TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 9, pp. 2295-2313, December 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

HAYMAN'S CONJECTURE IN A p-ADIC FIELD

Jacqueline Ojeda

Abstract. In this paper we study the famous Hayman's conjecture for transcendental meromorphic functions in a *p*-adic field by using methods of *p*-adic analysis and particularly the *p*-adic Nevanlinna theory.

In \mathbb{C} , W. K. Hayman's stated that if f is a transcendental meromorphic function, then $f' + af^m$ has infinitely many zeros that are not zeros of ffor each integer $m \ge 3$ and $a \in \mathbb{C} \setminus \{0\}$, which was proved in [2], [6], [8] and [11]. Here we examine the problem in an algebraically closed complete ultrametric field \mathbb{K} of characteristic zero. Considering the function $f' + Tf^m$ with $T \in \mathbb{K}(x)$, we show that Hayman's statement holds for each $m \ge 5$ and m = 1. Further, if the residue characteristic of \mathbb{K} is zero, then the statement holds for each positive integer m different from 2. We also examine the problem inside an "open" disc.

1. INTRODUCTION AND RESULTS

1.1 Definitions, Notations and Main Results

Throughout this paper, \mathbb{K} will denote an algebraically closed field of characteristic zero, complete for an ultrametric absolute value. In \mathbb{K} , the valuation v is defined by a logarithm function $\log |v| = -\log |x|$.

We denote by $\mathcal{A}(\mathbb{K})$ the set of entire functions in \mathbb{K} and by $\mathcal{M}(\mathbb{K})$ the set of meromorphic functions in \mathbb{K} , i.e., the field of fractions of $\mathcal{A}(\mathbb{K})$. Obviously, $\mathcal{M}(\mathbb{K})$ contains the field $\mathbb{K}(x)$ of rational functions. We remember that the elements in $\mathcal{M}(\mathbb{K}) \setminus \mathbb{K}(x)$ are called *transcendental functions* and have infinitely many zeros or infinitely many poles.

Given $a \in \mathbb{K}$ and r_1, r_2 such that $0 < r_1 < r_2$, we denote by $\Gamma(a, r_1, r_2)$ the annulus

Received March 27, 2007, accepted May 7, 2007.

Communicated by Julic Tzu-Yueh Wang.

²⁰⁰⁰ Mathematics Subject Classification: 12J25, 30G06, 32P05.

Key words and phrases: Meromorphic, Nevanlinna, Ultrametric, Conjecture.

Grant from the special program DLF 22 from the Chilean Government.

 $\{x \in \mathbb{K} : r_1 < |x - a| < r_2\}, \text{ and given } r > 0, \text{ we denote by } d(a, r^-) \text{ the open disc} \\ \{x \in \mathbb{K} : |x - a| < r\}, \text{ by } C(a, r) \text{ the circle } \{x \in \mathbb{K} : |x - a| = r\}, \text{ and by } d(a, r) := d(a, r^-) \cup C(a, r) \text{ the closed disc. Consequently, we denote by } \\ \mathcal{A}(d(a, r^-)) \text{ the set of analytic functions in } d(a, r^-), \text{ i.e., the } \mathbb{K}\text{-algebra of power series } \sum_{n=0}^{\infty} a_n(x - a)^n \text{ converging in } d(a, r^-), \text{ and by } \mathcal{M}(d(a, r^-)) \text{ the set of meromorphic functions inside } d(a, r^-), \text{ i.e., the field of fractions of } \mathcal{A}(d(a, r^-)). \\ \text{Moreover, we denote by } \mathcal{A}_b(d(a, r^-)) \text{ the } \mathbb{K}\text{-subalgebra of } \mathcal{A}(d(a, r^-)) \text{ consisted of the bounded analytic functions } f \in \mathcal{A}(d(a, r^-)), \text{ which satisfy } \sup_{n \in \mathbb{N}} |a_n|r^n < +\infty, \text{ and by } \mathcal{M}_b(d(a, r^-)) \text{ the field of fractions of } \mathcal{A}_b(d(a, r^-)). \\ \text{Finally, we set } \mathcal{A}_u(d(a, r^-)) = \mathcal{A}(d(a, r^-)) \setminus \mathcal{A}_b(d(a, r^-)) \text{ and } \mathcal{M}_u(d(a, r^-)) = \mathcal{M}(d(a, r^-)) \\ \setminus \mathcal{M}_b(d(a, r^-)). \\ \end{bmatrix}$

The paper aims at studying Hayman's conjecture for transcendental meromorphic functions, first in a field of any residue characteristic and next in a field of residue characteristic zero. The problem is the following one: let $f \in \mathcal{M}(\mathbb{K})$ be transcendental and $T \in \mathbb{K}(x)$. Can we conclude that $f' + Tf^m$ has infinitely many zeros that are not zeros of f?. Setting $g = \frac{1}{f}$, it is easily seen that the zeros of $f' + Tf^m$ which are not zeros of f are those of $g'g^{m-2} - T$. Thus, solving Hayman's conjecture is equivalent to answering the question whether, given $g \in \mathcal{M}(\mathbb{K})$ transcendental and $T \in \mathbb{K}(x)$, $g'g^n - T$ has infinitely many zeros.

Indeed, let

$$g(x) = \frac{1}{f(x)}$$

Then,

(1)
$$f'(x) + Tf^{m}(x) = \frac{-1}{[g(x)]^{2}} g'(x) + \frac{T}{[g(x)]^{m}}$$
$$= \frac{-1}{[g(x)]^{m}} (g^{m-2}g'(x) - T),$$

where we do n = m - 2.

The question has been studied in complex analysis for many years, considering $T = a \in \mathbb{C}$. In 1959, W. K. Hayman [8] proved that if g is a transcendental meromorphic function, $a \in \mathbb{C} \setminus \{0\}$ and $n \geq 3$, then $g'g^n - a$ has infinitely many zeros. Twenty years later, E. Mues [11] solved the case n = 2, and finally in 1995 W. Bergweiler and A. Eremenko [2], and independently H. H. Chen and M. L. Fang [6] proved that this also holds for n = 1, which completed the proof of Hayman's conjecture. Thus, in the complex case, we could deduce that $f' + af^m$ has infinitely many zeros which are not zeros of f when $m \geq 3$.

Remark 1. In \mathbb{C} , $f' + f^m$ may have no zero if m = 1 or m = 2 as shown by $f(x) = \exp(x)$ and $f(x) = \tan(-x)$ respectively.

In *p*-adic analysis, we can also obtain results in a similar problem. Before stating the main theorems, we have to recall some notations used in several works in *p*-adic analysis, particularly those used by A. Escassut in [7].

Given $f(x) = \sum_{n=0}^{\infty} a_n x^n \in \mathcal{A}(\mathbb{K})$ (resp. in $\mathcal{A}(d(0, R^-))$) and r > 0 (resp. $r \in]0, R[$), we set

$$f|(r) = \lim_{|x| \to r, |x| \neq r} |f(x)|.$$

Indeed, this limit exists and |*| is an absolute value on $\mathcal{A}(\mathbb{K})$ (resp. on $\mathcal{A}(d(0, R^{-}))$). It has a natural continuation to $\mathcal{M}(\mathbb{K})$ (resp. $\mathcal{M}(d(0, R^{-}))$) by setting $|f|(r) = \frac{|g|(r)}{|h|(r)}$ whenever $f = \frac{g}{h}$, g, $h \in \mathcal{A}(\mathbb{K})$ (resp. g, $h \in \mathcal{A}(d(0, R^{-}))$).

 $\frac{|g|(r)}{|h|(r)} \text{ whenever } f = \frac{g}{h} \text{ , } g, h \in \mathcal{A}(\mathbb{K}) \text{ (resp. } g, h \in \mathcal{A}(d(0, R^{-}))).$ On the other hand, let $f = \sum_{n \in \mathbb{Z}} a_n x^n \in \mathcal{M}(\mathbb{K}) \text{ and let } r > 0.$ Consider f in the

circle C(0, r). We will denote by $\nu^+(f, r)$ (resp. $\nu^-(f, r)$) the biggest integer $i \in \mathbb{Z}$ (resp. the smallest integer $i \in \mathbb{Z}$) such that $v(a_i) - i \log r = \inf_{n \in \mathbb{Z}} v(a_n) - n \log r$. We will only write $\nu(f, r)$ when $\nu^+(f, r) = \nu^-(f, r)$.

Remark 2. We now have to recall certain classical properties of meromorphic functions (see Chapter 23 [7]). Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$ and let $r \in]0, \mathbb{R}[$.

- (1) The difference between the number of zeros and that of poles of f in the circle C(0, r), taking multiplicities into account, is equal to $\nu^+(f, r) \nu^-(f, r)$.
- (2) If f has zeros and poles in the closed disc d(0, r'), and has no zeros and no poles in the annuli $\Gamma(0, r', r'')$, then $\nu^+(f, r) = \nu^-(f, r) \quad \forall r \in]r', r''[$.

Throughout the paper we consider $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$, R > 1 an integer and $T = \frac{A}{B} \in \mathbb{K}(x)$ with $A, B \in \mathbb{K}[x]$ having no common zeros.

Theorem 1. Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. Let $f \in \mathcal{M}_u(d(0, R^-))$). If $\lim_{r \to +\infty} |T|(r) > 0$ (resp. $\lim_{r \to R} |T|(r) > \frac{1}{R}$), then f' + Tf has infinitely many zeros that are not zeros of f.

Theorem 2. Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental and $\deg(A) \ge \deg(B)$ (resp. Let $f \in \mathcal{M}_u(d(0, R^-)))$). Let m > 2 be an integer. If $\limsup_{r \to +\infty} |f|(r) > 0$ (resp. $\limsup_{r \to R} |f|(r) = +\infty$), then $f' + Tf^m$ has infinitely many zeros that are not zeros of f.

Corollary 1. Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental and $\deg(A) \ge \deg(B)$ (resp. Let $f \in \mathcal{M}_u(d(0, R^-)))$). If f has a finite number of poles and m > 2 is an integer, then $f' + T f^m$ has infinitely many zeros that are not zeros of f.

Proof. Since f has a finite number of poles and f is a transcendental meromorphic function in \mathbb{K} (resp. $f \in \mathcal{M}_u(d(0, R^-))$), then necessarily f has infinitely many zeros. Therefore, $\lim_{r \to +\infty} |f|(r) = +\infty$ (resp. $\lim_{r \to R} |f|(r) = +\infty$). So, by Theorem 2, we can deduce the corollary.

Corollary 2. Let $g \in \mathcal{M}(\mathbb{K})$ be transcendental and $\deg(A) \ge \deg(B)$ (resp. Let $g \in \mathcal{M}_u(d(0, R^-)))$). If g has a finite number of zeros, then $g'g^n - T$ has infinitely many zeros for all $n \in \mathbb{N}^*$.

Proof. Since g has a finite number of zeros, then $f = \frac{1}{g}$ has a finite number of poles. So, applying Theorem 2 to f with $m \ge 3$, and considering that n = m - 2, we can deduce the corollary.

Let $\widehat{\mathbb{K}}$ be an algebraic extension of the field \mathbb{K} . In the following lemma, which is very useful for the proofs of the following theorems, we will denote by $\widehat{d}(0, R^{-})$ the open disc $\{x \in \widehat{\mathbb{K}} : |x| < R\}$ contained in $\widehat{\mathbb{K}}$.

Lemma 1. Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$ and let \widehat{f} be the meromorphic function defined by f in $\widehat{d}(0, \mathbb{R}^{-})$. Then the zeros and the poles of \widehat{f} in $\widehat{d}(0, \mathbb{R}^{-})$ are exactly the zeros and the poles of f in $d(0, \mathbb{R}^{-})$, taking multiplicities into account.

Remark 3. We remember that, given a meromorphic function f in the open disc $d(0, R^-) \subset \mathbb{K}$, it is not always possible to find analytic functions h, l in $d(0, R^-)$ without common zeros such that $f = \frac{h}{l}$, except if \mathbb{K} is *spherically complete*, i.e., every decreasing filter on \mathbb{K} has a center in \mathbb{K} (see Chapter 3 [7] and [10]). In our case, \mathbb{K} is an algebraically closed complete ultrametric field, therefore it admits a spherically complete algebraically closed extension $\widehat{\mathbb{K}}$ (see Chapter 7 [7]).

Now, in the field \mathbb{K} , consider $f \in \mathcal{M}(d(0, R^-))$. It obviously defines a function $\widehat{f} \in \mathcal{M}(\widehat{d}(0, R^-))$ in the field $\widehat{\mathbb{K}}$. And then, we may write \widehat{f} in the form $\frac{h_0}{l_0}$ with $h_0, \ l_0 \in \mathcal{A}(\widehat{d}(0, R^-))$ having no common zeros. Moreover, by Lemma 1, all zeros and poles of \widehat{f} in $\widehat{\mathbb{K}}$ actually lie in \mathbb{K} . So, by Theorem 25.5 [7], there exists $h \in \mathcal{A}(d(0, R^-))$ such that the function $\widehat{h} \in \mathcal{A}(\widehat{d}(0, R^-))$ defined in $\widehat{\mathbb{K}}$ satisfies the following:

- (1) h_0 divides \hat{h} in $\mathcal{A}(\hat{d}(0, R^-))$.
- (2) The function $u = \frac{\hat{h}}{h_0}$ belongs to $\mathcal{A}_b(\hat{d}(0, R^-))$.

Then we may set $l = ul_0 \in \mathcal{A}(\hat{d}(0, \mathbb{R}^-))$. Moreover, we check that l has coefficients in \mathbb{K} because $f = \frac{h}{l}$, hence l = fh belongs to $\mathcal{M}(d(0, \mathbb{R}^-))$ and has no pole in $d(0, \mathbb{R}^-)$.

In the following theorems, when it is necessary, we shall consider $f \in \mathcal{M}(\hat{d}(0, R^{-}))$ because clearly $\mathcal{M}(d(0, R^{-})) \subset \mathcal{M}(\hat{d}(0, R^{-}))$.

In the general p-adic context, the following theorem is the equivalence of this proved by W. K. Hayman (Theorem 9 [8]). In the proofs of this theorem and the following theorems, the previous Remark 3 and Lemma 1 will be useful.

Theorem 3. Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental and $\deg(A) \geq \deg(B)$ (resp. Let $f \in \mathcal{M}_u(d(0, \mathbb{R}^-)))$). If $m \geq 5$ is an integer, then $f' + Tf^m$ has infinitely many zeros that are not zeros of f. Moreover, $f' + f^4$ must have at least one zero in \mathbb{K} that is not a zero of f.

Considering (1) and the previous theorem, we obtain the following corollaries.

Corollary 3. Let $g \in \mathcal{M}(\mathbb{K})$ be transcendental and $\deg(A) \ge \deg(B)$ (resp. Let $g \in \mathcal{M}_u(d(0, R^-))$). If $n \ge 3$ is an integer, then $g'g^n - T$ has infinitely many zeros.

Corollary 4. Let $g \in \mathcal{M}(\mathbb{K})$ be transcendental and $\deg(A) \ge \deg(B)$. Then $g'g^2 - T$ has at least one zero in \mathbb{K} .

In order to state Theorem 4, we need to recall some classical definitions. Let $\mathcal{U}_{\mathbb{K}} = \{x \in \mathbb{K} : |x| \leq 1\}$ and $\mathcal{W}_{\mathbb{K}} = \{x \in \mathbb{K} : |x| < 1\}$ be the valuation ring and the valuation ideal of \mathbb{K} respectively. The *residue characteristic* of \mathbb{K} is the characteristic of the quotient of $\mathcal{U}_{\mathbb{K}}$ by $\mathcal{W}_{\mathbb{K}}$ (see Chapter 1 [7]).

Lemma 2. Let $f(x) = \sum_{-\infty}^{+\infty} a_n x^n$ be a Laurent series converging for r' < |x| < r'' and have no zeros and no poles in $\Gamma(0, r', r'')$. Let $q = \nu(f, r) \quad \forall r \in]r', r''[$. If the residue characteristic of \mathbb{K} does not divide q, then

$$|f'(x)| = \frac{|f(x)|}{|x|} \quad \forall x \in \Gamma(0, r', r'').$$

Corollary 5. Let $f \in \mathcal{M}(d(0, r''))$. Assume that f has s zeros and t poles in d(0, r') and has no zeros and no poles in $\Gamma(0, r', r'')$. If the residue characteristic of \mathbb{K} does not divide s - t, then $|f'(x)| = \frac{|f(x)|}{|x|} \quad \forall x \in \Gamma(0, r', r'')$.

Proof. Indeed, by Theorem 23.4 [7], $\nu^+(f,r) = \nu^-(f,r) \quad \forall r \in]r', r''[$. If we consider $f = \frac{h}{l}$ with $h, l \in \mathcal{A}(d(0, r''))$, we have

$$\nu(f,r) = \nu(h,r) - \nu(l,r) = s - t,$$

whenever $r \in]r', r'']$. So, by Lemma 2, we deduce the corollary.

Definition. Let $f \in \mathcal{M}(\mathbb{K})$ (resp. Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$).

A number $r \in]0, +\infty[$ (resp. $r \in]0, R[$) will be said to be *f*-suitable if the difference between the number of zeros and that of poles of f in d(0, r), taking multiplicities into account, is not a multiple of the residue characteristic of \mathbb{K} .

A sequence $\{r_n\}_{n\in\mathbb{N}} \subset [0, +\infty[(\text{resp. } \{r_n\}_{n\in\mathbb{N}} \subset [0, R[) \text{ will be said to be } f$ -suitable if each r_n is f-suitable and $\lim_{n\to+\infty} r_n = +\infty$ (resp. $\lim_{n\to+\infty} r_n = R$).

The function f will be said to be *optimal* if there exists a f-suitable sequence $\{r_n\}_{n\in\mathbb{N}}$ in $]0, +\infty[$ (resp. in]0, R[).

Theorem 4. Let $g \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. Let $g \in \mathcal{M}_u(d(0, \mathbb{R}^-))$) and let $\{r_n\}_{n \in \mathbb{N}}$ be a g-suitable sequence. Then $\frac{g'}{g}$ has infinitely many zeros.

Corollary 6. Let $g \in \mathcal{M}(\mathbb{K})$ be transcendental (resp. Let $g \in \mathcal{M}_u(d(0, \mathbb{R}^-))$) and let $\{r_n\}_{n \in \mathbb{N}}$ be a g-suitable sequence. Then $g'g^n$ and $\frac{g'}{g^n}$ have infinitely many zeros whenever $n \in \mathbb{N}^*$.

Proof. Let $n \in \mathbb{N}$. Observe that $g'g^n = \left(\frac{g'}{g}\right)g^{n+1}$ and $\frac{g'}{g^n} = \left(\frac{g'}{g}\right)\frac{1}{g^{n-1}}$. Note that every zero of $\frac{g'}{g}$ is neither a zero nor a pole of g, every zero and every pole of g being a simple pole of $\frac{g'}{g}$. Thereby, since $\frac{g'}{g}$ has infinitely many zeros, we deduce that $g'g^n$ and $\frac{g'}{g^n}$ have infinitely many zeros in \mathbb{K} (resp. in $d(0, R^-)$).

Theorem 5. Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental and optimal. If $\deg(A) = \deg(B)$ and if $m \geq 3$ is an integer, then $f' + Tf^m$ has infinitely many zeros that are not zeros of f.

Thus, by (1) we may derive the following corollary.

Corollary 7. Let $g \in \mathcal{M}(\mathbb{K})$ be transcendental and optimal. If $\deg(A) = \deg(B)$, then $g'g^n - T$ has infinitely many zeros for every $n \in \mathbb{N}^*$.

Theorem 6. Let $f \in \mathcal{M}_u(d(0, R^-))$ be an optimal function and let $U = \frac{\phi}{\psi} \in \mathcal{M}_b(d(0, R^-))$ have the same finite number of zeros and poles in $d(0, R^-)$. If $m \geq 3$ is an integer, then $f'+Uf^m$ has infinitely many zeros that are not zeros of f.

By (1), the following corollary is immediate.

Corollary 8. Let $g \in \mathcal{M}_u(d(0, R^-))$ be an optimal function and let $U \in \mathcal{M}_b(d(0, R^-))$ have the same finite number of zeros and poles in $d(0, R^-)$. Then $g'g^n - U$ has infinitely many zeros for every $n \in \mathbb{N}^*$.

Since almost every meromorphic function in a field of residue characteristic zero is optimal, by Theorems 5 and 6, we can deduce Corollaries 9 - 10 and 11 - 12 respectively.

Corollary 9. Let $f \in \mathcal{M}(\mathbb{K})$ be transcendental and $\deg(A) = \deg(B)$. If \mathbb{K} has residue characteristic zero and $m \geq 3$ is an integer, then $f' + Tf^m$ has infinitely many zeros that are not zeros of f.

Corollary 10. Let $g \in \mathcal{M}(\mathbb{K})$ be transcendental and $\deg(A) = \deg(B)$. If \mathbb{K} has residue characteristic zero, then $g'g^n - T$ has infinitely many zeros for every $n \in \mathbb{N}^*$.

Corollary 11. Let $f \in \mathcal{M}_u(d(0, R^-))$ be such that |f|(r) is not constant when r tends to R, and let $U \in \mathcal{M}_b(d(0, R^-))$ have the same finite number of zeros and poles in $d(0, R^-)$. If \mathbb{K} has residue characteristic zero and $m \ge 3$ is an integer, then $f' + Uf^m$ has infinitely many zeros that are not zeros of f.

Corollary 12. Let $g \in \mathcal{M}_u(d(0, R^-))$ and let $U \in \mathcal{M}_b(d(0, R^-))$ have the same finite number of zeros and poles in $d(0, R^-)$. If \mathbb{K} has residue characteristic zero, then $g'g^n - U$ has infinitely many zeros for all $n \in \mathbb{N}^*$.

Remark 4. If K has residue characteristic $p \neq 0$, the problem remains unsolved when m = 2, 3 and 4. In particular, in a p-adic field, we don't know how to construct a counter-exemple such as $f(x) = \tan(-x)$ showing that Hayman's statement does not hold when m = 2.

1.2. Nevanlinna Theory, Preliminary Results

We must now introduce some notations and results used in the *p*-adic Nevanlinna theory that we will employ for proving the previous theorems.

Let $\alpha \in d(0, R^-)$ and $h \in \mathcal{M}(d(0, R^-))$. If h has a zero of order n at α , we set $\omega_{\alpha}(h) = n$, if h has a pole of order n at α , we set $\omega_{\alpha}(h) = -n$, and finally, if $h(\alpha) \neq 0$ and ∞ , we set $\omega_{\alpha}(h) = 0$.

Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$ be such that 0 is neither a zero nor a pole of f. Let $r \in]0, \mathbb{R}[$. We denote by Z(r, f) the counting function of zeros of f in $d(0, \mathbb{R}^{-})$

$$Z(r, f) = \sum_{\omega_{\alpha}(f) > 0} \sum_{|\alpha| \le r} \omega_{\alpha}(f) (\log r - \log |\alpha|),$$

and similarly, we set

$$\overline{Z}(r,f) = \sum_{\omega_{\alpha}(f) > 0 \ |\alpha| \le r} (\log r - \log |\alpha|).$$

We shall also consider the *counting functions of poles* of f in $d(0, R^{-})$

$$N(r, f) = Z(r, \frac{1}{f})$$
 and $\overline{N}(r, f) = \overline{Z}(r, \frac{1}{f}).$

The Nevanlinna function T(r, f) is defined by

$$T(r, f) = \max\{Z(r, f) + \log |f(0)|; N(r, f)\}.$$

A. Boutabaa and A. Escassut in [5], A. Escassut in [7] and P. C. Hu and C. C. Yang in [9] give us results related to the p-adic Nevanlinna theory which we will use in the later proofs. Some of them are the followings.

Lemma 3. If $f \in \mathcal{A}(\mathbb{K}) \setminus \mathbb{K}[x]$ (resp. If $f \in \mathcal{A}_u(d(0, \mathbb{R}^-))$), then f has infinitely many zeros.

Lemma 4. Let $f \in \mathcal{A}(\mathbb{K})$ (resp. Let $f \in \mathcal{A}(d(0, \mathbb{R}^{-}))$) be such that $f(0) \neq 0$ and let r > 0 (resp. let $r \in [0, \mathbb{R}]$). For any $b \in \mathbb{K}$, we have

$$Z(r, f - b) = Z(r, f) + O(1).$$

Lemma 5. Let $f \in \mathcal{A}(\mathbb{K})$ (resp. Let $f \in \mathcal{A}(d(0, R^{-}))$) be such that $f(0) \neq 0$ and let r > 0 (resp. let $r \in]0, R[$). The functions T(r, f) and Z(r, f) are equivalent up to an additive constant.

Proposition 1. Let $f_i \in \mathcal{M}(\mathbb{K})$ (resp. Let $f_i \in \mathcal{M}(d(0, R^-))$) be such that $f_i(0) \neq 0, \infty$ for i = 1, ..., k. Then, for r > 0 (resp. for $r \in]0, R[$), we have

$$Z\left(r,\prod_{i=1}^{k}f_{i}\right) \leq \sum_{i=1}^{k}Z(r,f_{i}),$$
$$T\left(r,\sum_{i=1}^{k}f_{i}\right) \leq \sum_{i=1}^{k}T(r,f_{i}), \qquad T\left(r,\prod_{i=1}^{k}f_{i}\right) \leq \sum_{i=1}^{k}T(r,f_{i}),$$

and T(r, f) is an increasing function of r.

As a corollary of Lemma 2.1 [5], considering the previous notations, we obtain the following Lemma 6 that also is known as the version *p*-adic of Jensen's formula.

Lemma 6. Let $f \in \mathcal{M}(\mathbb{K})$ (resp. Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$) be such that 0 is neither a zero nor a pole of f. Then,

$$\log |f|(r) = Z(r, f) - N(r, f) + \log |f(0)|.$$

Proposition 2. Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$ be such that $f(0) \neq 0, \infty$. Then, $f \in \mathcal{M}_b(d(0, \mathbb{R}^{-}))$ if and only if T(r, f) is bounded in $]0, \mathbb{R}[$.

Let $f \in \mathcal{M}(d(0, \mathbb{R}^{-}))$ be such that 0 is neither a zero nor a pole of f' and let S be a finite subset of \mathbb{K} . We denote by $Z_0^S(r, f')$ the counting function of zeros of f' in d(0, r) which are not zeros of any f - s for $s \in S$. Then,

$$Z_0^S(r, f') = \sum_{s \in S, \ w_\alpha(f-s) = 0, \ |\alpha| \le r} w_\alpha(f') (\log r - \log |\alpha|).$$

Now we can state the *ultrametric Nevanlinna Second Main Theorem* in a basic form.

Theorem N. Let $\beta_1, ..., \beta_n \in \mathbb{K}$ with $n \geq 2$, and let $f \in \mathcal{M}(\mathbb{K})$ (resp. let $f \in \mathcal{M}(d(0, \mathbb{R}^-))$). Let $S = \{\beta_1, ..., \beta_n\}$. Assume that none of f, f' and $f - \beta_j$ with $1 \leq j \leq n$ equals 0 or ∞ at the origin. Then, for all r > 0 (resp. for all $r \in]0, \mathbb{R}[$), we have

$$(n-1)T(r,f) \le \sum_{j=1}^{n} \overline{Z}(r,f-\beta_j) + \overline{N}(r,f) - Z_0^S(r,f') - \log r + O(1).$$

In order to go on, we remember the interesting corollary of the Nevanlinna Second Main Theorem on three small functions for p-adic analytic functions (see Theorem 4 [12]), which we will use later in the proof of Theorem 3.

Theorem T. Let $f \in \mathcal{A}(\mathbb{K})$ (resp. Let $f \in \mathcal{A}(d(0, R^-))$) be non-constant such that $f(0) \neq 0$, and let $u_1, u_2 \in \mathcal{A}(\mathbb{K})$ (resp. let $u_1, u_2 \in \mathcal{A}(d(0, R^-))$) be small functions with respect to f and not zero at 0. Then,

$$T(r, f) \le \overline{Z}(r, f - u_1) + \overline{Z}(r, f - u_2) + S(r)$$

where $S(r) = 2T(r, u_1) + 3T(r, u_2) - \log r + O(1)$.

2. PROOFS OF THE MAIN LEMMAS AND THEOREMS

2.1. Proof of Lemma 1

Proof. It is sufficient to show the claim whenever $f \in \mathcal{A}(d(0, R^{-}))$. Let $f(x) = \sum_{i=0}^{+\infty} c_i x^i$. Clearly we can notice that every zero of f in $d(0, R^{-})$ is also a zero of \hat{f} in $\hat{d}(0, R^{-})$.

Let $r \in]0, R[$ and let $\alpha_1, ..., \alpha_q$ be the zeros of f in the circle C(0, r) with $\omega_{\alpha_i}(f) = s_i$ for i = 1, ..., q. Thereby, f is factorized in the form $f = \prod_{i=1}^q (x - \alpha_i)^{s_i}g$, where $g \in \mathcal{A}(d(0, R^-))$ and $g(\alpha_i) \neq 0$ for i = 1, ..., q. Observe that this factorization also holds in $\mathcal{M}(\widehat{d}(0, R^-))$. Hence α_i is also a zero of order s_i of \widehat{f} for i = 1, ..., q. Now, suppose that \widehat{f} admits other zeros $\alpha_{q+1}, ..., \alpha_t$ with $\omega_{\alpha_i}(\widehat{f}) = s_i$ for i = q + 1, ..., t. By Theorem 23.1 [7], for all $r \in]0, R[$, we have

$$\nu^+(f,r) - \nu^-(f,r) = \sum_{i=1}^q s_i,$$

and similarly, we have

$$\nu^+(\hat{f},r) - \nu^-(\hat{f},r) = \sum_{i=1}^t s_i.$$

But, we know that $\nu^+(f,r)$, $\nu^-(f,r)$, $\nu^+(\widehat{f},r)$, $\nu^-(\widehat{f},r)$ are only defined by the coefficients of f. So, for $r \in]0, R[$, we have $\nu^+(f,r) = \nu^+(\widehat{f},r)$ and $\nu^-(f,r) = \nu^-(\widehat{f},r)$. Consequently t = q, which finishes the proof.

2.2. Proof of Lemma 2

Proof. Since f has no zeros in $\Gamma(0, r', r'')$, then by Theorem 23.4 [7], $\nu^+(f, r) = \nu^-(f, r) \ \forall r \in]r', r''[$. Moreover, since $q = \nu(f, r) \ \forall r \in]r', r''[$, we have

$$|f(x)| = |a_q| |x|^q \quad \forall x \in \Gamma(0, r', r'')$$

with $|a_q||x|^q > |a_n||x|^n \quad \forall q \neq n$. Consequently, since |q| = 1 by our assumption that the residue characteristic of \mathbb{K} does not divide q, we have

$$|f'(x)| = \left|\sum_{-\infty}^{+\infty} na_n x^{n-1}\right| = |a_q| |x|^{q-1} = \frac{1}{|x|} |a_q| |x|^q.$$

Therefore, we may deduce that $|f'(x)| = \frac{|f(x)|}{|x|}$.

2.3. Proof of Theorem 1

Proof. Let r > 0 (resp. Let $r \in [1, R[)$. By Lemma 4 [3], we know that $|f'|(r) \leq \frac{1}{r}|f|(r)$. We shall check that there exists a $\rho \in]0, +\infty[$ (resp. $\rho \in [1, R[)$) such that $|f'|(r) < |Tf|(r) \forall r \in]\rho, +\infty[$ (resp. $\forall r \in]\rho, R[$). Indeed, if $f \in \mathcal{M}(\mathbb{K})$ the existence of ρ is immediate because $\lim_{r \to +\infty} |T|(r) > 0$. Now, suppose that

2304

 $f \in \mathcal{M}_u(d(0, R^-))$. Since $\lim_{r \to R} |T|(r) > \frac{1}{R}$, by continuity, we can find a $\rho \in [1, R[$ such that $|T|(r) > \frac{1}{r} \quad \forall r \in]\rho, R[$. So we have proved the existence of $\rho \in]0, +\infty[$ (resp. $\rho \in [1, R[)$ such that $|f'|(r) \le \frac{1}{r}|f|(r) < |Tf|(r)$. Consequently

$$|f' + Tf|(r) = |Tf|(r) \quad \forall r > \rho \quad (\text{resp. } \forall r \in]\rho, R[).$$

Suppose first that f has a finite number of poles. Then, f has infinitely many zeros in \mathbb{K} (resp. in $d(0, R^{-})$) because f is transcendental in \mathbb{K} (resp. is unbounded in $d(0, R^{-})$). Moreover, there exists an increasing sequence $\{r_n\}_{n \in \mathbb{N}}$ with $\lim_{n \to +\infty} r_n = +\infty$ (resp. $\lim_{n \to +\infty} r_n = R$), such that f admits zeros and no poles in $C(0, r_n)$, such that T has no zeros and no poles in $C(0, r_n)$ and such that

$$|f' + Tf|(r) = |Tf|(r) \quad \forall r \ge r_1$$

Since |f' + Tf|(r) = |Tf|(r) in a neighborhood of r_n , we have

(2)
$$\nu^+(f'+Tf,r_n) - \nu^-(f'+Tf,r_n) = \nu^+(f,r_n) - \nu^-(f,r_n),$$

where $\nu^+(f, r_n) - \nu^-(f, r_n)$ is the number of zeros of f in $C(0, r_n)$ and $\nu^+(f' + Tf, r_n) - \nu^-(f' + Tf, r_n)$ is the number of zeros of f' + Tf in $C(0, r_n)$ (counting multiplicities). Hence, we may deduce that f' + Tf has zeros in $C(0, r_n)$ and the number of zeros of f' + Tf is equal to the number of zeros of f in $C(0, r_n)$ (counting multiplicities).

On the other hand, since each zero of f in $C(0, r_n)$ either is not a zero of f' + Tf or is a zero of f' + Tf of order strictly lower than its order as a zero of f, by (2) there does exist at least a zero of f' + Tf that is not a zero of f in $C(0, r_n)$. Since this is true for all $n \in \mathbb{N}$, we obtain that f' + Tf has infinitely many zeros in \mathbb{K} (resp. in $d(0, R^-)$) that are not zeros of f.

Now, suppose that f has infinitely many poles. Then, there exists an increasing sequence $\{r_n\}_{n\in\mathbb{N}}$ with $\lim_{n\to+\infty} r_n = +\infty$ (resp. $\lim_{n\to+\infty} r_n = R$), such that f admits poles in $C(0, r_n)$, such that T has no zeros and no poles in $C(0, r_n)$ and such that

$$|f' + Tf|(r) = |Tf|(r) \quad \forall r \ge r_1.$$

Let $n \in \mathbb{N}$. Let s_n and t_n be the number of zeros and that of poles of f in $C(0, r_n)$ respectively, and let γ_n and τ_n be the number of zeros and that of poles of f' + Tf in $C(0, r_n)$ respectively. Then, we deduce that

$$\nu^+(f, r_n) - \nu^-(f, r_n) = s_n - t_n$$
 and $\nu^+(f' + Tf, r_n) - \nu^-(f' + Tf, r_n) = \gamma_n - \tau_n$.

Since |f' + Tf|(r) = |Tf|(r) in a neighborhood of r_n , we have again

$$\nu^+(f, r_n) - \nu^-(f, r_n) = \nu^+(f' + Tf, r_n) - \nu^-(f' + Tf, r_n).$$

Consequently, $\gamma_n - \tau_n = s_n - t_n$ in $C(0, r_n)$. But we may observe that τ_n is the number of poles of f' in $C(0, r_n)$ (counting multiplicities). So, since T has no zeros and no poles in $C(0, r_n)$, we have $\tau_n > t_n$ which implies that $\gamma_n > s_n$. Thus, f' + Tf must have at least one zero in $C(0, r_n)$ that is not a zero of f. Since this is true for all $n \in N$, we deduce that f' + Tf has infinitely many zeros in \mathbb{K} (resp. in $d(0, R^-)$) which are not zeros of f.

2.4. Proof of Theorem 2

Proof. Assume, without loss of generality, that 0 is neither a zer nor a pole Tf^m and $f' + Tf^m$. We shall prove that f has infinitely many zeros in \mathbb{K} (resp. in $d(0, R^-)$). First we suppose $f \in \mathcal{M}(\mathbb{K})$. By hypothesis $\limsup_{r \to +\infty} \sup|f|(r) > 0$, i.e., there exist a sequence $\{\Gamma(0, r'_n, r''_n)\}_{n \in \mathbb{N}}$ with $\lim_{n \to +\infty} r''_n = +\infty$, and a constant C > 0, such that $Z(r, f) \ge N(r, f) + C \quad \forall r \in \bigcup_{n \in \mathbb{N}} |r'_n, r''_n|$. If f has a finite number of zeros, say, q, then $Z(r, f) = q \log r$ and so $N(r, f) + C \le q \log r$. Consequently f has a finite number of poles, a contradiction because f is transcendental.

Now, suppose $f \in \mathcal{M}_u(d(0, \mathbb{R}^-))$. If f has a finite number of zeros in $d(0, \mathbb{R}^-)$, then $\lim_{r \to \mathbb{R}} Z(r, f) < +\infty$ and hence $\limsup_{r \to \mathbb{R}} |f|(r) < +\infty$, a contradiction to our hypothesis.

Suppose that the set of zeros of $f' + Tf^m$ which are not zeros of f is finite. Then, there exists a $\rho > 0$ (resp. $\rho \in [1, R[)$ such that $f' + Tf^m$ has no zeros other than the multiple zeros of f in $\mathbb{K} \setminus d(0, \rho)$ (resp. in $\Gamma(0, \rho, R)$) and such that T has no zeros and no poles in $\mathbb{K} \setminus d(0, \rho)$ (resp. in $\Gamma(0, \rho, R)$). So, each pole of $f' + Tf^m$ is a pole of f^m of the same multiplicity. Hence,

(3)

$$N(r, f' + Tf^m) - N(\rho, f' + Tf^m)$$

$$= N(r, f^m) - N(\rho, f^m) \quad \forall r \in \mathbb{K} \setminus d(0, \rho) \quad (\text{resp. } \forall r \in]\rho, R[).$$

Let $\sigma > \rho$ be such that $C(0, \sigma)$ contains at least one zero of f. Each zero of f, say, of order q, either is not a zero of $f' + Tf^m$ or is a zero of $f' + Tf^m$ with order q - 1. Since $f' + Tf^m$ has no zeros in C(0, r) other than the zeros of f and T has no zeros and no poles in C(0, r), clearly the number of zeros of $f' + Tf^m$ in C(0, r) (counting multiplicities) is strictly inferior to the number of zeros of Tf^m (counting multiplicities). So, the function

$$\Psi(r) = Z(r, f^m) - Z(\rho, f^m) - \left[Z(r, f' + Tf^m) - Z(\rho, f' + Tf^m)\right]$$

is strictly increasing in $[\sigma, +\infty[$ (resp. in $[\sigma, R[)$).

Now, we will show that there exists an increasing sequence of intervals $]r'_n, r''_n[$ with

 $\rho < r'_n < r''_n < r''_{n+1}$ and $\lim_{n \to +\infty} r''_n = +\infty$ (resp. $\lim_{n \to +\infty} r''_n = R$), such that $|f' + Tf^m|(r) = |Tf^m|(r) \ \forall r \in]r'_n, r''_n[$. Suppose first that $f \in \mathcal{M}(\mathbb{K})$. Since $\limsup_{r \to +\infty} |f|(r) > 0$, there exist a sequence of annulus $\{\Gamma(0, r'_n, r''_n)\}_{n \in \mathbb{N}}$ with $\rho < r'_n < r''_n$ and $\lim_{n \to +\infty} r''_n = +\infty$, and a constant C > 0 such that

$$|f|(r) > C \quad \forall r \in]r'_n, r''_n[\quad \forall n \in \mathbb{N}.$$

Since T has no zeros and no poles in $]r'_n, r''_n[$ and $\deg(A) \ge \deg(B)$, then there exists a constant $\lambda > 0$ such that $|T|(r) \ge \lambda \quad \forall r \in]r'_n, r''_n[$. So

$$|Tf^m|(r) > C^m \lambda \quad \forall r \in]r'_n, r''_n[\quad \forall n \in \mathbb{N}.$$

On the other hand, by Lemma 4 [3], $|f'|(r) \le \frac{1}{r}|f|(r)$. So, if we consider the previous observation, we can deduce that

$$\Big|\frac{f'}{Tf^m}\Big|(r) \le \frac{1}{r} \frac{1}{|Tf^{m-1}|(r)|} < \frac{1}{\lambda r} \Big(\frac{1}{C}\Big)^{m-1}$$

However, for r sufficiently large, we have $\frac{1}{\lambda r} (\frac{1}{C})^{m-1} < 1$. Hence $|f'|(r) < |Tf^m|(r)$. Thereby,

 $|f' + Tf^m|(r) = |Tf^m|(r)$. Thus, this equality holds in all annulus $\Gamma(0, r'_n, r''_n)$ when r'_n is sufficiently large. Consequently, without loss of generality, we may assume that $|f' + Tf^m|(r) = |Tf^m|(r) \quad \forall r \in]r'_n, r''_n[\quad \forall n \in \mathbb{N}.$

Now, we suppose that $f \in \mathcal{M}_u(d(0, R^-))$. Since $\limsup_{r \to R} |f|(r) = +\infty$ there exists a sequence of annulus $\{\Gamma(0, r'_n, r''_n)\}_{n \in \mathbb{N}}$ with $\rho < r'_n < r''_n$ and $\lim_{n \to +\infty} r''_n = R$, such that $|f|(r) \ge n \forall r \in]r'_n, r''_n[$ and $n \in \mathbb{N}$. Since $T \in \mathbb{K}(x)$, there exists a constant $\lambda > 0$ such that $\inf_{r \in [1,R[} |T|(r) = \lambda$. Then, $|Tf^m|(r) \ge \lambda |f|(r)n^{m-1}$ $\forall r \in]r'_n, r''_n[$ and $n \in \mathbb{N}$. Moreover, we can see that $|f'|(r) < |f|(r) \forall r \in]r'_n, r''_n[$ because $r'_n > 1$. Consequently, when n is sufficiently large, we have $|f'|(r) < |f|(r) < \lambda n^{m-1} |f|(r) \le |Tf^m|(r) \quad \forall r \in]r'_n, r''_n[$, which implies that $|f' + Tf^m|(r) = |Tf^m|(r) \forall r \in]r'_n, r''_n[$.

Therefore, by Lemma 6, we obtain

(4)
$$Z(r, Tf^{m} + f') - N(r, Tf^{m} + f') = Z(r, f^{m}) - N(r, f^{m}) + \chi \quad \forall r \in]r'_{n}, r''_{n}[,$$

where χ is defined as $m \log |f(0)| - \log |T(0)f^m(0) + f'(0)|$. And by (3) and (4), we can check that

$$\Psi(r) = Z(\rho, f' + Tf^m) - N(\rho, f' + Tf^m) - \left[Z(\rho, f^m) - N(\rho, f^m) + \chi\right].$$

Consequently Ψ is constant in $[\sigma, +\infty[$ (resp. in $[\sigma, R[$), a contradiction because we have showed that it is strictly increasing.

2.5. Proof of Theorem 3

Proof. In order to prove Theorem 3, thanks to Lemma 1, we can place ourselves in $\hat{d}(0, R^-) \subset \hat{\mathbb{K}}$ in the case when $f \in \mathcal{M}_u(d(0, R^-))$. Since f is a transcendental meromorphic function in \mathbb{K} (resp. unbounded in $\hat{d}(0, R^-)$), there exist entire functions $h, l \in \mathcal{A}(\mathbb{K})$ (resp. $h, l \in \mathcal{A}(\hat{d}(0, R^-))$) without common zeros and at least one of them being transcendental (resp. unbounded) such that $f = \frac{h}{l}$. We can write h in the form $\overline{h} \ \widetilde{h}$, where the zeros of \overline{h} are exactly the different zeros of h but all with multiplicity 1. Then, necessarily, h' is multiple of \widetilde{h} in $\mathcal{A}(\mathbb{K})$ (resp. in $\mathcal{A}\widehat{d}(0, R^-)$). So $h' = u \ \widetilde{h}$ with $u \in \mathcal{A}(\mathbb{K})$ (resp. $u \in \mathcal{A}(\widehat{d}(0, R^-))$).

Suppose that $f' + Tf^m$ has a finite number of zeros in \mathbb{K} (resp. in $\hat{d}(0, R^-)$) which are not zeros of f. Then, there exists a polynomial $P \in \mathbb{K}[x]$ of degree q, having no common zeros with Bl, such that

$$f' + Tf^m = \frac{P \ \widetilde{h}}{Bl^m}.$$

This implies

(5)
$$\frac{f'}{f^m} = \frac{P\tilde{h} - Ah^m}{Bh^m} = \frac{P - A\bar{h}h^{m-1}}{B \ \bar{h}^m \ \tilde{h}^{m-1}}$$

On the other hand, we note that

(6)
$$\frac{f'}{f^m} = \frac{l^{m-2}(h'l - hl')}{h^m} = \frac{l^{m-2}(ul - \overline{h}l')}{\overline{h}^m \widetilde{h}^{m-1}}.$$

So, by (5) and (6),

$$Bl^{m-2}(ul - \overline{h}l') = P - A\overline{h}h^{m-1}.$$

Let $F = Bl^{m-2}(ul - \overline{h}l')$ and $s = \deg(A)$. Let r > 0 (resp. Let $r \in [1, R[)$). Applying Theorem T to F, and noting that $\overline{Z}(r, h) = \overline{Z}(r, \overline{h}h^{m-1}) = Z(r, \overline{h})$, we obtain

$$T(r,F) \leq \overline{Z}(r,F) + \overline{Z}(r,F-P) + 3T(r,P) - \log r + O(1)$$

$$\leq \overline{Z}(r,B) + \overline{Z}(r,l^{m-2}) + \overline{Z}(r,ul - \overline{h}l'))$$

$$+\overline{Z}(r,A) + \overline{Z}(r,h) + (3q-1)\log r + O(1)$$

$$\leq Z(r,B) + Z(r,l)$$

$$+Z(r,ul - \overline{h}l') + Z(r,h) + (3q+s-1)\log r + O(1).$$

Moreover, we have

(8)
$$T(r,F) = T(r,B) + T(r,l^{m-2}) + T(r,ul - \overline{h}l') + O(1)$$
$$= Z(r,B) + (m-2)Z(r,l) + Z(r,ul - \overline{h}l') + O(1).$$

Let d = 3q + s - 1. By (7) and (8), we deduce that

(9)
$$(m-3)Z(r,l) \le Z(r,h) + d\log r + O(1).$$

Since we assume that the set of zeros of $f' + Tf^m$ that are not zeros of f is finite, by Theorem 2, we can restrict ourselves to the assumption $\limsup_{r \to +\infty} |f|(r) = 0$ (resp. $\limsup_{r \to R} |f|(r) < +\infty$) and therefore $\limsup_{r \to +\infty} [Z(r, l) - Z(r, h)] = +\infty$ (resp. $\limsup_{r \to R} [Z(r, h) - Z(r, l)] < +\infty$). Consequently, there exist a sequence $\{r_n\}_{n \in \mathbb{N}}$ such that $\lim_{n \to +\infty} r_n = +\infty$ (resp. $\lim_{n \to +\infty} r_n = R$), and a constant C > 0 such that $Z(r_n, h) < Z(r_n, l) + C \quad \forall n \in \mathbb{N}$. So, by (9), we have

(10)
$$(m-4)Z(r_n,l) < d\log r_n + O(1).$$

If we assume $f \in \mathcal{M}(\mathbb{K})$, then by hypothesis, $\limsup_{r \to +\infty} |f|(r) = 0$ and so l is a transcendental function. Thereby, when $m \ge 5$, we have $\lim_{n \to +\infty} Z(r_n, l) = +\infty$, a contradiction to (10). Now, if we assume $f \in \mathcal{M}_u(\widehat{d}(0, R^-))$, then at least one of the two functions h, l belongs to $\mathcal{A}_u(\widehat{d}(0, R^-))$. Since, by hypothesis, $\limsup_{r \to R} |f|(r) < +\infty$, we deduce that l must lie in $\mathcal{A}_u(\widehat{d}(0, R^-))$ because if $l \in \mathcal{A}_b(\widehat{d}(0, R^-))$, then $h \in \mathcal{A}_u(\widehat{d}(0, R^-))$ and in this case $\limsup_{r \to R} |f|(r) = +\infty$, a contradiction. Hence $\lim_{n \to +\infty} Z(r_n, l) = +\infty$, a contradiction to (10) again.

Thus, when $m \ge 5$, $f' + Tf^m$ has infinitely many zeros in \mathbb{K} (resp. in $\hat{d}(0, R^-)$) which are not zeros of f. Consequently, by Lemma 1, $f' + Tf^m$ has infinitely many zeros in $d(0, R^-)$ that are not zeros of f.

Now, consider $T \equiv 1$ and suppose that $f' + f^4$ has no zeros in \mathbb{K} which are not zeros of f. Then d = -1. So, by (10), we obtain

$$0 < -\log r_n + O(1) \quad \forall n \in \mathbb{N},$$

and hence we have a contradiction when $n \to +\infty$. Consequently, $f' + f^4$ has at least one zero in \mathbb{K} that is not a zero of f.

2.6. Proof of Theorem 4

Proof. Let $\{r_n\}_{n\in\mathbb{N}}$ be a g-suitable sequence. For each $n \in \mathbb{N}^*$, there exists $r'_n \in]r_n, r_{n+1}[$ such that g has no zero and no pole in the annulus $\Gamma(0, r_n, r'_n)$. Consequently, by Lemma 2, we have $\frac{|g'(x)|}{|g(x)|} = \frac{1}{|x|} \quad \forall x \in \Gamma(0, r_n, r'_n)$. So, $\nu\left(\frac{g'}{g}, r\right) = -1 \quad \forall r \in]r_n, r'_n[$.

Observe that the poles of $\frac{g'}{g}$ are all simple ones and correspond to the zeros and the poles of g. Since g is a transcendental meromorphic function in \mathbb{K} (resp. g is unbounded in $d(0, R^{-})$), we derive that $\frac{g'}{g}$ has infinitely many poles in \mathbb{K} (resp. in $d(0, R^{-})$). Moreover, since $\nu\left(\frac{g'}{g}, r\right) = -1$ whenever $r \in]r_n, r'_n[$, by Corollary 5, the difference between the number of poles and the number of zeros of $\frac{g'}{g}$ in d(0, r) is just 1. Then clearly, $\frac{g'}{g}$ has infinitely many zeros in \mathbb{K} (resp. in $d(0, R^{-})$).

2.7. Proof of Theorem 5

Proof. Here we assume $\deg(A) = \deg(B)$. Let f be of the form $\frac{h}{l}$ with $h, l \in \mathcal{A}(\mathbb{K})$ having no common zeros. As in the proofs of Theorem 3, we can write h in the form $\overline{h} \widetilde{h}$, where the zeros of \overline{h} are exactly the different zeros of h but all with multiplicity 1, and h' is of the form $\widetilde{h}u$ with $u \in \mathcal{A}(\mathbb{K})$.

Suppose that $f' + Tf^m$ only has finitely many zeros which are not zeros of f. There exists a $P \in \mathbb{K}[x]$ such that $f' + Tf^m = \frac{P\tilde{h}}{Bl^m}$ with $P\tilde{h}$ and Bl^m having no common zeros in \mathbb{K} .

On the other hand, we have

$$f' + Tf^m = \frac{\left[Bl^{m-2}(ul - \overline{h} \ l') + A\overline{h}^m \ \widetilde{h}^{m-1}\right] \widetilde{h}}{Bl^m}.$$

Since h, l have no common zeros and since A, B have no common zeros either, each zero α of $[Bl^{m-2}(ul-\overline{h} l')+A\overline{h}^m \tilde{h}^{m-1}]$ that is not a zero of $f'+Tf^m$ must be a zero of A or a zero of B or l. But note that if α is a zero of l then it is a zero of A. Thus the zeros of $[Bl^{m-2}(ul-\overline{h} l')+A\overline{h}^m \tilde{h}^{m-1}]$ which are not zeros of $f'+Tf^m$ must be zeros of A or B and therefore are a finite number. Moreover, we notice that a zero α of $[Bl^{m-2}(ul-\overline{h} l')+A\overline{h}^m \tilde{h}^{m-1}]$ is not a zero of f except if it is a zero of B, because a zero of f cannot be a zero of u. Consequently, the zeros of $f'+Tf^m$ that are not zeros of f are the zeros of $Bl^{m-2}(ul-\overline{h}l')+A\overline{h}^m \tilde{h}^{m-1}$ (counting multiplicities), except a finite number.

Next, we may notice that $h \notin \mathbb{K}[x]$. Indeed, suppose $h \in \mathbb{K}[x]$. Since $f \notin \mathbb{K}(x)$, then $l \notin \mathbb{K}[x]$ and hence $Bl^{m-2}(ul - \overline{h}l') + A\overline{h}^m \widetilde{h}^{m-1} \notin \mathbb{K}[x]$. Therefore, $Bl^{m-2}(ul - \overline{h}l') + A\overline{h}^m \widetilde{h}^{m-1}$ has infinitely many zeros which are not zeros of f, a contradiction to our initial supposition.

Now, we consider $H = \frac{f'}{f^m} = -\frac{A}{B} + \frac{P\tilde{h}}{Bh^m} = -\frac{A}{B} + \frac{P}{Bh^{m-1}\overline{h}}$. Since h is not a polynomial in \mathbb{K} we have $\lim_{|x|\to+\infty} \left|\frac{P(x)}{(Bh^{m-1}\overline{h})(x)}\right| = 0$. Moreover, since $\deg(A) = \deg(B)$, A and B have the same number of zeros, taking multiplicities into account and hence we may derive that $\lim_{|x|\to+\infty} \left|\frac{A(x)}{B(x)}\right| = a$ with $a \in \mathbb{R}_+$. Hence, $\lim_{|x|\to+\infty} |H(x)| = a$. Consequently, there exists a $\rho > 0$ such that $\nu(H, r) = 0 \ \forall r \ge \rho$.

On the other hand, since f is an optimal function, there exists a f-suitable sequence $\{r_n\}_{n\in\mathbb{N}}$ with $\lim_{n\to+\infty} r_n = +\infty$. Let $\{s_n\}_{n\in\mathbb{N}}$ be another sequence such that $r_n < s_n < r_{n+1}$ and such that $\nu(f,r)$ is constant inside $]r_n, s_n[$. By Proposition 20.9 [7], we have $\nu(\frac{f'}{fm}, r) = \nu(f', r) - m\nu(f, r)$, and by Corollary 5, we have $\nu(f', r) = \nu(f, r) - 1 \quad \forall r \in]r_n, s_n[$. Consequently,

$$0 = \nu(H, r) = (1 - m)\nu(f, r) - 1 \quad \forall r \in]r_n, s_n[,$$

a contradiction when $m \ge 3$. Thus, $f' + Tf^m$ has infinitely many zeros in \mathbb{K} which are not zeros of f.

2.8. Proof of Theorem 6

Proof. As in the proof of Theorem 3, without loss of generality, we may place ourselves in the spherically complete field $\widehat{\mathbb{K}}$ and consider $f \in \mathcal{M}_u(\widehat{d}(0, R^-))$. So, there exist functions $h, l \in \mathcal{A}(\widehat{d}(0, R^-))$ having no common zeros, such that $f = \frac{h}{l}$. Moreover, at least one of them is unbounded. As in the proofs of Theorems 3 and 5, we can write h in the form $\overline{h} \ \widetilde{h}$, where the zeros of \overline{h} are exactly the different zeros of h but all with order 1. Then $h' = \widetilde{h}u$ with $u \in \mathcal{A}(\widehat{d}(0, R^-))$.

Suppose that $f' + Uf^m$ only has a finite number of zeros which are not zeros of f. The proof now is similar to this of Theorem 5. There exists $P \in \widehat{\mathbb{K}}[x]$ such that $f' + Uf^m$ is of the form $\frac{P\tilde{h}}{\psi l^m}$ with $P\tilde{h}$ and ψl^m having no common zeros in $\widehat{d}(0, R^-)$. Consequently, $\frac{f'}{f^m} = \frac{P\tilde{h} - \phi h^m}{\psi h^m}$. Since f is an optimal function, there

exists a *f*-suitable sequence $\{r_n\}_{n\in\mathbb{N}}$ such that $\lim_{n\to+\infty} r_n = R$. Let $\{s_n\}$ be another sequence such that $r_n < s_n < r_{n+1}$ and such that $\nu(f, r)$ is constant inside $]r_n, s_n[$. By Corollary 5, we have $\nu(f', r) = \nu(f, r) - 1 \quad \forall r \in]r_n, s_n[$, and by Proposition 20.9 [7], we have $\nu(\frac{f'}{f^m}, r) = \nu(f', r) - m\nu(f, r)$. Consequently, as in the proof of the previous theorem, we have

(11)
$$\nu(\frac{f'}{f^m}, r) = -(m-1)\nu(f, r) - 1 \ \forall r \in]r_n, s_n[.$$

On the other hand, considering that f is of the form $\frac{\overline{h} \ \widetilde{h}}{l}$ we deduce that

$$f' + Uf^m = \frac{\left[\psi l^{m-2}(ul - \overline{h}l') + \phi \overline{h}^m \ \widetilde{h}^{m-1}\right] \widetilde{h}}{\psi l^m}$$

Let $H = \frac{P\tilde{h} - \phi h^m}{\psi h^m}$. We shall prove that h is unbounded in $\hat{d}(0, R^-)$. Suppose that $h \in \mathcal{A}_b(\hat{d}(0, R^-))$. Since ϕ and *psi* belons to $\mathcal{A}_b(\hat{d}(0, R^-))$, then H belong to $\mathcal{M}_b(\hat{d}(0, R^-))$, hence $l \in \mathcal{A}_u(\hat{d}(0, R^-))$. Thereby, $\psi l^{m-2}(ul - \bar{h}l') + \phi \bar{h}^m \tilde{h}^{m-1}$ is an unbounded analytic function in $\hat{d}(0, R^-)$. So, by Lemma 3, $\psi l^{m-2}(ul - \bar{h}l') + \phi \bar{h}^m \tilde{h}^{m-1}$ has infinitely many zeros in $\hat{d}(0, R^-)$, but these zeros are the zeros of $f' + Uf^m$ that are not zeros of f except a finite number of them (see arguments in the proof of Theorem 5), a contradiction to our supposition. Hence, we may deduce that $\lim_{r \to R^-} \left| \frac{P}{\psi h^{m-1} \bar{h}} \right| (r) = 0.$

Now, since ϕ and ψ have the same finite number of zeros in $\widehat{d}(0, R^-)$ (counting multiplicities), there exists a $\rho < R$ such that $\nu(\frac{\phi}{\psi}, r) = 0 \quad \forall r \in [\rho, R[$, and therefore |U|(r) is a constant c in $[\rho, R[$. Consequently, there exists a $\rho' \in [\rho, R[$ such that $|H|(r) = |U|(r) = c \quad \forall r \in [\rho', R[$. Thus, $\nu(H, r) = 0 \quad \forall r \in [\rho', R[$.

The end of the proof is then similar to that of the previous theorem. By (11) and the previous observation, we have $(m-1)\nu(f,r) = -1 \quad \forall r \in]r_n, s_n[\quad \forall n \in \mathbb{N},$ which is absurd because $m \ge 3$. Hence $f' + Uf^m$ has infinitely many zeros which are not zeros of f whenever $m \ge 3$.

ACKNOWLEDGMENT

This work was supervised by Mr. Alain Escassut, Université Blaise Pascal, Laboratoire de Mathématique, Clermont-Ferrand. My sincere gratitude. I am also particularly grateful to the anonymous referee for many remarks.

REFERENCES

- Y. Amice, *Les nombres p-adic*, Presses Universitaires de France, Collection SUP, Le mathématicien, 14, 1975.
- 2. W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, *Rev. Mat. Iberoamericana*, **11** (1995), 355-373.
- A. Boutabaa and A. Escassut, On uniqueness of p-adic meromorphic functions, *Proc. Amer. Math. Soc.*, **126(9)** (1998), 2557-2568.
- 4. A. Boutabaa and A. Escassut, Applications of the p-adic Nevanlinna Theory to functional equations, *Ann. Inst. Fourier*, **50** (2000), 751-766.

- 5. A. Boutabaa and A. Escassut, URS and URSIMS for p-adic meromorphic functions inside a disc, *Proc. Edinb. Math. Soc.*, 44 (2001), 485-504.
- H. H. Chen and M. L. Fang, On the value distribution of f' fⁿ, Science in China (Serie A), 38(7) (1995), 789-798.
- 7. A. Escassut, Analytic Elements in p-adic Analysis, World Scientific Publishing, 1995.
- W. K. Hayman, Picard values of meromorphic functions and their derivates, *Ann. of Math.*, 70 (1959), 9-42.
- 9. P. C. Hu and C. C. Yang, *Meromorphic Functions over Non-Archimedean Fields*, Kluwer Academic Publishers, 2000.
- 10. M. Lazard, Les zéros des fonctions analytiques d'une variable sur un corp valué complet, *Publ. Math., Inst. Hautes tud. Sci.*, **14** (1962), 223-251.
- 11. E. Mues, Uber ein Problem von Hayman, Math. Z, 164 (1979), 239-259.
- 12. J. Ojeda, Applications of the p-adic Nevanlinna theory to problems of uniqueness, *Journal of Analysis, Madras.*, 2006, (to appear).

Jacqueline Ojeda Laboratoire de Mathématiques (UMR 6620) Université Blaise Pascal Campus Universitaire des Cézeaux 63177 Aubiere Cedex France E-mail: Jacqueline.Ojeda@math.univ-bpclermont.fr