α2E1 −βpA1

−β1A2 α3E2

. . . . . .
. . . . . .

−βp−1Ap α1Ep




= 0T

In this paper, we shall avoid continuous spectrum by considering only regular
matrix pairs, for which

(6) det C

(
α1, · · · , αp

β1, · · · , βp

)
=

n∑
k=0

ckπ
k
απn−k

β �≡ 0

and consequently (πα, πβ) �= (0, 0). For regular matrix pairs, at least one of the
coefficients ck �= 0 and there are exactly n eigenvalues for {(Aj, Ej)}p

j=1, counting
multiplicity.

The eigenvalue problem (4) reflects the behaviour of the linear discrete-time
periodic system [4, 14, 16, 25]

(7) Ejzj+1 = Ajzj
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in terms of its solvability and stability.
There has been much recent interest in periodic systems. A large variety of

processes can be modelled through periodic systems, including multirate sampled-
data systems, chemical processes, periodic time-varying filters and networks, and
seasonal phenomena. Applications include the helicopter ground resonance damping
problem and the satellite attitude control problem. Please refer to [4, 14] and the
references therein for further information.

The solvability [25] of (7) is equivalent to the regularity of the pencil

αE − βA ≡




αE1 −βA1

−βA2 αE2

. . . . . .
. . . . . .

−βAp αEp




From the characteristic polynomial in (6), it is easy to check that

(8) λ
(
{(Aj, Ej)}p

j=1

)
= {(αp, βp)| det(αE − βA) = 0}

However, the periodic eigenvectors xj and yj cannot be solved via the generalized
eigenvalue problem of the pencil αE − βA. For an example [21], consider the
following n = 1, p = 3 case:

(9) (αE − βA) col[xi]3i=1 =


 α 0 0

−β α 0
0 −β α


 col[xi]3i=1 = 0

The characteristic polynomial det (αE − βA) = α3, indicating a regular system.
The system in (9) is satisfied by the unique eigenvalue (α, β) = (0, 1) and the
corresponding eigenvector (for the generalized pencil) [x1, x2, x3] = [γ, 0, 0] for
some nonzero constant γ . Thus it will be impossible to find nonzero x2 and x3 so
that (9) holds. However, xj = 1 (j = 1, 2, 3) defines an eigenvector sequence for
{(Aj, Ej)}3

j=1 corresponding to the zero eigenvalue (α, β) = (0, 1), with α1 = 0
and α2 = α3 = β1 = β2 = β3 = 1.

The situation is summarized by the following theorem from [21]:

Theorem 2.1. Let αE−βA be a regular pencil. If (α, β) ∈ λ (αE − βA) then
there exist complex numbers αj , βj (j = 1, · · · , p) and nonzero vectors {xj}p

j=1

for which (4) holds, and (πα, πβ) = (αp, βp).
We also have a periodic Schur decomposition: [5, 21]
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Theorem 2.2. (Periodic Schur Theorem). Let {(Aj, Ej)}p
j=1 be regular matrix

pairs.
There exist unitary matrices Qj , Zj (j = 1, · · · , p) such that

QH
j AjZj−1 = Âj , QH

j EjZj = Êj (j = 1, · · · , p)

are all upper triangular, with Z 0 = Zp. Moreover, the diagonal parts

{[diag(αj1, · · · , αjn), diag(βj1, · · · , βjn)]}p
j=1

of {(Âj, Êj)}p
j=1 determine all eigenvalues

{(
Πp

j=1αjk, Πp
j=1βjk

)}p

j=1
of {(Aj,

Ej)}p
j=1, and the eigenvalues can be arranged to appear in any order.

We can also generalized the concept of eigenspaces as follows:

Definition. Let Xj , Yj (j = 1, · · · , p) be subspaces in Cn of equal dimension.
The pairs {(Xj, Yj)}p

j=1 are called periodic deflating subspaces of {(Aj, Ej)}p
j=1

if
AjXj ⊂ Yj , EjXj−1 ⊂ Yj (j = 1, · · · , p)

Furthermore, the subspaces {Xj}p
j=1 are called periodic invariant subspaces of

{(Aj, Ej)}p
j=1.

We list some more further results as follows:

(i) Theorem 2.1 implies that λ
(
{(Aj, Ej)}p

j=1

)
= λ
(
{(AT

j , ET
j )}p

j=1

)
(ii) An eigenvalue is said to be simple if it is in a linear factor in the characteristic

polynomial.

(iii) Let Z
(j)
1 , Q

(j)
1 ∈ Cn×r be unitary and span, respectively, Xj and Yj . It

can be verified [21] that {(Xj, Yj)}p
j=1 are periodic deflating subspaces of

the regular matrix pairs {(Aj, Ej)}p
j=1 if and only if the unitary matrices

Zj =
[
Z

(j)
1 , Z

(j)
2

]
, Qj =

[
Q

(j)
1 , Q

(j)
2

]
∈ Cn×n satisfy

QH
j AjZj−1 =

[
A

(j)
11 A

(j)
12

0 A
(j)
22

]
, QH

j EjZj =

[
E

(j)
11 E

(j)
12

0 E
(j)
22

]
(j = 1, · · · , p)

where A
(j)
11 , E

(j)
11 ∈ Cr×r, and both {(A(j)

11 , E
(j)
11 )}p

j=1 and {(A(j)
22 , E

(j)
22 )}p

j=1

are regular. Furthermore, if the intersection of the spectra of the two sub-
matrix pairs is empty, the periodic deflation subspaces {(Xj, Yj)}p

j=1 are
called simple periodic deflating subspaces, and {Xj}p

j=1 the simple periodic
invariant subspaces.
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2.1. Periodic Kronecker Canonical Form

From the periodic Schur decomposition in Theorem 2.2, we obtain a periodic
Kronecker canonical form [19]:

Theorem 2.3. (Periodic Kronecker Canonical Form). Suppose that the periodic
matrix pairs {(Aj, Ej)}p

j=1 are regular. Then there exist nonsingular matrices X j

and Yj (j = 1, · · · , p) such that

(10) Y H
j EjXj =

[
I 0
0 E0

j

]
, Y H

j AjXj−1 =

[
Af

j 0
0 I

]

where X0 = Xp; and for j = 1, · · · , p,

J(j) ≡ Af
j+p−1A

f
j+p−2 · · ·Af

j

is a Jordan matrix corresponding to the finite eigenvalues of {(A j, Ej)}p
j=1, and

N (j) ≡ E0
j E0

j+1 · · ·E0
j+p−1

is a nilpotent Jordan matrix corresponding to the infinite eigenvalues.

Remark It is clear from the proof of Theorem 2.3 in [19] that Af
j and E0

j are
upper triangular. In addition, from Section 2.2 in [20], these matrices can be further
reduced to be block-upper triangular. Each individual diagonal block in Af

j or E0
j

relates to the corresponding Jordan block corresponding to a multiple eigenvalue in
{(Aj, Ej)}p

j=1.
Note also that, for different values of j, the Jordan matrices J(j) and N (j)

in Theorem 2.3 may have different structures. Thus an eigenvalue, of a certain
algebraic multiplicity, may have different geometric multiplicities dependent on j.

In many applications such as optimal control [14] and pole assignment [16],
a sequence of periodic stable invariance subspaces for the positive semidefinite
solution set of a periodic discrete-time Riccati equation [5] is needed. Here stability
means the spectrum staying within the unit circle. Thus, the importance in studying
the sensitivities of deflating subspaces and eigenvalues is self-evident.

Next we quote the Bauer-Fike perturbation result [12, Theorem 3.1]. We first
design a symmetric set of notation. The periodic Kronecker canonical form in (10)
now reads

(11) Y H
j EjXj =Λβ,j =

[
Λ(1)

β,j 0

0 Λ(2)
β,j

]
, Y H

j AjXj−1 =Λα,j =

[
Λ(1)

α,j 0
0 Λ(2)

α,j

]
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with identity matrices Λ(1)
β,j (associated by finite eigenvalues) and Λ(2)

α,j (associated
with infinite eigenvalues). The roles of Ej and Aj , or finite and infinite eigenvalues,
are then symmetric in the canonical form in (11). The final Kronecker canonical
form of {(Aj, Ej)}p

j=1 then involves the Jordan matrices, for j = 1, · · · , p,

J(j) ≡ Λ(1)
α,j+p−1Λ

(1)
α,j+p−2 · · ·Λ(1)

α,j , N (j) ≡ Λ(2)
β,jΛ

(2)
β,j+1 · · ·Λ(2)

β,j+p−1

We do not need to distinguish between finite and infinite pairs (α j, βj) in
the development that follows. The symmetric notation will be more convenient for
analyzing clustering in Section 4 later.

From (11), we have

Yj = [Yj1, Yj2] , Xj = [Xj1, Xj2]

with

(12) Y H
jk EjXjk = Λ(k)

β,j , Y H
jk AjXj−1,k = Λ(k)

α,j

for j = 1, · · · , p and k = 1, 2.
Define the perturbations

(13)

δΛ(j)
α

≡ Λ̃(j)
α −Λ(j)

α =Λ̃α,j+p−1Λ̃α,j+p−2 · · · Λ̃α,j−Λα,j+p−1Λα,j+p−2 · · ·Λα,j

= Y H
j+p−1(Aj+p−1 + δAj+p−1)Xj+p−2 · · ·Y H

j (Aj + δAj)Xj−1

−Y H
j+p−1Aj+p−1Xj+p−2 · · ·Y H

j AjXj−1

and

(14)

δΛ(j)
β ≡ Λ̃(j)

β −Λ(j)
β =Λ̃β,jΛ̃β,j+1 · · · Λ̃β,j+p−1−Λβ,jΛβ,j+1 · · ·Λβ,j+p−1

= Y H
j (Ej + δEj)Xj · · ·Y H

j+p−1(Ej+p−1 + δEj+p−1)Xj+p−1

−Y H
j EjXj · · ·Y H

j+p−1Ej+p−1Xj+p−1

Also, denote

(15) ∆j ≡
∥∥∥π̃βδΛ(j)

α − π̃αδΛ(j)
β

∥∥∥
We have the following Bauer-Fike Theorem [20, Theorem 2.3, Corollary 2.4]:

Theorem 2.4. (Bauer-Fike Theorem). With the assumptions in this Section, we
have the following three cases:
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Case I. (Large Perturbation). When min(πα, πβ) |π̃απβ − παπ̃β | ≥ 1, we have

(16) min
(πα, πβ)

ρ{(π̃α, π̃β), (πα, πβ)} ≤ θ1

‖(π̃α, π̃β)‖2 · ‖(πα, πβ)‖2

where
θ1 ≡ max

j
{c1∆j} , c1 ≡ min

{
2qj + 1
qj + 1

, qj

}

and qj is the size of the largest Jordan block in J (j) or N (j).

Case II. (Small Perturbation). When ∆j are sufficiently small, let min(πα,πβ)

|π̃απβ −παπ̃β| ≤ 1 with the minimum occurring at a Jordan block Bjk ≡ π̃βJ
(j)
αk −

π̃αJ
(j)
βk of size q̂j . Denote by Pj the columns of the identity matrix In which pick

out the Jordan block

Bjk = PT
j

[
π̃βΛ(j)

α − π̃αΛ(j)
β

]
Pj

(ignoring the dependence of q̂j and Pj on k to simplify the notation.) We then have

(17) min
(πα, πβ)

ρ{(π̃α, π̃β), (πα, πβ)} ≤ θ2

‖(π̃α, π̃β)‖2 · ‖(πα, πβ)‖2
+ O(∆̂2

j)

with

(18) θ2 ≡ max
j

{(
c1∆̂j

)1/q̂j
}

, ∆̂j ≡
∥∥∥PT

j

[
π̃βδΛ(j)

α − π̃αδΛ(j)
β

]
Pj

∥∥∥
and

c1 ≡ min
{

2q̂j + 1
q̂j + 1

, q̂j

}

Case III. (Intermediate Perturbation). For any other perturbation, we have

(19) min
(πα, πβ)

ρ{(π̃α, π̃β), (πα, πβ)} ≤ θ3

‖(π̃α, π̃β)‖2 · ‖(πα, πβ)‖2

where

θ3 = max
j

{φj, φ
1/qj

j } , φj ≡ c1∆j , c1 ≡ min
{

2qj + 1
qj + 1

, qj

}
,

and qj is the size of the largest Jordan block in J (j) or N (j).
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Remarks.

(1) The coefficient c1 = 1 when qj, q̂j = 1 and c1 < 2 otherwise.
(2) We can expand the expressions in ∆j and ∆̂j , showing the results in Theo-

rem 2.4 in terms of the Xj , Yj , δAj and δEj, using the definitions in (13)
and (14). The expressions will be tedious. However, it is clear that condi-
tion numbers, in terms of products of norms of whole or part of Xj and Yj ,
can be obtained. We shall attempt this exercise for the case when a simple
eigenvalues is perturbed with a small perturbation in §2.2.

(3) Case III is analogous to [28, Theorem 1.12, p. 174].
(4) Notice that the chordal metric ρ in (16), (17) and (19) are independent of

scaling of the eigenvalues (πα, πβ) and (π̃α, π̃β). The corresponding error
bounds can be made independent of (πα, πβ) and (π̃α, π̃β) by the scaling
‖(πα, πβ)‖ = ‖(π̃α, π̃β)‖ = 1, together with

‖∆j‖≤‖(π̃α, π̃β)‖
∥∥∥∥∥
[

δΛ(j)
α

δΛ(j)
β

]∥∥∥∥∥ , ‖∆̂j‖≤‖(π̃α, π̃β)‖
∥∥∥∥∥
[

PT
j δΛ(j)

α Pj

PT
j δΛ(j)

β Pj

]∥∥∥∥∥
When qj , q̂j = 1 in (17) or (19), we require only ‖(πα, πβ)‖ = 1 because of
cancellation (see, e.g., (25) and (26)). Similarly, when a simple eigenvalue is
perturbed asymptotically in Section 4, the error bounds is dependent only on
(πα, πβ).

(5) The chordal metric ρ{(π̃α, π̃β); (πα, πβ)} is unchanged when the original
and the perturbed eigenvalues, or the eigenvalues and their reciprocals, are
swapped. Consequently, we need to consider only those eigenvalues on or
within the unit circle. For eigenvalues outside the unit circle, we can consider
the reciprocals of the eigenvalues, i.e., interchanging πα and π̃α with πβ and
π̃β, respectively. Combine with the observation in the last remark, we need
only to consider finite eigenvalues with π̃β = 1 in proving Theorem 2.4.

(6) In Lin and Sun [20, Theorem 2.3, Corollary 2.4], the implicit function theorem
has been applied to obtain perturbation expansions for simple eigenvalues,
their associated simple periodic eigenvectors and simple periodic deflating
subspaces (see also [2]) for related results). The perturbation result for simple
eigenvalues under asymptotic perturbations is similar to those in §2.2 below.

(7) The pessimistic Case III always holds and we have the condition for which
Case I applies. Case II corresponds to perturbations which are (asymptotically)
small, as in [20]. Detailed conditions for this case can be written down but
are seldom checked. In general, perturbation results indicate pitfalls. Error
estimation usually requires too much information or computing resources.
When perturbations are too large, it is usually too much to ask for perturbation
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results. Bauer-Fike results are valid for perturbations of any size but the trade
off is the lack of results for deflating subspaces (they will be jumbled up).
Note that other approaches usually requires perturbations to be asymptotically
small.

2.2. Simple Eigenvalues

For a simple eigenvalue (πα, πβ) = (
∏

j αj1,
∏

j βj1) perturbed asymptotically
to (π̃α, π̃β), as in Case II in Theorem 2.4. Assume for convenience and without
loss of generality that (πα, πβ) appears at the (1,1) position. The definitions in
(13), (14) and (18) imply

∆̂j =
∣∣∣eT

1

[
π̃βδΛ(j)

α − π̃αδΛ(j)
β

]
e1

∣∣∣
=

∣∣∣∣∣∣eT
1


π̃β


 j∏

k=j+p−1

Λ̃α,k −
j∏

k=j+p−1

Λα,k




−π̃α


j+p−1∏

k=j

Λ̃β,k −
j+p−1∏
k=j

Λβ,k




 e1

∣∣∣∣∣∣
Note that the terms linear in the perturbations matrices δAk (or δEk) are prod-
ucts of block-diagonal matrices Λα,k (or Λβ,k) with one single Y H

k δAkXk−1 (or
Y H

k δEkXk). Denote

(20) δαk ≡ yH
k δAkxk−1 , δβk ≡ yH

k δEkxk

and ignore higher order terms, we arrive at

(21)

∆̂j �
∣∣∣∣∣∣π̃β

j+p−1∑
l=j


∏

k �=l

αk


 δαl − π̃α

j+p−1∑
l=j


∏

k �=l

βk


 δβl

∣∣∣∣∣∣
≤ |π̃βπα|

j+p−1∑
l=j

∣∣∣∣δαl

αl

∣∣∣∣+ |π̃απβ|
j+p−1∑

l=j

∣∣∣∣δβl

βl

∣∣∣∣
≤ ‖(π̃βπα, π̃απβ)‖2 ·

j+p−1∑
l=j

∥∥∥∥
[

δαl/αl

δβl/βl

]∥∥∥∥
2

Now let δ ≡ max{‖δAj‖2, ‖δEj‖2} and |α|j, |βj| �= 0. We obtain, using the
definitions in (20) and the properties of norms,

∆̂j � ‖(πα, πβ)‖2 · ‖(π̃α, π̃β)‖2 ·
p∑

j=1

[
‖yj‖2

(‖xj−1‖2
2

|αj|2 +
‖xj‖2

2

|βj|2
)1/2
]
· δ
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Substitute into (17) and with c1 = qj = 1, we obtain the perturbation result

(22) min
(πα ,πβ)

ρ{(π̃α, π̃β), (πα, πβ)} �
p∑

j=1

[
‖yj‖2

(‖xj−1‖2
2

|αj|2 +
‖xj‖2

2

|βj|2
)1/2
]
· δ

Alternatively, we can replace the two ‖ · ‖2 in (21) with, respectively, ‖ · ‖∞ and
‖ · ‖1. The result (22) now has the form

(23)

min
(πα,πβ)

ρ{(π̃α, π̃β), (πα, πβ)}

� |παπβ|
|πα|2 + |πβ|2 ·

p∑
j=1

[
‖yj‖2

(‖xj−1‖2

|αj| +
‖xj‖2

|βj|
)]

· δ

(We have replaced the perturbed eigenvalue with the original one on the right-hand-
side of the final result.) The result in (23) is identical to that in [20, Theorem 3.2],
when τj, σj = 1.

When αl0 = 0, βj �= 0 for all j (because of regularity) and (21) degenerates to

∆̂j �
∣∣∣∣∣∣π̃β


∏

k �=l0

αk


 δαl0 − π̃α

j+p−1∑
l=j


∏

k �=l

βk


 δβl0

∣∣∣∣∣∣
≤
∣∣∣∣∣∣

π̃β

∏
k �=l0

αk, −π̃απβ



[

δαl0∑j+p−1
l=j δβl/βl

]∣∣∣∣∣∣
Similar to (23), we obtain

(24)

min
(πα, πβ)

ρ{(π̃α, π̃β), (πα, πβ)

�

∏k �=l0

|αk|
|πβ| · ‖xl0−1‖2‖yl0‖2 +

|πα|
|πβ|

p∑
j=1

‖xj‖2‖yj‖2

|βj|


 · δ

There is also the possibility of other αk = 0, eliminating the first term in (24). The
result for πβ = 0 is similar, interchanging the αs and βs in (24).

From the above discussion, the asymptotic error bounds for individual pair
(αi, βi) (j = 1, · · · , p) can be shown, in a similar fashion, to be

min
(αj , βj)

ρ{(α̃j, β̃j), (αj, βj)} � ‖yj‖2 (|βj|‖xj−1‖2 + |αj|‖xj‖2)
|αj|2 + |βj|2 · δ

(which holds for all values of αj and βj).
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When p = 1, the above results reduce to the case for GEPs, with (22) now reads

min(πα , πβ) ρ{(π̃α, π̃β), (πα, πβ)} �
√

|πα|2+|πβ |2
|παπβ | · ‖x‖2 · ‖y‖2 · δ

When (πα, πβ) = (sinφ, cosφ), the RHS becomes (2| csc2φ| ‖x‖2 ‖y‖2 δ), which
may be large. A better result comes from (23), which becomes

(25) min(πα, πβ) ρ{(π̃α, π̃β), (πα, πβ)} � |πα|+|πβ |
|πα|2+|πβ |2 · ‖x‖2 · ‖y‖2 · δ

(This result coincides with that of [30, Chapter 4, §4.2-2] with γ A = γB = 1 and
p = ∞.) With (πα, πβ) = (sinφ, cosφ), the RHS equals

(26) | sinφ + cos φ| ‖x‖2 ‖y‖2 δ ≤ √
2 ‖x‖2 ‖y‖2 δ

2.3. Clusters of Eigenvalues

We do not need to distinguish between finite and infinite pairs (α j, βj) in the
development in Section 3. Indeed, we may have (Λ(j)

α1 , Λ(j)
β1 ) and (Λ(j)

α2 , Λ(j)
β2 )

representing different clusters of eigenvalues, so long as the intersection of the
subspectra is empty and the diagonal assumption for Λ(j)

β1 and Λ(j)
α1 is dropped.

Although the results in Case II of Theorem 2.4 considers a multiple eigenvalue, it
is straight forward to generalize the result to a cluster of eigenvalues. In (17), Pj

is then selected to extracting the appropriate cluster and q̂j is the size of the largest
Jordan block associated with the cluster. For details, see [12].

3. JOINT SPECTRUM

We then introduce the concept of a joint spectrum for commuting matrices (see
[3, 13, 22, 24] and the references therein for details). Let A = (A1, · · · , Am) ∈
(Cn×n)m be a m-tuple of n × n matrices with complex entries. A joint eigenvalue
of A is a vector λ = (λ1, · · · , λm) ∈ Cm such that Ajx = λjx for j = 1, · · · , m

for some x ∈ Cn\{0}. Such an x is called a joint eigenvector of A. If Ai are
commuting there exists at least one joint eigenvalue. The joint spectrum λ(A) of A

is the set of joint eigenvalues of A.
Clifford algebra [3, 22, 24] was used as a tool to study joint spectra and we

summarize the technique here. Let �(m) denote the Clifford algebra generated by
e1, · · · , em with the relations

eiej = −ejei (i �= j) , e2
i = −1 (∀i)
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Then �(m) is an associate algebra over � of dimension 2m. The elements eS , where
S runs over all subsets of {1, · · · , m} form a basis of �(m) if we define e∅ = e0 = 1
and eS = es1 · · ·esk

when S = {s1, · · · , sk} with 1 ≤ s1 < s2 < · · · < sk ≤ m.
Let L(X) be the space of bounded linear operators on a vector space X . The

Clifford operator Cliff(A) ∈ Cn×n ⊗ �(m) of an m-tuple A = (A1, · · · , Am) ∈
(Cn×n)m is defined as

Cliff(A) ≡ i
m∑

j=1

Aj ⊗ ej

Each T =
∑

S TS ⊗ eS ∈ Cn×n ⊗�(m) acts on x ∈∑S xS ⊗ eS ∈ Cn ⊗�(m) by

T (x) =
∑
S,S′

TS(xS′) ⊗ eSeS′

with Cliff(A) ∈ Cn×n ⊗ �(m) ⊆ L(Cn ⊗ �(m)). We embed Cn×n into Cn ⊗ �(m)

via the map A → A ⊗ e0 and let ‖Cliff(A)‖ denote the operator norm of Cliff(A)
as an element of L(Cn ⊗�(m)).

For any matrix B, the Schur decomposition [17] UHBU = D + N where U

is unitary, D is diagonal and N is strict upper triangular. Henrici [18] defined the
measure of non-normality as ∆(B) = inf ‖N‖, where the infimum is taken over all
choices of unitary U . For r, ∆ > 0 and natural number n let g = gn(∆/r) be the
unique positive solution of g + · · ·+ gn = ∆/r and put Sn(∆, r) = ∆/gn(∆/r).

We describedA as being simultaneously Schur blockable (byX) whenX −1AX =
diag(A1, · · · , Ar) where Ai = λiI + N i = (λi

1I + N i
1, · · · , λi

mI + N i
m) for nilpo-

tent N i
j of identical dimensions for all j. We shall use the abbreviation SSB for

such a property from now on.
We shall quote the main result (with proof) in [15, Theorem 6.1] for joint

spectrum:

Theorem 3.1. Let A = (A1, · · · , Am) and Ã ≡ A + δA, with δA =
(δA1, · · · , δAm), be commuting m-tuples of n × n matrices with real spectra.
Suppose the Aj are simultaneously Schur blocked by X and put A = A 1⊕· · ·⊕Ar

where Aj = λjI + N j as above. Then for all λ̃ ∈ λ(Ã) we have

min
λ∈λ(A)

∣∣∣λ̃ − λ
∣∣∣ ≤ Sp

(∥∥∥Cliff(Nk)
∥∥∥ , κ(X) ‖Cliff(δA)‖

)

where maxj

∥∥∥Cliff(Aj − λ̃I)
∥∥∥ occurs at j = k, p = dim(N k) and κ(X) ≡

‖X−1‖ ‖X‖.

Proof. Let λ̃ ∈ λ(Ã). If λ̃ ∈ λ(A) the inequality is trivial. Otherwse



Perturbation of Eigenvalues for Periodic Matrix Pairs 2457

λ̃ �∈ λ(A) = γ(A) where

γ(A) ≡

λ ∈ �m : 0 ∈ λ


 m∑

j=1

(Aj − λjI)2






Let Â = (X−1A1X, · · · , X−1AmX) be in Schur block form. As the Aj commute
therefore by [24, Theorem 3.1] 0 �∈ λ

(
XCliff(Â− λ̃I)X−1

)
= λ
(
Cliff(Â − λ̃I)

)
,

thus Cliff(Â − λ̃I) is invertible. Now

X−1Cliff(Ã−λ̃I)X =Cliff(Â−λ̃I)+X−1Cliff(Ã−A)X = Cliff(Â−λ̃I)(I⊗e0+M)

where M ≡ [Cliff(Â − λ̃I)]−1X−1Cliff(δA)X with δA ≡ Ã − A. Since λ̃ ∈
λ(Ã) = γ(Ã) therefore Cliff(A − λ̃I) is not invertible, nor is I ⊗ e0 + M . As
I ⊗ e0 is the unit in Cn×n ⊗ �(m) it follows that ‖M‖ ≥ 1, so

(27)

1 ≤ ‖[Cliff(Â− λ̃I)]−1‖ κ(X) ‖Cliff(δA)‖
= ‖[Cliff(Âk − λ̃I)]−1‖ κ(X) ‖Cliff(δA)‖
= ‖[Cliff((λk − λ̃)I + Nk)]−1‖ κ(X) ‖Cliff(δA)‖ Ak = λkI + Nk

Now

Cliff((λk−λ̃)I+Nk) = Cliff((λk−λ̃)I)+Cliff(Nk) = Cliff((λk−λ̃)I)(I⊗e0−Z)

where Z = −[Cliff((λk − λ̃)I)]−1Cliff(Nk). Thus[
Cliff((λk − λ̃)I + Nk)

]−1
= (I ⊗ e0 − Z)−1

[
Cliff((λk − λ̃)I)

]−1

= (I ⊗ e0 + Z + · · ·+ Zp−1)
[
Cliff((λk − λ̃)I)

]−1

since Zp = 0 with p = dim(N k) [3, page 10]. Therefore∥∥∥Cliff((λk − λ̃)I + Nk)
∥∥∥

≤
∥∥∥∥[Cliff((λk − λ̃)I)

]−1
∥∥∥∥ (1 + ‖Z‖ + · · ·+ ‖Z‖p−1)

≤ η−1
[
1 + η−1‖Cliff(Nk)‖ + · · ·+ (η−1‖Cliff(Nk)‖)p−1

]

where η ≡
∥∥∥∥[Cliff((λk − λ̃)I)

]−1
∥∥∥∥. So from (27)

η−1
[
1 + η−1‖Cliff(Nk)‖+ · · ·+ (η−1‖Cliff(Nk)‖)p−1

]
≥ [κ(X) ‖Cliff(δA)‖]−1 η−1‖Cliff(Nk)‖ + · · ·+ (η−1‖Cliff(Nk)‖)p

≥ ‖Cliff(Nk)‖
κ(X) ‖Cliff(δA)‖ = g + · · ·+ gp
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where g = gp

(‖Cliff(Nk)‖/κ(X)) ‖Cliff(δA)‖). Since g > 0 and ‖Cliff(N k)‖/η >

0 we have g ≤ ‖Cliff(Nk)‖/η and η ≤ ‖Cliff(N k)‖/g. It remains to show that
η ≥ minλ∈λ(A)

∣∣∣λ̃ − λ
∣∣∣. By [3, Proposition 2.2]

[
Cliff((λk − λ̃)I)

]−1
=


 m∑

j=1

(
(λk

j − λ̃j)I
)2

−1

Cliff((λk − λ̃)I)

=
[
|λk − λ̃|2I

]−1
Cliff((λk − λ̃)I) = Cliff

(
|λk − λ̃|−2 (λk − λ̃)I

)
So with r(·) denoting the spectral radius and by [24, Proposition 3.2]

η =
∥∥∥Cliff

(
|λk − λ̃|−2 (λk − λ̃)I

)∥∥∥−1
=
[
r
(
|λk − λ̃|−2 (λk − λ̃)I

)]−1

= |λk − λ̃| ≥ min
λ∈λ(A)

∣∣∣λ̃ − λ
∣∣∣

For a complex joint spectrum, let Aj = A1j + iA2j and consider the partition

π(A) ≡ (A11, · · · , A1m; A21, · · · , A2m)

We have the result [15, Corollary 6.2] for complex joint spectrum:

Corollary 3.1. Let A, Ã, k and p be as in Theorem 3.1 except allow the A i

and Ãi to have complex spectra. Let π(A) = (A11, · · · , A1m; A21, · · · , A2m) be a
partition of A and suppose the A jk are simultaneously Schur blocked by X . Then
for all λ̃ ∈ λ(Ã) we have

min
λ∈λ(A)

∣∣∣λ̃ − λ
∣∣∣ ≤ Sp

(∥∥∥Cliff(Nk)
∥∥∥ , κ(X) ‖Cliff(δA)‖

)

with δA ≡ π(Ã) − π(A).

4. GENERALIZING JOINT SPECTRUM

4.1. Joint Spectrum without Common Eigenvectors

For an m-tupe A = (A1, · · · , Am) without common eigenvectors, assume that
the corresponding Jordan (or Schur) form Jj share the same Jordan structures. Then
Theorem 3.1 and Corollary 3.1 can be applied to J = (J1, · · · , Jm) which is SSB.
Similar to the perturbation bound in Theorem 3.1, the corresponding result will then
be

min
λ∈λ(A)

∣∣∣λ̃ − λ
∣∣∣ ≤ Sp

(∥∥∥Cliff(Nk)
∥∥∥ ,
∥∥Cliff(X−1δAX)

∥∥)
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Finally, the assumption that them-tuple A = (A1, · · · , Am) possesses identical
Jordan structures is not necessary, because we only require existence of a joint
spectrum. One possibility is that Ai shares the same eigenvalues and the eigen-
structures, so that the associated Jordan blocks can be grouped in some way to form
N i

j in Theorem 3.1 (similar to the construction for periodic eigenvalue problems in
Section 5). The worst case will be to group all the blocks for a particular eigenvalue
together, thus creating larger N i

j and worse error bounds.

4.2. Generalized Joint Spectrum

We shall generalize further the concept of a joint spectrum, allowing infinite
eigenvalues. Let E = (E1, · · · , Em), A = (A1, · · · , Am) ∈ (Cn×n)m be m-tuples
of n × n matrices with complex entries. A generalized joint eigenvalue of (E, A)
is a vector (α, β) = (α1, · · · , αm; β1, · · · , βm) ∈ C2m such that βjAjx = αjEjx
and βjyHAj = αjyHEj for j = 1, · · · , m for some x ∈ Cn\{0}. As in (2), the
traditional eigenvalue λj = αj/βj can be infinite. We shall assume that the matrix
pencils βAj − αEj are regular (i.e., det(βAj − αEj) are not identically zero) to
avoid continuous spectra. Such an x is called a joint eigenvector of (E, A). The
joint spectrum λ(E, A) is the set of joint eigenvalues of (E, A).

If {(αEi + βAi)−1(γEi + δAi)} (for some {α, β, γ, δ}) are commuting there
exists at least one generalized joint eigenvalue. In the periodic eigenvalue problem
in §2, we have another example of a generalized joint spectrum independent of
commutativity (as we shall be working with canonical forms).

We first define (E, A) as simultaneously Schur blockable (SSB) by (X, Y ) when
(E, B) = (E1 ⊕ · · · ⊕ Er, A1 ⊕ · · · ⊕ Ar) where (Ej, Aj) = (βjI + N j

1 , αjI +
N

j
2 ), with N i

k sharing the same dimensions for all i and k. We shall share the
same abbreviation SBB for both joint spectra (as defined before Theorem 3.1) and
generalized joint spectra, without any possibility of confusion.

Theorem 4.1. Let (E, A) = (E1, · · · , Em; A1, · · · , Am), Ẽ ≡ E + δE and
Ã ≡ A + δA, with δE = (δE1, · · · , δEm) and δA = (δA1, · · · , δAm), be gener-
alized m-tuples of n × n matrices with real spectra. Suppose the (E j, Aj) is SSB
by (X, Y ). Then for all (α̃, β̃) ∈ λ(Ẽ, Ã) we have

min
(α,β)∈λ(E,A)

∣∣∣α̃β−β̃α
∣∣∣≤Sp

(
max

i

∥∥∥Cliff(Nk
i )
∥∥∥ , κ(X)

∥∥∥Cliff(α̃ δE−β̃ δA)
∥∥∥)

where α̃β−β̃α ≡ (α̃1β1−β̃1α1, · · · , α̃mβm−β̃mαm), maxj

∥∥∥Cliff(α̃Ej − β̃Aj)
∥∥∥

occurs at j = k, p = dim(N k
i ) and κ(X) ≡ ‖Y ‖ ‖X‖.

Proof. The proof is exactly the same as that for Theorem 3.1, except for some
minor adaptation. The inverseX−1 has to be replaced by the left eigenvector matrix
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Y , which simultaneously (Schur-)block diagonalize (E, A) such that

Ê ≡ Y HEX = daig{Ê1, · · · , Êr} , Â ≡ Y HAX = daig{Â1, · · · , Âr}

with the components of αÊi − βÂi (i = 1, · · · , r) being parts of the gener-
alized Schur/Kronecker canonical form of αEj − βAj (j = 1, · · · , m). Also,
the m-tuple A = (A1, · · · , Am) has to be replaced by the 2m-tuple (E, A) =
(E1, · · · , Em; A1, · · · , Am).

Finally, it is easy to see that the generalized spectral set and the generalized
spectrum are equal, as

γ(E, A)

≡

(α, β) ∈ �m × �m : 0 ∈ λ


 m∑

j=1

(βjAj − αjEj)2






=


(α, β) ∈ �m × �m : 0 ∈ λ


 m∑

j=1

[
Y −H(βjÂj − αjÊj)X−1

]2



=


(α, β) ∈ �m × �m : 0 ∈ λ


Y −H


 m∑

j=1

ZjX−1Y −HZj


X−1






withZj ≡ (βjÂj−αjÊj). Thus, we have γ(E, A) = {(α, β) ∈ �m ×�m : 0 ∈ λ (Z)},
where

Z ≡ [Z1, · · · , Zm
]

diag{X−1Y −H , · · · , X−1Y −H}




Z1

...
Zm




As the parameters (αj, βj) for which Z is singular is the same as those for

Z̃ ≡ [Z1, · · · , Zm
]



Z1

...
Zm


 =

m∑
j=1

(Zj)2 =
m∑

j=1

[
(βjÂj − αjÊj)

]2

with (Ê, Â) in Schur/Kronecker canonical form, we deduced that γ(E, A) = λ(Ê, Â)
= λ(E, A).

For complex joint spectrum, let Ej = E1j + iE2j and Aj = A1j + iA2j , and
consider a similar partition π(·) as in Corollary 2.1. We have the result for complex
generalized joint spectrum:
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Corollary 4.1. Let (E, A), (Ẽ, Ã), k and p be as in Theorem 4.1 except allow
the (Ei, Ai) and (ẼiÃi) to have complex spectra. Let π(·) be a partition of (E, A)
and suppose the (Ejk, Ajk) are simultaneously Schur blocked by (X, Y ). Then for
all (α̃, β̃) ∈ λ(Ẽ, Ã) we have

min
(α,β)∈λ(E,A)

∣∣∣α̃β − β̃α
∣∣∣ ≤ Sp

(
max

i

∥∥∥Cliff(Nk
i )
∥∥∥ , κ(X)

∥∥∥Cliff(α̃δE − β̃δA)
∥∥∥)

with δE ≡ π(Ẽ) − π(E) and δA ≡ π(Ã)− π(A).

Proof. Similar to the proof of Corollary 2.1, with the real and complex parts
of (E, A) forming a 4m-tuple, in place of the 2m-tuple in Corollary 2.1.

The perturbation of generalized joint spectra with common generalized Schur
/Kronecker structure (without common eigenvectors) can then be considered. Similar
to the bound in Theorem 4.1, the result will then have the form:

(28)

min
(α,β)∈λ(E,A)

∣∣∣α̃β − β̃α
∣∣∣

≤ Sp

(
max

i

∥∥∥Cliff(Nk
i )
∥∥∥ ,
∥∥∥Cliff

(
Y H(α̃δE − β̃δA)X

)∥∥∥)

4.3. Perturbation to Periodic Eigenvalues

Consider a periodic eigenvalue problem of periodicity m. Let (Êj, Âj) ≡
(Y H

j EjXj, Y
H
j AjXj−1) be the periodic Schur/Kronecker forms (Theorem 2.3) of

(Ej, Aj), and denote E(j) ≡ ÊjÊj+1 · · · Êj+m−1, A(j) ≡ Âj+m−1Âj+m−2 · · · Âj .
Consider them-tuples (E, A)whereE =

(
E(1), · · · , E(m)

)
, A =

(
A(1), · · · , A(m)

)
,

assuming that the Schur/Jordan blocks associated with a certain eigenvalue (πα, πβ)
appear at the same position in (E (j), A(j)). As (E(j), A(j)) (for all j) share the same
eigenvalues and eigenvectors (all columns of the identity matrix), we can consider
the joint spectrum of (E, A). Thus we can apply our results on generalized joint
spectrum to (E, A), which is obviously simultaneously Schur blockable (see §1).
Note that there may be more than one way of grouping the eigenvalues together
and writing down N k

i in Theorem 4.1. The worst case will be to group all the
blocks associated with a given eigenvalue together, making the dimensions of the
corresponding Nk

i and the error bounds large.
For any perturbed eigenvalue (π̃α, π̃β), (28) now reads

min
(πα,πβ)

|π̃απβ − π̃βπα| ≤ Sp

(
max

i

∥∥∥Cliff(Nk
i )
∥∥∥ ,
∥∥∥Cliff(π̃αδÊ − π̃βδÂ)

∥∥∥)
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where δÊ ≡ (δÊ(1), · · · , δÊ(m)) and δÂ ≡ (δÂ(1), · · · , δÂ(m)) are respectively
the changes in Ê and Â after perturbing (Ej, Aj) to (Ej + δEj, Aj + δAj).

When the Schur forms degenerate to Jordan forms, we have
∥∥Cliff(Nk

i )
∥∥ ≤ m

and ∆ ≡ (∆1, · · · , ∆m) = π̃αδÊ − π̃βδÂ with ∆j as defined in (15) in §2. The
perturbation result then degenerates to

min
(πα,πβ)

|π̃απβ − π̃βπα| ≤ Sp (m, ‖Cliff(∆)‖)

In general, similar bounds to those in §2 can then obviously be derived. Notice
that the left-hand-sides of the perturbation results equal the chordal metric used
in §2, when the eigenvalues are scaled appropriately. Notice also that Sp(∆, r) is
monotonically increasing in ∆, r and p, and various perturbation bounds can be
obtained.

Finally, clusters of eigenvalues can be considered, similar to Case II in Theo-
rem 2.4. For simple eigenvalues under asymptotic perturbations, simpler forms of
perturbation results can be obtained by ignoring higher order terms when considering
‖Cliff(∆)‖, similar to the approach in §2.

5. CONCLUDING REMARKS

Applying the Bauer-Fike and joint spectrum techniques techniques, new pertur-
bation results of periodic eigenvalue problems are obtained. Although it is difficult
to compare perturbation results (see comments at the end of §1), the perturbation
results from this paper provide new tools in the investigation of periodic eigen-
values, linking the theoretical tool of joint spectra with the engineering problem
involving periodic systems. More work has to be done, in terms of the efficient
numerical computation of the perturbation bounds and their comparison to other
existing bounds.
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