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HAYMAN’S CONJECTURE IN A p-ADIC FIELD

Jacqueline Ojeda

Abstract. In this paper we study the famous Hayman’s conjecture for tran-
scendental meromorphic functions in a p-adic field by using methods of p-adic
analysis and particularly the p-adic Nevanlinna theory.

In C, W. K. Hayman’s stated that if f is a transcendental meromorphic
function, then f ′ + afm has infinitely many zeros that are not zeros of f
for each integer m ≥ 3 and a ∈ C \ {0}, which was proved in [2], [6], [8]
and [11]. Here we examine the problem in an algebraically closed complete
ultrametric field K of characteristic zero. Considering the function f ′ + Tfm

with T ∈ K(x), we show that Hayman’s statement holds for each m ≥ 5 and
m = 1. Further, if the residue characteristic of K is zero, then the statement
holds for each positive integer m different from 2. We also examine the
problem inside an “open” disc.

1. INTRODUCTION AND RESULTS

1.1 Definitions, Notations and Main Results
Throughout this paper, K will denote an algebraically closed field of charac-

teristic zero, complete for an ultrametric absolute value. In K, the valuation v is
defined by a logarithm function log : v(x) = − log |x|.

We denote by A(K) the set of entire functions in K and by M(K) the set of
meromorphic functions in K, i.e., the field of fractions of A(K). Obviously,M(K)
contains the field K(x) of rational functions. We remember that the elements in
M(K) \ K(x) are called transcendental functions and have infinitely many zeros
or infinitely many poles.

Given a ∈ K and r1, r2 such that 0 < r1 < r2, we denote by Γ(a, r1, r2) the an-
nulus
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{x ∈ K : r1 < |x− a| < r2}, and given r > 0, we denote by d(a, r−) the open disc
{x ∈ K : |x − a| < r}, by C(a, r) the circle {x ∈ K : |x − a| = r}, and
by d(a, r) := d(a, r−) ∪ C(a, r) the closed disc. Consequently, we denote by
A(d(a, r−)) the set of analytic functions in d(a, r−), i.e., the K-algebra of power

series
∞∑
n=0

an(x − a)n converging in d(a, r−), and by M(d(a, r−)) the set of

meromorphic functions inside d(a, r−), i.e., the field of fractions of A(d(a, r−)).
Moreover, we denote by Ab(d(a, r−)) the K-subalgebra of A(d(a, r−)) consisted
of the bounded analytic functions f ∈ A(d(a, r−)), which satisfy sup

n∈N

|an|rn <

+∞, and by Mb(d(a, r−)) the field of fractions of Ab(d(a, r−)). Finally, we set
Au(d(a, r−)) = A(d(a, r−)) \ Ab(d(a, r−)) and Mu(d(a, r−)) = M(d(a, r−))
\Mb(d(a, r−)).

The paper aims at studying Hayman’s conjecture for transcendental meromor-
phic functions, first in a field of any residue characteristic and next in a field of
residue characteristic zero. The problem is the following one: let f ∈ M(K) be
transcendental and T ∈ K(x). Can we conclude that f ′ +Tfm has infinitely many
zeros that are not zeros of f?. Setting g = 1

f , it is easily seen that the zeros of
f ′ + Tfm which are not zeros of f are those of g′gm−2 − T . Thus, solving Hay-
man’s conjecture is equivalent to answering the question whether, given g ∈ M(K)
transcendental and T ∈ K(x), g ′gn − T has infinitely many zeros.

Indeed, let

g(x) =
1

f(x)
.

Then,

(1)
f ′(x) + Tfm(x) =

−1
[g(x)]2

g′(x) +
T

[g(x)]m

=
−1

[g(x)]m
(gm−2g′(x) − T ),

where we do n = m − 2.
The question has been studied in complex analysis for many years, considering

T = a ∈ C. In 1959, W. K. Hayman [8] proved that if g is a transcendental
meromorphic function, a ∈ C \ {0} and n ≥ 3, then g′gn − a has infinitely many
zeros. Twenty years later, E. Mues [11] solved the case n = 2, and finally in 1995
W. Bergweiler and A. Eremenko [2], and independently H. H. Chen and M. L. Fang
[6] proved that this also holds for n = 1, which completed the proof of Hayman’s
conjecture. Thus, in the complex case, we could deduce that f ′+afm has infinitely
many zeros which are not zeros of f when m ≥ 3.
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Remark 1. In C, f ′ + fm may have no zero if m = 1 or m = 2 as shown by
f(x) = exp(x) and f(x) = tan(−x) respectively.

In p-adic analysis, we can also obtain results in a similar problem. Before stating
the main theorems, we have to recall some notations used in several works in p-adic
analysis, particularly those used by A. Escassut in [7].

Given f(x) =
∞∑
n=0

anx
n ∈ A(K)

(
resp. in A(d(0, R−))

)
and r > 0

(
resp.

r ∈]0, R[
)
, we set

|f |(r) = lim
|x|→r, |x|�=r

|f(x)|.

Indeed, this limit exists and |∗| is an absolute value onA(K)
(
resp. onA(d(0, R−))

)
.

It has a natural continuation to M(K)
(
resp. M(d(0, R−))

)
by setting |f |(r) =

|g|(r)
|h|(r) whenever f = g

h , g, h ∈ A(K)
(
resp. g, h ∈ A(d(0, R−))

)
.

On the other hand, let f =
∑
n∈Z

anx
n ∈ M(K) and let r > 0. Consider f in the

circle C(0, r). We will denote by ν+(f, r)
(
resp. ν−(f, r)

)
the biggest integer i ∈ Z(

resp. the smallest integer i ∈ Z
)
such that v(ai) − i log r = inf

n∈Z

v(an) − n log r.

We will only write ν(f, r) when ν+(f, r) = ν−(f, r).

Remark 2. We now have to recall certain classical properties of meromorphic
functions

(
see Chapter 23 [7]

)
. Let f ∈ M(d(0, R−)) and let r ∈]0, R[.

(1) The difference between the number of zeros and that of poles of f in the circle
C(0, r), taking multiplicities into account, is equal to ν+(f, r)− ν−(f, r).

(2) If f has zeros and poles in the closed disc d(0, r′), and has no zeros and no
poles in the annuli Γ(0, r ′, r′′), then ν+(f, r) = ν−(f, r) ∀r ∈]r′, r′′[.

Throughout the paper we consider N∗ = N \ {0}, R > 1 an integer and T =
A
B ∈ K(x) with A,B ∈ K[x] having no common zeros.

Theorem 1. Let f ∈ M(K) be transcendental
(
resp. Let f ∈ Mu(d(0, R−))

)
.

If lim
r→+∞ |T |(r) > 0

(
resp. lim

r→R
|T |(r) > 1

R

)
, then f ′ + Tf has infinitely many

zeros that are not zeros of f .

Theorem 2. Let f ∈ M(K) be transcendental and deg(A) ≥ deg(B)
(
resp.

Let f ∈ Mu(d(0, R−))
)
. Let m > 2 be an integer. If lim sup

r→+∞
|f |(r) > 0

(
resp.

lim sup
r→R

|f |(r) = +∞)
, then f ′ + Tfm has infinitely many zeros that are not zeros

of f .
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Corollary 1. Let f ∈ M(K) be transcendental and deg(A) ≥ deg(B)
(
resp.

Let f ∈ Mu(d(0, R−))
)
. If f has a finite number of poles andm > 2 is an integer,

then f ′ + Tfm has infinitely many zeros that are not zeros of f .

Proof. Since f has a finite number of poles and f is a transcendental meromor-
phic function in K

(
resp. f ∈ Mu(d(0, R−))

)
, then necessarily f has infinitely

many zeros. Therefore, lim
r→+∞ |f |(r) = +∞ (

resp. lim
r→R

|f |(r) = +∞)
. So, by

Theorem 2, we can deduce the corollary.

Corollary 2. Let g ∈ M(K) be transcendental and deg(A) ≥ deg(B)
(
resp.

Let g ∈ Mu(d(0, R−))
)
. If g has a finite number of zeros, then g ′gn − T has

infinitely many zeros for all n ∈ N ∗.

Proof. Since g has a finite number of zeros, then f = 1
g has a finite number of

poles. So, applying Theorem 2 to f with m ≥ 3, and considering that n = m− 2,
we can deduce the corollary.

Let K̂ be an algebraic extension of the field K. In the following lemma, which
is very useful for the proofs of the following theorems, we will denote by d̂(0, R−)
the open disc {x ∈ K̂ : |x| < R} contained in K̂.

Lemma 1. Let f ∈ M(d(0, R−)) and let f̂ be the meromorphic function
defined by f in d̂(0, R−). Then the zeros and the poles of f̂ in d̂(0, R−) are
exactly the zeros and the poles of f in d(0, R−), taking multiplicities into account.

Remark 3. We remember that, given a meromorphic function f in the open disc
d(0, R−) ⊂ K, it is not always possible to find analytic functions h, l in d(0, R−)
without common zeros such that f = h

l , except if K is spherically complete, i.e.,
every decreasing filter on K has a center in K

(
see Chapter 3 [7] and [10]

)
. In our

case, K is an algebraically closed complete ultrametric field, therefore it admits a
spherically complete algebraically closed extension K̂

(
see Chapter 7 [7]

)
.

Now, in the field K, consider f ∈ M(d(0, R−)). It obviously defines a function
f̂ ∈ M(d̂(0, R−)) in the field K̂. And then, we may write f̂ in the form h0

l0
with

h0, l0 ∈ A(d̂(0, R−)) having no common zeros. Moreover, by Lemma 1, all zeros
and poles of f̂ in K̂ actually lie in K. So, by Theorem 25.5 [7], there exists
h ∈ A(d(0, R−)) such that the function ĥ ∈ A(d̂(0, R−)) defined in K̂ satisfies the
following:

(1) h0 divides ĥ in A(d̂(0, R−)).
(2) The function u = ĥ

h0
belongs to Ab(d̂(0, R−)).

Then we may set l = ul0 ∈ A(d̂(0, R−)). Moreover, we check that l has
coefficients in K because f = h

l , hence l = fh belongs to M(d(0, R−)) and has
no pole in d(0, R−).
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In the following theorems, when it is necessary, we shall consider f ∈ M(d̂(0,
R−)) because clearly M(d(0, R−)) ⊂ M(d̂(0, R−)).

In the general p-adic context, the following theorem is the equivalence of this
proved by W. K. Hayman

(
Theorem 9 [8]

)
. In the proofs of this theorem and the

following theorems, the previous Remark 3 and Lemma 1 will be useful.

Theorem 3. Let f ∈ M(K) be transcendental and deg(A) ≥ deg(B)
(
resp.

Let f ∈ Mu(d(0, R−))
)
. If m ≥ 5 is an integer, then f ′ + Tfm has infinitely

many zeros that are not zeros of f . Moreover, f ′ + f4 must have at least one zero
in K that is not a zero of f .

Considering (1) and the previous theorem, we obtain the following corollaries.

Corollary 3. Let g ∈ M(K) be transcendental and deg(A) ≥ deg(B)
(
resp.

Let g ∈ Mu(d(0, R−))
)
. If n ≥ 3 is an integer, then g ′gn − T has infinitely many

zeros.

Corollary 4. Let g ∈ M(K) be transcendental and deg(A) ≥ deg(B). Then
g′g2 − T has at least one zero in K.

In order to state Theorem 4, we need to recall some classical definitions. Let
UK = {x ∈ K : |x| ≤ 1} and WK = {x ∈ K : |x| < 1} be the valuation ring
and the valuation ideal of K respectively. The residue characteristic of K is the
characteristic of the quotient of UK by WK

(
see Chapter 1 [7]

)
.

Lemma 2. Let f(x) =
+∞∑
−∞

anx
n be a Laurent series converging for r ′ < |x| <

r′′ and have no zeros and no poles in Γ(0, r ′, r′′). Let q = ν(f, r) ∀r ∈]r′, r′′[. If
the residue characteristic of K does not divide q, then

|f ′(x)| =
|f(x)|
|x| ∀x ∈ Γ(0, r′, r′′).

Corollary 5. Let f ∈ M(d(0, r ′′)). Assume that f has s zeros and t poles in
d(0, r′) and has no zeros and no poles in Γ(0, r ′, r′′). If the residue characteristic
of K does not divide s − t, then |f ′(x)| = |f(x)|

|x| ∀x ∈ Γ(0, r′, r′′).

Proof. Indeed, by Theorem 23.4 [7], ν+(f, r) = ν−(f, r) ∀r ∈]r′, r′′[. If we
consider f = h

l with h, l ∈ A(d(0, r′′)), we have

ν(f, r) = ν(h, r)− ν(l, r) = s − t,
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whenever r ∈]r′, r′′[. So, by Lemma 2, we deduce the corollary.

Definition. Let f ∈ M(K)
(
resp. Let f ∈ M(d(0, R−))

)
.

A number r ∈]0,+∞[
(
resp. r ∈]0, R[

)
will be said to be f -suitable if the

difference between the number of zeros and that of poles of f in d(0, r), taking
multiplicities into account, is not a multiple of the residue characteristic of K.

A sequence {rn}n∈N ⊂ ]0,+∞[
(
resp. {rn}n∈N ⊂ ]0, R[

)
will be said to be

f -suitable if each rn is f -suitable and lim
n→+∞ rn = +∞ (

resp. lim
n→+∞ rn = R

)
.

The function f will be said to be optimal if there exists a f -suitable sequence
{rn}n∈N in ]0,+∞[

(
resp. in ]0, R[

)
.

Theorem 4. Let g ∈ M(K) be transcendental
(
resp. Let g ∈ Mu(d(0, R−))

)
and let {rn}n∈N be a g-suitable sequence. Then g′

g has infinitely many zeros.

Corollary 6. Let g ∈ M(K) be transcendental
(
resp. Let g ∈ Mu(d(0, R−))

)
and let {rn}n∈N be a g-suitable sequence. Then g ′gn and g′

gn have infinitely many
zeros whenever n ∈ N

∗.

Proof. Let n ∈ N. Observe that g ′gn =
(
g′
g

)
gn+1 and g′

gn =
(
g′
g

)
1

gn−1 . Note

that every zero of g
′
g is neither a zero nor a pole of g, every zero and every pole of

g being a simple pole of g
′
g . Thereby, since

g′
g has infinitely many zeros, we deduce

that g ′gn and g′
gn have infinitely many zeros in K (resp. in d(0, R−)).

Theorem 5. Let f ∈ M(K) be transcendental and optimal. If deg(A) = deg(B)
and if m ≥ 3 is an integer, then f ′ + Tfm has infinitely many zeros that are not
zeros of f .

Thus, by (1) we may derive the following corollary.

Corollary 7. Let g ∈ M(K) be transcendental and optimal. If deg(A) = deg(B),
then g ′gn − T has infinitely many zeros for every n ∈ N

∗.

Theorem 6. Let f ∈ Mu(d(0, R−)) be an optimal function and let U = φ
ψ ∈

Mb(d(0, R−)) have the same finite number of zeros and poles in d(0, R −). If m
≥3 is an integer, then f ′+Ufm has infinitely many zeros that are not zeros of f .

By (1), the following corollary is immediate.

Corollary 8. Let g ∈ Mu(d(0, R−)) be an optimal function and let U ∈
Mb(d(0, R−)) have the same finite number of zeros and poles in d(0, R −). Then
g′gn − U has infinitely many zeros for every n ∈ N

∗.
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Since almost every meromorphic function in a field of residue characteristic zero
is optimal, by Theorems 5 and 6, we can deduce Corollaries 9 - 10 and 11 - 12
respectively.

Corollary 9. Let f ∈ M(K) be transcendental and deg(A) = deg(B). If
K has residue characteristic zero and m ≥ 3 is an integer, then f ′ + Tfm has
infinitely many zeros that are not zeros of f .

Corollary 10. Let g ∈ M(K) be transcendental and deg(A) = deg(B). If K

has residue characteristic zero, then g ′gn − T has infinitely many zeros for every
n ∈ N∗.

Corollary 11. Let f ∈ Mu(d(0, R−)) be such that |f |(r) is not constant when
r tends to R, and let U ∈ Mb(d(0, R−)) have the same finite number of zeros and
poles in d(0, R−). If K has residue characteristic zero and m ≥ 3 is an integer,
then f ′ + Ufm has infinitely many zeros that are not zeros of f .

Corollary 12. Let g ∈ Mu(d(0, R−)) and let U ∈ Mb(d(0, R−)) have the
same finite number of zeros and poles in d(0, R−). If K has residue characteristic
zero, then g ′gn − U has infinitely many zeros for all n ∈ N

∗.

Remark 4. If K has residue characteristic p 	= 0, the problem remains unsolved
when m = 2, 3 and 4. In particular, in a p-adic field, we don’t know how
to construct a counter-exemple such as f(x) = tan(−x) showing that Hayman’s
statement does not hold when m = 2.

1.2. Nevanlinna Theory, Preliminary Results

We must now introduce some notations and results used in the p-adic Nevanlinna
theory that we will employ for proving the previous theorems.

Let α ∈ d(0, R−) and h ∈ M(d(0, R−)). If h has a zero of order n at α, we
set ωα(h) = n, if h has a pole of order n at α, we set ωα(h) = −n, and finally, if
h(α) 	= 0 and ∞, we set ωα(h) = 0.

Let f ∈ M(d(0, R−)) be such that 0 is neither a zero nor a pole of f. Let
r ∈]0, R[. We denote by Z(r, f) the counting function of zeros of f in d(0, R−)

Z(r, f) =
∑

ωα(f)>0 |α|≤r
ωα(f)(log r− log |α|),

and similarly, we set

Z(r, f) =
∑

ωα(f)>0 |α|≤r
(log r − log |α|).
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We shall also consider the counting functions of poles of f in d(0, R−)

N (r, f) = Z(r,
1
f

) and N(r, f) = Z(r,
1
f

).

The Nevanlinna function T (r, f) is defined by

T (r, f) = max{Z(r, f) + log |f(0)|; N (r, f)}.

A. Boutabaa and A. Escassut in [5], A. Escassut in [7] and P. C. Hu and C. C.
Yang in [9] give us results related to the p-adic Nevanlinna theory which we will
use in the later proofs. Some of them are the followings.

Lemma 3. If f ∈ A(K) \ K[x]
(
resp. If f ∈ Au(d(0, R−))

)
, then f has

infinitely many zeros.

Lemma 4. Let f ∈ A(K)
(
resp. Let f ∈ A(d(0, R−))

)
be such that f(0) 	= 0

and let r > 0 (resp. let r ∈]0, R[). For any b ∈ K, we have

Z(r, f − b) = Z(r, f) +O(1).

Lemma 5. Let f ∈ A(K)
(
resp. Let f ∈ A(d(0, R−))

)
be such that f(0) 	= 0

and let r > 0
(
resp. let r ∈]0, R[

)
. The functions T (r, f) and Z(r, f) are equivalent

up to an additive constant.

Proposition 1. Let fi ∈ M(K)
(
resp. Let fi ∈ M(d(0, R−))

)
be such that

fi(0) 	= 0, ∞ for i = 1, ..., k. Then, for r > 0
(
resp. for r ∈]0, R[

)
, we have

Z
(
r,

k∏
i=1

fi

)
≤

k∑
i=1

Z(r, fi),

T
(
r,

k∑
i=1

fi

)
≤

k∑
i=1

T (r, fi) , T
(
r,

k∏
i=1

fi

)
≤

k∑
i=1

T (r, fi),

and T (r, f) is an increasing function of r.

As a corollary of Lemma 2.1 [5], considering the previous notations, we obtain
the following Lemma 6 that also is known as the version p-adic of Jensen’s formula.

Lemma 6. Let f ∈ M(K)
(
resp. Let f ∈ M(d(0, R−))

)
be such that 0 is

neither a zero nor a pole of f . Then,

log |f |(r) = Z(r, f)−N (r, f)+ log |f(0)|.
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Proposition 2. Let f ∈ M(d(0, R−)) be such that f(0) 	= 0, ∞. Then,
f ∈ Mb(d(0, R−)) if and only if T (r, f) is bounded in ]0, R[.

Let f ∈ M(d(0, R−)) be such that 0 is neither a zero nor a pole of f ′ and let
S be a finite subset of K. We denote by ZS0 (r, f ′) the counting function of zeros
of f ′ in d(0, r) which are not zeros of any f − s for s ∈ S. Then,

ZS0 (r, f ′) =
∑

s∈S, wα(f−s)=0, |α|≤r
wα(f ′)(log r− log |α|).

Now we can state the ultrametric Nevanlinna Second Main Theorem in a basic
form.

Theorem N. Let β1, ..., βn ∈ K with n ≥ 2, and let f ∈ M(K) (resp. let
f ∈ M(d(0, R−))). Let S = {β1, ..., βn}. Assume that none of f, f ′ and f − βj
with 1 ≤ j ≤ n equals 0 or ∞ at the origin. Then, for all r > 0

(
resp. for all

r ∈]0, R[
)
, we have

(n− 1)T (r, f) ≤
n∑
j=1

Z(r, f − βj) +N(r, f)− ZS0 (r, f ′) − log r +O(1).

In order to go on, we remember the interesting corollary of the Nevanlinna
Second Main Theorem on three small functions for p-adic analytic functions

(
see

Theorem 4 [12]
)
, which we will use later in the proof of Theorem 3.

Theorem T. Let f ∈ A(K)
(
resp. Let f ∈ A(d(0, R−))

)
be non-constant such

that f(0) 	= 0, and let u1, u2 ∈ A(K)
(
resp. let u1, u2 ∈ A(d(0, R−))

)
be small

functions with respect to f and not zero at 0. Then,

T (r, f) ≤ Z(r, f − u1) + Z(r, f − u2) + S(r)

where S(r) = 2T (r, u1) + 3T (r, u2) − log r+ O(1) .

2. PROOFS OF THE MAIN LEMMAS AND THEOREMS

2.1. Proof of Lemma 1

Proof. It is sufficient to show the claim whenever f ∈ A(d(0, R−)). Let

f(x) =
+∞∑
i=0

cix
i. Clearly we can notice that every zero of f in d(0, R−) is also a

zero of f̂ in d̂(0, R−).
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Let r ∈]0, R[ and let α1, ..., αq be the zeros of f in the circle C(0, r) with

ωαi(f) = si for i = 1, ..., q. Thereby, f is factorized in the form f =
q∏
i=1

(x −

αi)sig, where g ∈ A(d(0, R−)) and g(αi) 	= 0 for i = 1, ..., q. Observe that this
factorization also holds inM(d̂(0, R−)). Hence αi is also a zero of order si of f̂ for
i = 1, ..., q. Now, suppose that f̂ admits other zeros αq+1, ..., αt with ωαi(f̂) = si
for i = q + 1, ..., t. By Theorem 23.1 [7], for all r ∈]0, R[, we have

ν+(f, r)− ν−(f, r) =
q∑
i=1

si,

and similarly, we have

ν+(f̂ , r)− ν−(f̂ , r) =
t∑
i=1

si.

But, we know that ν+(f, r), ν−(f, r), ν+(f̂ , r), ν−(f̂ , r) are only defined
by the coefficients of f . So, for r ∈]0, R[, we have ν+(f, r) = ν+(f̂ , r) and
ν−(f, r) = ν−(f̂ , r). Consequently t = q, which finishes the proof.

2.2. Proof of Lemma 2

Proof. Since f has no zeros in Γ(0, r′, r′′), then by Theorem 23.4 [7],
ν+(f, r) = ν−(f, r) ∀r ∈]r′, r′′[. Moreover, since q = ν(f, r) ∀r ∈]r′, r′′[, we
have

|f(x)| = |aq||x|q ∀x ∈ Γ(0, r′, r′′)

with |aq||x|q > |an||x|n ∀q 	= n. Consequently, since |q| = 1 by our assumption
that the residue characteristic of K does not divide q, we have

|f ′(x)| =
∣∣∣

+∞∑
−∞

nanx
n−1

∣∣∣ = |aq||x|q−1 =
1
|x| |aq||x|

q.

Therefore, we may deduce that |f′(x)| = |f(x)|
|x| .

2.3. Proof of Theorem 1

Proof. Let r > 0
(
resp. Let r ∈ [1, R[

)
. By Lemma 4 [3], we know that

|f ′|(r) ≤ 1
r |f |(r). We shall check that there exists a ρ ∈]0,+∞[

(
resp. ρ ∈ [1, R[

)
such that |f ′|(r) < |Tf |(r) ∀r ∈]ρ,+∞[

(
resp. ∀r ∈]ρ, R[

)
. Indeed, if f ∈ M(K)

the existence of ρ is immediate because lim
r→+∞ |T |(r) > 0. Now, suppose that
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f ∈ Mu(d(0, R−)). Since lim
r→R

|T |(r)> 1
R
, by continuity, we can find a ρ ∈ [1, R[

such that |T |(r) > 1
r ∀r ∈]ρ, R[. So we have proved the existence of ρ ∈]0,+∞[(

resp. ρ ∈ [1, R[
)
such that |f ′|(r) ≤ 1

r |f |(r) < |Tf |(r). Consequently
|f ′ + Tf |(r) = |Tf |(r) ∀r > ρ

(
resp. ∀ r ∈]ρ, R[

)
.

Suppose first that f has a finite number of poles. Then, f has infinitely many zeros
in K

(
resp. in d(0, R−)

)
because f is transcendental in K

(
resp. is unbounded in

d(0, R−)
)
. Moreover, there exists an increasing sequence {rn}n∈N with lim

n→+∞ rn =

+∞ (
resp. lim

n→+∞ rn = R
)
, such that f admits zeros and no poles in C(0, rn),

such that T has no zeros and no poles in C(0, rn) and such that

|f ′ + Tf |(r) = |Tf |(r) ∀r ≥ r1.

Since |f ′ + Tf |(r) = |Tf |(r) in a neighborhood of rn, we have
(2) ν+(f ′ + Tf, rn) − ν−(f ′ + Tf, rn) = ν+(f, rn)− ν−(f, rn),

where ν+(f, rn) − ν−(f, rn) is the number of zeros of f in C(0, rn) and ν+(f ′

+Tf, rn) − ν−(f ′ + Tf, rn) is the number of zeros of f ′+Tf inC(0, rn)
(
counting

multiplicities
)
. Hence, we may deduce that f′ + Tf has zeros in C(0, rn) and the

number of zeros of f′ + Tf is equal to the number of zeros of f in C(0, rn)(
counting multiplicities

)
.

On the other hand, since each zero of f in C(0, rn) either is not a zero of
f ′ +Tf or is a zero of f′ +Tf of order strictly lower than its order as a zero of f ,
by (2) there does exist at least a zero of f′ +Tf that is not a zero of f in C(0, rn).
Since this is true for all n ∈ N, we obtain that f ′ + Tf has infinitely many zeros
in K

(
resp. in d(0, R−)

)
that are not zeros of f .

Now, suppose that f has infinitely many poles. Then, there exists an increasing
sequence {rn}n∈N with lim

n→+∞ rn = +∞ (
resp. lim

n→+∞ rn = R
)
, such that f admits

poles in C(0, rn), such that T has no zeros and no poles in C(0, rn) and such that

|f ′ + Tf |(r) = |Tf |(r) ∀r ≥ r1.

Let n ∈ N. Let sn and tn be the number of zeros and that of poles of f in
C(0, rn) respectively, and let γn and τn be the number of zeros and that of poles
of f ′ + Tf in C(0, rn) respectively. Then, we deduce that

ν+(f, rn)−ν−(f, rn) = sn−tn and ν+(f ′+Tf, rn)−ν−(f ′+Tf, rn) = γn−τn.
Since |f ′ + Tf |(r) = |Tf |(r) in a neighborhood of rn, we have again

ν+(f, rn) − ν−(f, rn) = ν+(f ′ + Tf, rn) − ν−(f ′ + Tf, rn).
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Consequently, γn − τn = sn − tn in C(0, rn). But we may observe that τn is the
number of poles of f ′ in C(0, rn)

(
counting multiplicities

)
. So, since T has no

zeros and no poles in C(0, rn), we have τn > tn which implies that γn > sn. Thus,
f ′ + Tf must have at least one zero in C(0, rn) that is not a zero of f . Since this
is true for all n ∈ N , we deduce that f ′ +Tf has infinitely many zeros in K

(
resp.

in d(0, R−)
)
which are not zeros of f .

2.4. Proof of Theorem 2

Proof. Assume, without loss of generality, that 0 is neither a zer nor a pole
Tfm and f ′ + Tfm. We shall prove that f has infinitely many zeros in K

(
resp.

in d(0, R−)
)
. First we suppose f ∈ M(K). By hypothesis lim sup

r→+∞
|f |(r) > 0,

i.e., there exist a sequence {Γ(0, r′n, r′′n)}n∈N with lim
n→+∞ r′′n = +∞, and a constant

C > 0, such that Z(r, f) ≥ N (r, f)+C ∀r ∈
⋃
n∈N

]r′n, r
′′
n[. If f has a finite number

of zeros, say, q, then Z(r, f) = q log r and so N (r, f)+C ≤ q log r. Consequently
f has a finite number of poles, a contradiction because f is transcendental.

Now, suppose f ∈ Mu(d(0, R−)). If f has a finite number of zeros in d(0, R−),
then lim

r→R
Z(r, f) < +∞ and hence lim sup

r→R
|f |(r) < +∞, a contradiction to our

hypothesis.
Suppose that the set of zeros of f ′ + Tfm which are not zeros of f is finite.

Then, there exists a ρ > 0
(
resp. ρ ∈ [1, R[

)
such that f ′ + Tfm has no zeros

other than the multiple zeros of f in K \ d(0, ρ) (
resp. in Γ(0, ρ, R)

)
and such that

T has no zeros and no poles in K \ d(0, ρ) (
resp. in Γ(0, ρ, R)

)
. So, each pole of

f ′ + Tfm is a pole of fm of the same multiplicity. Hence,

(3)
N (r, f ′ + Tfm) −N (ρ, f ′ + Tfm)

= N (r, fm) −N (ρ, fm) ∀r ∈ K \ d(0, ρ) (resp. ∀r ∈]ρ, R[).

Let σ > ρ be such that C(0, σ) contains at least one zero of f . Each zero of
f , say, of order q, either is not a zero of f′ + Tfm or is a zero of f′ + Tfm with
order q − 1. Since f ′ + Tfm has no zeros in C(0, r) other than the zeros of f and
T has no zeros and no poles in C(0, r), clearly the number of zeros of f′ +Tfm in
C(0, r)

(
counting multiplicities

)
is strictly inferior to the number of zeros of Tfm(

counting multiplicities
)
. So, the function

Ψ(r) = Z(r, fm) − Z(ρ, fm) −
[
Z(r, f ′ + Tfm) − Z(ρ, f ′ + Tfm)

]

is strictly increasing in [σ,+∞[
(
resp. in [σ, R[

)
.
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Now, we will show that there exists an increasing sequence of intervals ]r ′n, r′′n[
with
ρ < r′n < r′′n < r′n+1 and lim

n→+∞ r′′n = +∞ (
resp. lim

n→+∞ r′′n = R
)
, such that

|f ′ + Tfm|(r) = |Tfm|(r) ∀r ∈]r′n, r′′n[. Suppose first that f ∈ M(K). Since
lim sup
r→+∞

|f |(r) > 0, there exist a sequence of annulus {Γ(0, r′n, r′′n)}n∈N with ρ <

r′n < r′′n and lim
n→+∞ r′′n = +∞, and a constant C > 0 such that

|f |(r) > C ∀r ∈]r′n, r
′′
n[ ∀n ∈ N.

Since T has no zeros and no poles in ]r′n, r′′n[ and deg(A) ≥ deg(B), then there
exists a constant λ > 0 such that |T |(r) ≥ λ ∀r ∈]r ′n, r′′n[. So

|Tfm|(r) > Cmλ ∀r ∈]r′n, r
′′
n[ ∀n ∈ N.

On the other hand, by Lemma 4 [3], |f ′|(r) ≤ 1
r |f |(r). So, if we consider the

previous observation, we can deduce that
∣∣∣ f ′

Tfm

∣∣∣(r) ≤ 1
r

1
|Tfm−1|(r) <

1
λr

( 1
C

)m−1
.

However, for r sufficiently large, we have 1
λr(

1
C )m−1 < 1. Hence |f ′|(r) <

|Tfm|(r). Thereby,
|f ′ + Tfm|(r) = |Tfm|(r). Thus, this equality holds in all annulus Γ(0, r ′n, r′′n)
when r′n is sufficiently large. Consequently, without loss of generality, we may
assume that |f ′ + Tfm|(r) = |Tfm|(r) ∀r ∈]r′n, r′′n[ ∀n ∈ N.

Now, we suppose that f ∈ Mu(d(0, R−)). Since lim sup
r→R

|f |(r) = +∞
there exists a sequence of annulus {Γ(0, r ′n, r′′n)}n∈N with ρ < r′n < r′′n and
lim

n→+∞ r′′n = R, such that |f |(r) ≥ n ∀r ∈]r′n, r′′n[ and n ∈ N. Since T ∈ K(x), there

exists a constant λ > 0 such that inf
r∈[1,R[

|T |(r) = λ. Then, |Tfm|(r) ≥ λ|f |(r)nm−1

∀r ∈]r′n, r′′n[ and n ∈ N. Moreover, we can see that |f′|(r) < |f |(r) ∀r ∈]r′n, r′′n[ be-
cause r′n > 1. Consequently, when n is sufficiently large, we have
|f ′|(r) < |f |(r) < λnm−1|f |(r) ≤ |Tfm|(r) ∀r ∈]r′n, r′′n[, which implies that
|f ′ + Tfm|(r) = |Tfm|(r) ∀r ∈]r′n, r′′n[.

Therefore, by Lemma 6, we obtain

(4)
Z(r, Tfm + f ′) −N (r, Tfm + f ′)

= Z(r, fm) −N (r, fm) + χ ∀r ∈]r′n, r′′n[,

where χ is defined as m log |f(0)| − log |T (0)fm(0) + f ′(0)|. And by (3) and (4),
we can check that

Ψ(r) = Z(ρ, f ′ + Tfm) −N (ρ, f ′ + Tfm) − [
Z(ρ, fm) −N (ρ, fm) + χ

]
.
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ConsequentlyΨ is constant in [σ,+∞[
(
resp. in [σ, R[

)
, a contradiction because

we have showed that it is strictly increasing.

2.5. Proof of Theorem 3

Proof. In order to prove Theorem 3, thanks to Lemma 1, we can place ourselves
in d̂(0, R−) ⊂ K̂ in the case when f ∈ Mu(d(0, R−)). Since f is a transcenden-
tal meromorphic function in K

(
resp. unbounded in d̂(0, R−)

)
, there exist entire

functions h, l ∈ A(K)
(
resp. h, l ∈ A(d̂(0, R−))

)
without common zeros and at

least one of them being transcendental
(
resp. unbounded

)
such that f = h

l . We
can write h in the form h h̃, where the zeros of h are exactly the different zeros of
h but all with multiplicity 1. Then, necessarily, h′ is multiple of h̃ in A(K)

(
resp.

in Ad̂(0, R−)
)
. So h′ = u h̃ with u ∈ A(K)

(
resp. u ∈ A(d̂(0, R−))

)
.

Suppose that f ′ + Tfm has a finite number of zeros in K
(
resp. in d̂(0, R−)

)
which are not zeros of f . Then, there exists a polynomial P ∈ K[x] of degree q,
having no common zeros with Bl, such that

f ′ + Tfm =
P h̃

Blm
.

This implies

(5) f ′

fm
=
Ph̃ − Ahm

Bhm
=
P − Ahhm−1

B h
m
h̃m−1

.

On the other hand, we note that

(6) f ′

fm
=
lm−2(h′l− hl′)

hm
=
lm−2(ul− hl′)
h
m
h̃m−1

.

So, by (5) and (6),

Blm−2(ul− hl′) = P − Ahhm−1.

Let F = Blm−2(ul − hl′) and s = deg(A). Let r > 0
(
resp. Let r ∈ [1, R[

)
.

Applying Theorem T to F , and noting that Z(r, h) = Z(r, hhm−1) = Z(r, h), we
obtain

(7)

T (r, F ) ≤ Z(r, F ) + Z(r, F − P ) + 3T (r, P )− log r +O(1)

≤ Z(r, B) + Z(r, lm−2) + Z(r, ul− hl′))

+Z(r, A) + Z(r, h) + (3q − 1) log r +O(1)

≤ Z(r, B) + Z(r, l)

+Z(r, ul− hl′) + Z(r, h) + (3q + s− 1) log r + O(1).
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Moreover, we have

(8)
T (r, F ) = T (r, B) + T (r, lm−2) + T (r, ul− hl′) +O(1)

= Z(r, B) + (m− 2)Z(r, l)+ Z(r, ul− hl′) + O(1).

Let d = 3q + s− 1. By (7) and (8), we deduce that

(9) (m− 3)Z(r, l) ≤ Z(r, h) + d log r +O(1).

Since we assume that the set of zeros of f ′ + Tfm that are not zeros of f is
finite, by Theorem 2, we can restrict ourselves to the assumption lim sup

r→+∞
|f |(r) =

0
(
resp. lim sup

r→R
|f |(r) < +∞)

and therefore lim sup
r→+∞

[Z(r, l)− Z(r, h)] = +∞(
resp. lim sup

r→R
[Z(r, h) − Z(r, l)] < +∞)

. Consequently, there exist a sequence

{rn}n∈N such that lim
n→+∞ rn = +∞ (

resp. lim
n→+∞ rn = R

)
, and a constant C > 0

such that Z(rn, h) < Z(rn, l) + C ∀n ∈ N. So, by (9), we have

(10) (m− 4)Z(rn, l)< d log rn + O(1).

If we assume f ∈ M(K), then by hypothesis, lim sup
r→+∞

|f |(r) = 0 and so l

is a transcendental function. Thereby, when m ≥ 5, we have lim
n→+∞Z(rn, l) =

+∞, a contradiction to (10). Now, if we assume f ∈ Mu(d̂(0, R−)), then at
least one of the two functions h, l belongs to Au(d̂(0, R−)). Since, by hypothesis,
lim sup
r→R

|f |(r) < +∞, we deduce that l must lie in Au(d̂(0, R−)) because if l ∈
Ab(d̂(0, R−)), then h ∈ Au(d̂(0, R−)) and in this case lim sup

r→R
|f |(r) = +∞, a

contradiction. Hence lim
n→+∞Z(rn, l) = +∞, a contradiction to (10) again.

Thus, whenm ≥ 5, f ′+Tfm has infinitely many zeros inK
(
resp. in d̂(0, R−)

)
which are not zeros of f . Consequently, by Lemma 1, f′+Tfm has infinitely many
zeros in d(0, R−) that are not zeros of f .

Now, consider T ≡ 1 and suppose that f ′ +f4 has no zeros in K which are not
zeros of f . Then d = −1. So, by (10), we obtain

0 < − log rn + O(1) ∀n ∈ N,

and hence we have a contradiction when n → +∞. Consequently, f ′ + f4 has at
least one zero in K that is not a zero of f .
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2.6. Proof of Theorem 4

Proof. Let {rn}n∈N be a g-suitable sequence. For each n ∈ N∗, there exists
r′n ∈]rn, rn+1[ such that g has no zero and no pole in the annulus Γ(0, rn, r′n).
Consequently, by Lemma 2, we have |g′(x)|

|g(x)| = 1
|x| ∀x ∈ Γ(0, rn, r′n). So,

ν
(
g′
g , r

)
= −1 ∀r ∈]rn, r′n[.

Observe that the poles of g
′
g are all simple ones and correspond to the zeros and

the poles of g. Since g is a transcendental meromorphic function in K
(
resp. g is

unbounded in d(0, R−)
)
, we derive that g

′
g has infinitely many poles in K

(
resp. in

d(0, R−)
)
. Moreover, since ν

(
g′
g , r

)
= −1 whenever r ∈]rn, r′n[, by Corollary 5,

the difference between the number of poles and the number of zeros of g
′
g in d(0, r)

is just 1. Then clearly, g
′
g has infinitely many zeros in K

(
resp. in d(0, R−)

)
.

2.7. Proof of Theorem 5

Proof. Here we assume deg(A) = deg(B). Let f be of the form h
l with

h, l ∈ A(K) having no common zeros. As in the proofs of Theorem 3, we can
write h in the form h h̃, where the zeros of h are exactly the different zeros of h
but all with multiplicity 1, and h ′ is of the form h̃u with u ∈ A(K).

Suppose that f ′ + Tfm only has finitely many zeros which are not zeros of f .
There exists a P ∈ K[x] such that f ′ + Tfm = Ph̃

Blm with P h̃ and Blm having no
common zeros in K.

On the other hand, we have

f ′ + Tfm =

[
Blm−2(ul− h l′) +Ah

m
h̃m−1

]
h̃

Blm
.

Since h, l have no common zeros and since A, B have no common zeros either,
each zero α of

[
Blm−2(ul−h l′)+Ahm h̃m−1

]
that is not a zero of f ′+Tfm must

be a zero of A or a zero of B or l. But note that if α is a zero of l then it is a zero
of A. Thus the zeros of

[
Blm−2(ul − h l′) + Ah

m
h̃m−1

]
which are not zeros of

f ′ +Tfm must be zeros of A or B and therefore are a finite number. Moreover, we
notice that a zero α of

[
Blm−2(ul−h l′)+Ah

m
h̃m−1

]
is not a zero of f except if

it is a zero of B, because a zero of f cannot be a zero of u. Consequently, the zeros
of f ′ +Tfm that are not zeros of f are the zeros of Blm−2(ul− hl′) +Ah

m
h̃m−1(

counting multiplicities
)
, except a finite number.

Next, we may notice that h /∈ K[x]. Indeed, suppose h ∈ K[x]. Since f /∈
K(x), then l /∈ K[x] and hence Blm−2(ul− hl′) + Ah

m
h̃m−1 /∈ K[x]. Therefore,

Blm−2(ul− hl′) + Ah
m
h̃m−1 has infinitely many zeros which are not zeros of f ,

a contradiction to our initial supposition.
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Now, we consider H = f ′
fm = −A

B + Ph̃
Bhm = −A

B + P
Bhm−1h

. Since h is

not a polynomial in K we have lim
|x|→+∞

∣∣∣ P (x)
(Bhm−1h)(x)

∣∣∣ = 0. Moreover, since

deg(A) = deg(B), A and B have the same number of zeros, taking multiplicities

into account and hence we may derive that lim
|x|→+∞

∣∣∣A(x)
B(x)

∣∣∣ = a with a ∈ R+.

Hence, lim
|x|→+∞

|H(x)| = a. Consequently, there exists a ρ > 0 such that ν(H, r) =

0 ∀r ≥ ρ.
On the other hand, since f is an optimal function, there exists a f -suitable

sequence {rn}n∈N with lim
n→+∞ rn = +∞. Let {sn}n∈N be another sequence such

that rn < sn < rn+1 and such that ν(f, r) is constant inside ]rn, sn[. By Proposition
20.9 [7], we have ν( f

′
fm , r) = ν(f ′, r)−mν(f, r), and by Corollary 5, we have

ν(f ′, r) = ν(f, r) − 1 ∀r ∈]rn, sn[. Consequently,

0 = ν(H, r) = (1 −m)ν(f, r)− 1 ∀r ∈]rn, sn[,

a contradiction whenm ≥ 3. Thus, f ′+Tfm has infinitely many zeros in K which
are not zeros of f .

2.8. Proof of Theorem 6

Proof. As in the proof of Theorem 3, without loss of generality, we may place
ourselves in the spherically complete field K̂ and consider f ∈ Mu(d̂(0, R−)). So,
there exist functions h, l ∈ A(d̂(0, R−)) having no common zeros, such that f = h

l .
Moreover, at least one of them is unbounded. As in the proofs of Theorems 3 and
5, we can write h in the form h h̃, where the zeros of h are exactly the different
zeros of h but all with order 1. Then h′ = h̃u with u ∈ A(d̂(0, R−)).

Suppose that f ′ + Ufm only has a finite number of zeros which are not zeros
of f . The proof now is similar to this of Theorem 5. There exists P ∈ K̂[x] such
that f ′ + Ufm is of the form Ph̃

ψlm with P h̃ and ψlm having no common zeros in

d̂(0, R−). Consequently, f ′
fm = Ph̃−φhm

ψhm . Since f is an optimal function, there

exists a f -suitable sequence {rn}n∈N such that lim
n→+∞ rn = R. Let {sn} be another

sequence such that rn < sn < rn+1 and such that ν(f, r) is constant inside ]rn, sn[.
By Corollary 5, we have ν(f′, r) = ν(f, r) − 1 ∀r ∈]rn, sn[, and by Proposition
20.9 [7], we have ν( f

′
fm , r) = ν(f ′, r)−mν(f, r). Consequently, as in the proof of

the previous theorem, we have

(11) ν( f
′

fm , r) = −(m − 1)ν(f, r)− 1 ∀r ∈]rn, sn[.
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On the other hand, considering that f is of the form h h̃
l we deduce that

f ′ + Ufm =

[
ψlm−2(ul− hl′) + φh

m
h̃m−1

]
h̃

ψlm
.

Let H = Ph̃−φhm

ψhm . We shall prove that h is unbounded in d̂(0, R−). Suppose
that h ∈ Ab(d̂(0, R−)). Since φ and psi belons to Ab(d̂(0, R−)), then H belong to
Mb(d̂(0, R−)), hence l ∈ Au(d̂(0, R−)). Thereby, ψlm−2(ul−hl′)+φhm h̃m−1 is
an unbounded analytic function in d̂(0, R−). So, by Lemma 3, ψlm−2(ul − hl′) +
φh

m
h̃m−1 has infinitely many zeros in d̂(0, R−), but these zeros are the zeros of

f ′ +Ufm that are not zeros of f except a finite number of them (see arguments in
the proof of Theorem 5), a contradiction to our supposition. Hence, we may deduce

that lim
r→R−

∣∣∣ P

ψhm−1h

∣∣∣(r) = 0.

Now, since φ and ψ have the same finite number of zeros in d̂(0, R−)
(
counting

multiplicities
)
, there exists a ρ < R such that ν( φψ , r) = 0 ∀r ∈ [ρ, R[, and therefore

|U |(r) is a constant c in [ρ, R[. Consequently, there exists a ρ′ ∈ [ρ, R[ such that
|H |(r) = |U |(r) = c ∀r ∈ [ρ′, R[. Thus, ν(H, r) = 0 ∀r ∈ [ρ′, R[.

The end of the proof is then similar to that of the previous theorem. By (11)
and the previous observation, we have (m−1)ν(f, r) = −1 ∀r ∈]rn, sn[ ∀n ∈ N,
which is absurd because m ≥ 3. Hence f ′ +Ufm has infinitely many zeros which
are not zeros of f whenever m ≥ 3.
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