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AN EVALUATION OF EFFICIENT POINTS FOR VECTOR
OPTIMIZATION

Tetsuya Nuriya and Daishi Kuroiwa

Abstract. In this paper, to decide the best point of many efficient points in
vector optimization, we consider an evaluate method of efficient points for
solutions in vector optimization problem. We introduce an evaluate function
of efficient points, and show properties of the evaluate function.

1. INTRODUCTION

The following efficiencies in vector optimization have been studied by many
researchers, see [9].

Definition 1. Let A be a subset of a topological vector space E and K a
convex cone of E which is not the whole space. We say that

(1) x ∈ A is an ideal efficient point of A with respect to K if y ∈ x + K for all
y ∈ A;

(2) x ∈ A is an efficient point of A with respect to K if y ∈ x+K for all y ∈ A

with x ∈ y + K;
(3) x ∈ A is a (global) properly efficient point of A with respect to K if there

exists a convex cone L of E , which is not the whole space, such thatK \ l(K)
is contained in intL and x is an efficient point of A with respect to L, where
l(K) = K ∩ (−K);

(4) Supposing that intK is nonempty, x ∈ A is a weakly efficient point of A with
respect to K if x is an efficient point of A with respect to intK ∪ {θ};
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The set of all efficient points (resp. properly efficient points, weakly efficient points,
ideal efficient points) of A with respect to K is denoted by Min(A|K) (resp.
PrMin(A|K), WMin(A|K), IMin(A|K)).

Note that

IMin(A|K) ⊂ PrMin(A|K) ⊂ Min(A|K) ⊂ WMin(A|K)

hold.
We have many notions of proper efficiencies. For instance, one is Benson’s

proper efficiency, and one is Borwein’s proper efficiency, see [1, 2]. Global proper
efficiency corresponds to Benson’s proper efficiency, see [4]. On the other hand,
the following definition corresponds to Borwein’s proper efficiency.

Definition 2. Let A be a subset of a metric space E and K a convex cone of
E which is not the whole space. We say that x is a local properly efficient point
with respect to K if, for each r > 0, there exists a convex cone L of E , which is
not the whole space, such that K \ l(K) is contained in intL and x is an efficient
point of A∩B(x, r) with respect to L. The set of all local properly efficient points
of A with respect to K is denoted by LPrMin(A|K).

In many cases, the number of elements of Min(A | K) is more than two. For
instance, let E = R

2, A = B̄(θ, 1) and K = R
2
+ where B̄(θ, 1) is the closed ball

of radius 1 centered at the null vector in E and R+ is the set of all non-negative
numbers, then Min(A | K) = {x ∈ R

2− | ‖x‖ = 1} holds. Thus, it is interested
which efficient point is the most suitable for the solution of vector optimization
problem.

In this paper, we consider an evaluation of efficient points for vector optimiza-
tion problem. We introduce an evaluate function, which is a function from E to
[−∞,∞], as ways of an evaluation of efficient points.

2. FLUTTER CONES

First, we state a family of flutter cones, which is needed to define an evaluate
function. The family consists of expansion and reduction cones made from the
original cone. In previous researches, we considered certain families of enlarged
cones, see [3, 5, 6, 7] and [8].

Let E be a topological vector space over the real field R, E∗ the dual space
of E , K a convex cone which is acute, that is, clK ∩ (−clK) consists of only the
null vector θ of E , K+ the positive polar cone of K, that is K+ = {ξ ∈ E∗ |
〈ξ, k〉 ≥ 0 for each k ∈ K}, ξ in K+ which is not the null vector θ∗ of E∗, and
P = {x ∈ K | 〈ξ, x〉 = 1}. We assume that intK is nonempty, and clP is compact.
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Definition 3. Let q ∈ intK ∩ P , and define

Kq
λ =




cone({q}) if λ = ∞,

cone((P − q) + λq) if λ ∈ (0,∞),

{x ∈ E | 〈ξ, x〉 ≥ 0} if λ = 0,

cone((−P + q) + λq)c ∪ {θ} if λ ∈ (−∞, 0),

cone({−q})c ∪ {θ} if λ = −∞.

for each λ ∈ [−∞,∞]. We say that Kq
λ is flutter cone of K at λ with respect to q.

Forms of the flutter cone depend on positions of the base of the original cone
K, see the following figure.

Other expression of the flutter cone is as follows:

Kq
λ =




{αq|α ≥ 0} if λ = ∞,

{α(p − (1 − λ)q)|α ≥ 0, p ∈ P} if λ ∈ (0,∞),⋃
µ∈[0,∞)

{α(p − (1 − λ)q)|α ≥ 0, p ∈ P} if λ = 0,

{−α(p − (1 + λ)q)|α > 0, p ∈ P}c if λ ∈ (−∞, 0),

{−αq|α > 0}c if λ = −∞.

Proof of the assertion on λ = 0, see Lemma 1.

Example 1. LetE = R
n, q = ξ = (1, 0, 0, . . . , 0), P = {p = (1, p2, p3, . . . , pn) |

‖p − q‖ ≤ 1} and K = {αp | α ≥ 0, p ∈ P}. Then,
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Kq
λ =




{(α, 0, 0, . . . , 0) ∈ Rn | α ≥ 0} if λ = ∞,

{x = (x1, x2, . . . , xn) ∈ R
n | x1

≥ λ
√

x2
2 + x2

3 + · · ·+ x2
n} if λ ∈ [0,∞),

{x | x1 > λ
√

x2
2 + x2

3 + · · ·+ x2
n} ∪ {θ} if λ ∈ (−∞, 0),

{(α, 0, 0, . . . , 0) ∈ R
n | α < 0}c if λ = −∞.

Example 2. Let ei is in R
n such that ith component of ei is 1 and other

components of ei are 0 (i = 1, 2, . . . , n), K = R
n
+, q = 1

n(1, 1, . . . , 1), ξ = h =
(1, 1, . . . , 1) and P = {p = (p1, p2, . . . , pn) ∈ R

n
+ | p1 +p2 + · · ·+pn = 1}, where

R+ = {r ∈ R | r ≥ 0}. Then,

Kq
λ =




{(α, α, . . . , α) ∈ R
n | α ≥ 0} if λ = ∞,

n⋂
i=1

{x | 〈ai(λ), x〉 ≥ 0} if λ ∈ [0,∞),

n⋃
i=1

{x | 〈ai(λ), x〉 > 0} ∪ {θ} if λ ∈ (−∞, 0),

{(α, α, . . . , α) ∈ R
n | α < 0}c if λ = −∞.

where ai(λ) = (1− |λ|)h + |λ|nei. Next, we state properties of the flutter cones.

Lemma 1. Let q ∈ intK ∩ P . Then,

(1) K
q
1 = K, Kq

0 = {x ∈ E | 〈ξ, x〉 ≥ 0} and K
q
−1 = (−K)c ∪ {θ};

(2) ∀λ ∈ [0,∞], Kq
λ is a convex cone;

(3) ∀λ ∈ [−∞, 0], Kq
λ is a cone, (K

q
λ)c ∪ {θ} is a convex cone;

(4) ∀λ, λ′ ∈ [−∞,∞] with λ < λ′, Kq
λ′ ⊂ Kq

λ.

Proof. We show only (1) and (4) because it is easy to show (2) and (3)
hold. (1) To show Kq

1 = K and Kq
−1 = (−K)c ∪ {θ} is easy, and we prove

Kq
0 = {x ∈ E | 〈ξ, x〉 ≥ 0} holds. It is clear Kq

0 ⊂ {x ∈ E | 〈ξ, x〉 ≥ 0}
holds. On the other hand, let x be in E satisfying 〈ξ, x〉 ≥ 0. Since q ∈ intK,
we can choose a natural number n0 such that 1

n0
x + (1 − 1

n0
〈ξ, x〉)q ∈ K . Let

α0 = n0 and p0 = 1
n0

x + (1 − 1
n0

〈ξ, x〉)q, then we have α0 ≥ 0, p0 ∈ P ,
and x = α0(p0 − (1 − 1

n0
〈ξ, x〉)q), and consequently x ∈ Kq

0 . Proof of (1) is
completed. (4) Assume that λ, λ′ ∈ [−∞,∞] with λ < λ′. We show K

q
λ′ ⊂ K

q
λ in

every situation.
Case 1. λ ∈ (0,∞) and λ′ = ∞. Let x ∈ Kq

λ′ , then there exists α ≥ 0 such
that x = αq. Since αq = 1

λα(q − (1− λ)q), we have x ∈ Kq
λ.
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Case 2. λ, λ′ ∈ (0,∞). Let x ∈ Kq
λ′ , then there exist α ≥ 0 and p ∈ P such

that x = α(p − (1 − λ′)q). Since αλ′
λ ≥ 0 and λ

λ′ p + (1 − λ
λ′ )q ∈ P , we have

x = αλ′
λ ( λ

λ′p + (1− λ
λ′ )q − (1− λ)q) ∈ Kq

λ.
Case 3. λ = 0 and λ′ ∈ (0,∞). It is clear in this case.
Case 4. λ ∈ (−∞, 0) and λ′ = 0. Suppose that there exist x ∈ Kq

λ′ such that
x ∈ (Kq

λ)c, then there exist µ ∈ [0,∞), α1 ≥ 0, α2 > 0 and p1, p2 ∈ P such that
x = α1(p1 − (1− µ)q) = −α2(p2 − (1− λ)q).

0 = 〈ξ, α1(p1 − (1 − µ)q) − (−α2(p2 − (1− λ)q))〉 = α1µ + α2(−λ),

and this is a contradiction.
Case 5. λ, λ′ ∈ (−∞, 0). We can obtain (Kq

λ)c ⊂ (Kq
λ′)c as the same as

Case 2.
Case 6. λ = −∞ and λ′ ∈ (−∞, 0). We can prove that (Kq

λ)c ⊂ (Kq
λ′)c

holds as the same as Case 1.
Case 7. Otherwise. By using the above results, the proof of Kq

λ′ ⊂ Kq
λ is

given.

Lemma 2 and Lemma 3 play important roles to consider the interior and the
closure of the flutter cones.

Lemma 2. For each q ∈ intK ∪ P and µ ∈ (0,∞), we define tq
µ : E → E as

follows:
tqµ(x) = x − 〈ξ, x〉 (1 − µ)q for each x ∈ E.

Then,
(1) tqµ is a homeomorphism on E , and (tq

µ)−1 = tq1
µ

.

(2) tqµ(Kq
λ) = Kq

λµ for all λ ∈ (0,∞).

Proof. (1) It is clear that tq
µ is continuous on E . We show that tqµ is a injection.

Assume that tqµ(x) = tqµ(y). Then, we have x − y = 〈ξ, x− y〉 (1 − µ)q, and

〈ξ, x− y〉 = 〈ξ, 〈ξ, x − y〉 (1 − µ)q〉 = 〈ξ, x − y〉 (1 − µ),

therefore
0 = 〈ξ, x− y〉µ.

Since µ = 0, we have 〈ξ, x− y〉 = 0 and also x − y = θ. Next, we show that tqµ
is a surjection. Let y be in E , then

tqµ(y − 〈ξ, y〉 (1 − 1
µ

)q) = y.

This equation directly shows (tqµ)−1 = tq1
µ

. (2) Let x be in tqµ(Kq
λ), then there exist
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α ≥ 0 and p ∈ P such that x = tq
µ(α(p− (1− λ)q)). We have

tqµ(α(p − (1 − λ)q)) = α(p − (1 − λµ)q) ∈ Kq
λµ,

therefore tqµ(Kq
λ) ⊂ Kq

λµ holds. By applying the result, we see tq1
µ

(Kq
λµ) ⊂ Kq

λ.

Since (tq1
µ

)−1 = tqµ, we conclude tqµ(Kq
λ) = Kq

λµ.

Lemma 3. The following properties are satisfied:
(1) intK = {αp | α > 0, p ∈ intK ∩ P};
(2) clK = {αp | α ≥ 0, p ∈ clP}.
Proof. It is easily confirmed the above Lemma holds.

Lemma 4. Let q ∈ intK ∩ P . Then,
(1) ∀λ ∈ [−∞,∞],

intKq
λ =




∅ if λ = ∞,

{α(p−(1−λ)q) | α>0, p∈ intK ∩ P} if λ∈(0,∞),⋃
µ∈(0,∞)

{α(p − (1 − µ)q) | α > 0, p ∈ intK ∩ P} if λ = 0,

{−α(p−(1+λ)q) | α≥0, p∈clP}c if λ∈(−∞, 0),

{−αq | α ≥ 0}c if λ = −∞;
(2) ∀λ, λ′ ∈ [−∞,∞] with λ < λ′, Kq

λ′ ⊂ intKq
λ ∪ {θ}.

Proof. At first, we show the proof of (1) without λ = 0. If λ ∈ {−∞,∞},
this proof is easy and omitted. Assume that λ ∈ (0,∞). By using Lemma 2 and
Lemma 3, we have

intKq
λ = inttqλ(K)

= tqλ(intK)

= t
q
λ({αp | α > 0, p ∈ intK ∩ P})

= {α(p − (1 − λ)q) | α > 0, p ∈ intK ∩ P}.
Assume that λ ∈ (−∞, 0). To show that intK q

λ = {−α(p− (1 + λ)q) | α ≥ 0, p ∈
clP}c holds, it is satisfied that cl((K q

λ)c) = {−α(p− (1 + λ)q) | α ≥ 0, p ∈ clP}.
In the same way as λ ∈ (0,∞), we obtain cl({α(p − (1 − (−λ))q) | α > 0, p ∈
P}) = {α(p− (1 + λ)q) | α ≥ 0, p ∈ clP}. Then, we have
(∗) cl((Kq

λ)c) = {−α(p − (1 + λ)q) | α ≥ 0, p ∈ clP}.
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Then, proof of (1) without λ = 0 is finished. Next, we show the proof of (2) in
condition that λ, λ′ ∈ (0,∞] or λ, λ′ ∈ [−∞, 0). If λ′ = ∞ or λ = −∞, the proof is
easy and omitted. Assume that λ, λ′ ∈ (0,∞). We show thatK ⊂ intK λ

λ′
∪{θ}. Let

x be inK, then there exist a nonnegative number α and p ∈ P such that x = αp. We
have αλ′

λ ≥ 0, λ
λ′ p+(1− λ

λ′ )q ∈ intK∩P and x = αλ′
λ (( λ

λ′p+(1− λ
λ′ )q)−(1− λ

λ′ )q).
By using Lemma 4(1) when λ ∈ (0,∞), αλ′

λ (( λ
λ′p + (1 − λ

λ′ )q) − (1− λ
λ′ )q) is in

intKq
λ
λ′
∪{θ}, and then we have K ⊂ intK λ

λ′
∪{θ}. By using Lemma 2, we obtain

Kq
λ′ = tqλ′(K) ⊂ tqλ′(intKq

λ
λ′

∪ {θ}) = intKq
λ ∪ {θ}.

Assume that λ, λ′ ∈ (−∞, 0). To show that Kq
λ ⊂ Kq

λ′ holds, it is enough if
(Kq

λ′)c ⊂ cl((Kq
λ)c) \ {θ} is shown. The inclusion is obtained in the same way

as λ, λ′ ∈ (0,∞). Next, we show the proof of (1) in condition that λ = 0. It
is clear that

⋃
µ∈(0,∞)

{α(p − (1 − µ)q) | α > 0, p ∈ intK ∩ P} ⊂ Kq
0 holds.

Since {α(p − (1 − µ)q) | α > 0, p ∈ intK ∩ P} is open for each µ ∈ (0,∞),⋃
µ∈(0,∞)

{α(p − (1 − µ)q) | α > 0, p ∈ intK ∩ P} is open. Let O be a open subset

of E with O ⊂ Kq
0 and x in O \ {θ}, then there exists µ0 ∈ [0,∞) such that

x ∈ {α(p − (1 − µ0)q) | α ≥ 0, p ∈ P} = Kq
µ0 . we show now that µ0 = 0 holds.

Suppose that µ0 = 0. There exists a neighborhood U of θ such that x + U ⊂ O,
and there exist α ≥ 0 and p ∈ P such that x = α(p − (1 − µ0)q). We can choose
n0 ∈ N such that − α

n0
q ∈ U ⊂ K

q
0 since α(p − (1 + 1

n)q) → x, therefore we
have −q ∈ Kq

0. Since q ∈ intK, a radial circled neighborhood V of θ such that
q + V ⊂ Kq

0 . Then V ⊂ Kq
0 holds, this means that E = K q

0 . The equation is a
contradiction, and we have µ0 = 0. By x = θ and using Lemma 4(2) in condition
that λ, λ′ ∈ (0,∞), we have

x ∈ intKq
µ0+1 ⊂

⋃
µ∈(0,∞)

{α(p− (1− (µ0 + 1))q) | α > 0, p ∈ intK ∩ P}.

Finally, we show the proof of (2) in other conditions. Assume that λ = 0 and
λ′ ∈ (0,∞). Because of (1),

intKq
λ ∪ {θ} ⊃ intKq

1
2
λ′ ⊃ Kq

λ′.

If λ ∈ (−∞, 0) and λ′ = 0, we can prove the same as λ = 0 and λ′ ∈ (0,∞). In
other case, we can prove by using the above results.

Lemma 5. Let q ∈ intK ∩ P . Then, the following properties are satisfied:
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(1) ∀λ ∈ [−∞,∞],

clKq
λ =




{αq | α ≥ 0} if λ = ∞,

{α(p − (1 − λ)q) | α ≥ 0, p ∈ clP} if λ ∈ (0,∞),⋃
µ∈[0,∞)

{α(p − (1 − µ)q) | α ≥ 0, p ∈ P} if λ = 0,

{−α(p − (1 + λ)q) | α > 0, p ∈ intK ∩ P}c if λ ∈ (−∞, 0),

E if λ = −∞;
(2) ∀λ, λ′ ∈ [−∞,∞] with λ < λ′, clKq

λ ⊂ Kq
λ.

Proof. Since −P = {x ∈ −K | 〈−ξ, x〉 = 1} is a base of −K , and −q ∈ −P ,
we can consider the flutter cones of −K with respect to −q. Then we have

cl
(
Kq

λ

)
=

(
int(−K)−q

−λ

)c

for each λ ∈ [−∞,∞]. Indeed, when λ = 0, we can check easily

(−K)−q
−λ ∩ Kq

λ = {θ} and (−K)−q
−λ ∪ Kq

λ = E

by the definition of the flutter cones, and also(
(−K)−q

−λ

)c
= Kq

λ \ {θ}.
Therefore we have

cl
(
K

q
λ

)
= cl

(
K

q
λ \ {θ}) = cl

(
((−K)−q

−λ)c
)

=
(
int(−K)−q

−λ

)c
.

On the other hand, when λ = 0,

Kq
0 = {x ∈ E | 〈ξ, x〉 ≥ 0} and (−K)−q

0 = {x ∈ E | 〈−ξ, x〉 ≥ 0}
by using Lemma 1, and it is easy to show that

cl (Kq
0) =

(
int(−K)−q

0

)c
.

Hence we obtain cl
(
Kq

λ

)
=

(
int(−K)−q

−λ

)c
for each λ ∈ [−∞,∞]. From this and

Lemma 4, we complete the proof.

Now we have the following Lemma by using Lemma 4(2) and Lemma 5.

Lemma 6. Let q ∈ intK ∩ P . Then,

clKq
λ′ ⊂ intKq

λ ∪ {θ}
for each λ, λ′ ∈ [−∞,∞] with λ < λ′.

Lemma 7. The following properties are satisfied:
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(1)
⋃

µ∈(1,∞)

Kq
µ = intK ∪ {θ};

(2)
⋂

µ∈(0,1)

Kq
µ = clK.

Proof. (1) By using Lemma 4, we can show that
⋃

µ∈(1,∞)

Kq
µ ⊂ intK ∪ {θ}

holds. Let x be an element of intK ∪{θ}. If x = θ, it is clear that x ∈
⋃

µ∈(1,∞)

Kq
µ.

Assume that x = θ, then there exist a positive number α and p ∈ intK∩P such that
x = αp. We can choose a radial open neighborhood U of θ such that p + U ⊂ K,
and then there exists a positive number r such that r(p − q) ∈ U . Therefore, we
obtain

x − αr

1 + r
q =

α

1 + r
(p + r(p− q)) ∈ α

1 + r
(p + U) ⊂ K.

〈
ξ, x− αr

1+r

〉
= 0 holds now, so we denote that

µ =
αr
1+r〈

ξ, x− αr
1+r q

〉 + 1.

Then, we have

x =
〈

ξ, x− αr

1 + r
q

〉
 x − αr

1+r q〈
ξ, x− αr

1+r q
〉 +

αr
1+r q〈

ξ, x− αr
1+r q

〉



=
〈

ξ, x− αr

1 + r
q

〉
 x − αr

1+r q〈
ξ, x− αr

1+r q
〉 − (1− µ) q


 ∈ Kq

µ ⊂
⋃

µ∈(1,∞)

Kq
µ.

(2) By using Lemma 5, we can show that clK ⊂
⋂

µ∈(0,1)

Kq
µ holds. Let x be an

element of
⋂

µ∈(0,1)

Kq
µ. If x = θ, it is clear that x ∈ clK . Assume that x = θ

and let n ∈ N, then there exist a positive number αn and pn ∈ P such that
x = αn(pn − (1 − (1 − 1

n+1 ))q). Calculating the value of 〈ξ, x〉, we have

αn =
〈ξ, x〉

1 − 1
n+1

.

From this and x = αn(pn − (1 − (1 − 1
n+1 ))q), we have
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pn =
1 − 1

n+1

〈ξ, x〉 x +
1

n + 1
q.

Therefore {pn}n∈N converges to
1

〈ξ, x〉x, and we have
1

〈ξ, x〉x ∈ clP .

Let q ∈ intK ∩ P and µ ∈ (0,∞), then we can consider flutter cones of K q
µ

with respect to µq since K q
µ is also an acute convex cone of E , P − (1 − µ)q is

equal to {x ∈ E |
〈

1
µξ, x

〉
= 1} and is a base of K

q
µ. Then we have the following

lemma, the proof is easy and omitted.

Lemma 8. For each q ∈ intK ∩ P , λ ∈ R and µ ∈ (0,∞),

(Kq
µ)µq

λ = Kq
λµ.

Lemma 9. The following properties are satisfied:

(1) λ ∈ [0,∞) =⇒ clKq
λ = (clK)q

λ;
(2) λ ∈ (0,∞) =⇒ intKq

λ ∪ {θ} = (intK ∪ {θ})q
λ;

(3) λ ∈ (−∞, 0] =⇒ clKq
λ = (intK ∪ {θ})q

λ;
(4) λ ∈ (−∞, 0) =⇒ intKq

λ ∪ {θ} = (clK)q
λ.

Proof. If λ = 0, we obtain the properties by using Lemma 4 and Lemma 5.
If λ = 0, we obtain clKq

0 = (clK)q
0 = (intK ∪ {θ})q

0 = {x ∈ E | 〈ξ, x〉 ≥ 0} by
using Lemma 1.

We state representations of efficiencies by using flutter cones.

Theorem 1. The following properties are satisfied:

(1) Min(A|K) = Min(A|Kq
1);

(2) K is closed =⇒ PrMin(A|K) =
⋃

µ∈(0,1)

Min(A|Kq
µ);

(3) WMin(A|K) =
⋂

µ∈(1,∞)

Min(A|Kq
µ);

Proof. It is clear that (1) holds. (2) Assume that K is closed, and let x be
an element of PrMin(A|K). Then there exists a convex cone L of E , which is
not the whole space, such that clK \ {θ} ⊂ intL and x ∈ Min(A|L). We show
that we can choose µ0 ∈ (0, 1) such that clK q

µ ⊂ L. Assume that clKq
µ ⊂ L for

each µ ∈ (0, 1), and let n be a natural number. Then there exists xn ∈ clKq

1− 1
2n

such that xn /∈ L, and there exist a positive number αn and pn ∈ clP such that
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xn = αn(pn−(1−(1− 1
2n))q). We denote yn = pn−(1−(1− 1

2n))q, and then yn ∈
clKq

1− 1
2n

∩(intL)c. Since clP is compact, we can choose a subsequence {pni}i∈N of
{pn}n∈N and p ∈ clP such that {pni}i∈N converges to p. Then {yni}i∈N converges
to p, and we have p ∈ (intL)c ⊂ (clK)c. This is a contradiction. By using
Proposition 2.4 of Chapter 2 in [9],

x ∈ Min(A|L) ⊂ Min(A|Kq
µ0

) ⊂
⋃

µ∈(0,1)

Min(A|Kq
µ).

(3) It is easy to show that WMin(A|K) ⊂
⋂

µ∈(1,∞)

Min(A|Kq
µ) holds. Let x be an

element of
⋂

µ∈(1,∞)

Min(A|Kq
µ). By using proposition 2.3 of Chapter 2 in [9], we

obtain

{x} =
⋃

µ∈(1,∞)

(A ∩ (x − Kq
µ)) = A ∩


x −

⋃
µ∈(1,∞)

Kq
µ


 .

By using Lemma 7, we have A ∩ (x − (intK ∪ {θ})) = {x}. This means that
x ∈ WMin(A|K).

Before we state representation of ideal efficiency, we introduce new notions of
ideal efficiency, which are proper ideal efficiency and weakly ideal efficiency.

Definition 4. Let A be a subset of a topological vector space E and K a
convex cone of E which is not the whole space. We say that

(1) x ∈ A is a proper ideal efficient point of A with respect to K if there exists
a cone L of E , which does not consist only the null vector, such that clL is
contained in K and x is a ideal efficient point of A with respect to L;

(2) x ∈ A is a weakly ideal efficient point of A with respect to K if x is a ideal
efficient point of A with respect to clK;

The set of all proper ideal efficient points (resp. weakly ideal efficient points) of A

with respect to K is denoted by PrIMin(A|K) (resp. WIMin(A|K)). Note that

PrIMin(A|K) ⊂ IMin(A|K) ⊂ WIMin(A|K)
⊂ PrMin(A|K) ⊂ Min(A|K) ⊂ WMin(A|K)

hold. In the following figure, x1 is a component of WIMin(A1|K), but is not a
component of IMin(A1|K). On the other hand, x2 is not a component of PrIMin
(A2|K), but is a component of IMin(A2|K).

We obtain results concerned with ideal efficiency, which is similar to Theorem 1.
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Theorem 2. The following properties are satisfied:

(1) IMin(A|K) = IMin(A|Kq
1);

(2) K \ {θ} is open =⇒ PrIMin(A|K) =
⋃

µ∈(1,∞)

IMin(A|Kq
µ);

(3) WIMin(A|K) =
⋂

µ∈(0,1)

IMin(A|Kq
µ).

Proof. It is clear that (1) holds. (2) Let x be an element of PrIMin(A|K),
there exists a convex cone L of E , which does not consist only the null vector, such
that clL ⊂ K and x ∈ IMin(A|L). We show that there exists µ0 ∈ (1,∞) such
that clL ⊂ K

q
µ0 . Assume that clL ⊂ K

q
µ for all µ ∈ (1,∞). Let n be a natural

number, then there exists xn ∈ clL such that xn /∈ Kq

1+ 1
n

. Because of the condition
of K, there exist αn > 0 and pn ∈ intK ∩ P such that xn = αnpn. There exist
a subsequence {pni}i∈N of {pn}n∈N and p ∈ clP such that {pni}i∈N converges to
p, since clP is compact, and then we obtain p ∈ clL ⊂ K . On the other hand, we
also obtain

p ∈
⋂
n∈N

(Kq

1+ 1
n

)c = Kc

by K = intK ∪ {θ} and using Lemma 4 and Lemma 7. This is a contradiction.
Therefore,

x ∈ IMin(A|L) ⊂ IMin(A|Kq
µ0

) ⊂
⋃

µ∈(1,∞)

IMin(A|Kq
µ).

By using Lemma 5, we obtain
⋃

µ∈(1,∞)

IMin(A|Kq
µ) ⊂ IMin(A|K). (3) By using

Lemma 6 and Lemma 7, we can show that WIMin(A|K) =
⋂

µ∈(0,1)

IMin(A|Kq
µ)

holds.

Equivalent definitions of efficiency and weakly efficiency are as follows:

• x ∈ Min(A|K) ⇐⇒ A ∩ (x − K) = {x};
• x ∈ WMin(A|K) ⇐⇒ A ∩ (x − intK) = ∅;
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see [9]. By using the flutter cones, we obtain equivalent definitions of ideal effi-
ciency which are the same as the above.

Theorem 3. An equivalent definition of ideal efficiency:

(1) x ∈ IMin(A|K) ⇐⇒ A ∩ (x − Kq
−1) = {x};

(2) x ∈ WIMin(A|K) ⇐⇒ A ∩ (x− intKq
−1) = ∅.

Proof. (1)

x ∈ IMin(A|K) ⇐⇒ A ⊂ x + K

⇐⇒ A ∩ (x + K)c = ∅
⇐⇒ A ∩ (x + Kc ∪ {θ}) = {x}
⇐⇒ A ∩ (x − Kq

−1) = {x}.

The proof of (2) is the same as (1).

Next, we redefine the notions of ideal efficiency without convexity of the cone,
and we consider IMin(A|Kq

µ) when µ < 0. Then by using the flutter cones, we
also have representations of notions of efficiency by ideal efficient points.

Theorem 4. The following properties are satisfied:

(1) Min(A|K) = IMin(A|Kq
−1);

(2) K is closed =⇒ PrMin(A|K) =
⋃

µ∈(−1,0)

IMin(A|Kq
µ);

(3) WMin(A|K) =
⋂

µ∈(−∞,−1)

IMin(A|Kq
µ).

Proof. (1) Let x be an element of Min(A|K), and we show that A ⊂ x+K q
−1.

Assume that there exists a0 ∈ A such that a0 /∈ x + K
q
−1, then we have x − a0 ∈

K \ {θ}. Since x ∈ Min(A|K) and K is acute, A ∩ (x − K) = {x}. This means
that a0 = x, and this is a contradiction. Therefore, we have x ∈ IMin(A|Kq

−1. Let
x ∈ IMin(A|Kq

−1) and y ∈ A with x ∈ y + K . Since x ∈ IMin(A|Kq
−1), we have

x− y ∈ Kc ∪ {θ}. And then, we obtain x = y since x− y ∈ K . The proofs of (2)
and (3) are given by using Lemma 8, Theorem 1 and Theorem 4(1).

3. EVALUATE FUNCTION OF EFFICIENT POINTS

By representations of efficiencies, we know the following relations between
flutter cones and efficiencies.

• x ∈ WMin(A | K) ⇐⇒ A ⊂ x + Kq
λ for each λ ∈ (−∞,−1);

• x ∈ Min(A | K) ⇐⇒ A ⊂ x + Kq
−1;
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• Supposing that K is closed, x ∈ PrMin(A | K) ⇐⇒ there exists λ ∈
(−1, 0) such that A ⊂ x + K q

λ;
• x ∈ IMin(A|K) ⇐⇒ A ⊂ x + Kq

1 .

Since IMin(A|K) ⊂ PrMin(A|K) ⊂ Min(A|K) ⊂ WMin(A|K), as the condition
of efficiency which has x ∈ A is stronger, a real number λ which keepsA ⊂ x+Kq

λ

is higher. Moreover, as λ which keeps A ⊂ x + Kq
λ is higher, the condition of

efficiency which has x ∈ A is stronger. So, we can consider that the supremum of
all real number λ which keeps A ⊂ x + K q

λ determines value of x as efficiency in
vector optimization.

Under this consideration, we define the following evaluate function of efficient
points:

Definition 5. Let EV q
A be a function from E to [−∞,∞] defined by

EV q
A(x) := sup{λ ∈ R | A ⊂ x + Kq

λ} for each x ∈ E.

Example 3. LetE = R
2, A = B̄(θ, 1),K = R2

+, P = {(1−α, α) | α ∈ [0, 1]}
and q = ξ = ( 1√

2
, 1√

2
). Then, we have

• EV q
A(− 1√

2
, 1√

2
) = EV q

A( 1√
2
,− 1√

2
) = −∞,

• EV q
A(−1

2

√
2 +

√
2, 1

2

√
2 −√

2) = EV q
A( 1

2

√
2−√

2,−1
2

√
2 +

√
2) = −2,

• EV q
A(−1, 0) = EV q

A(0,−1) = −1,

• EV q
A(−1

2

√
2 +

√
2,−1

2

√
2 −√

2) = EV q
A(−1

2

√
2 −√

2,−1
2

√
2 +

√
2) =

−1
2 ,

• EV q
A(− 1√

2
,− 1√

2
) = 0.
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We state a fundamental relation between the evaluate function and efficiencies.

Theorem 5. Let x be in A. The following properties are satisfied:
(1) EV

q
A(x) ≥ −1 ⇐⇒ x ∈ WMin(A | K);

(2) K is closed =⇒ (EV
q
A(x) > −1 ⇐⇒ x ∈ PrMin(A | K));

(3) EV q
A(x) ≥ 1 ⇐⇒ x ∈ WIMin(A | K);

(4) K \ {θ} is open =⇒ (EV q
A(x) > 1 ⇐⇒ x ∈ PrIMin(A | K)).

Proof. (1) Assume that EV
q
A(x) ≥ −1 holds. Because of the definition of

EV q
A, we have A ⊂ x + K qµ = x + (Kq

−µ)−µq
−1 . By using Theorem 4 and

Theorem 1, we obtain x ∈ ⋂
µ>1 Min(A | Kq

µ) = WMin(A | K). Next, assume that
x ∈ WMin(A | K) holds. Let µ < −1. By using Theorem 1 and Theorem 4, we
have A ⊂ x+(Kq

−µ)−µq
−1 = x+K

q
µ. Therefore, we obtainEV

q
A(x) ≥ µ. (2) Assume

that EV q
A(x) > −1. Then, there exists λ ∈ (−1, 0) such that A ⊂ x + (K q

−λ)−λq
−1 .

By using Theorem 1, we have x ∈ ⋃
λ∈(0,1) Min(A | Kq

λ) = PrMin(A | K).
Next, assume that x ∈ PrMin(A | K). By using Theorem 1 and Theorem 4,
there exists A ⊂ x + (Kq

−λ0
)−λq
−1 = x + K

q
λ0
. Therefore we obtain EV

q
A(x) ≥

λ0 > −1. (3) Assume that EV q
A(x) ≥ 1. Let λ be in (0, 1). Then, there exists

µλ > −λ such that A ⊂ x + K
q
µλ . By using Lemma 1 and Theorem 2, we have

x ∈ ⋂
λ∈(0,1) IMin(A | Kq

λ) = WIMin(A | K). Next, assume that WIMin(A | K).
Let λ be in (0, 1). By using Theorem 2, we have x ∈ IMin(A | Kq

λ). Therefore,
we obtain EV q

A(x) ≥ λ. (4) Assume that EV q
A(x) > 1. Then, there exists µ > 1

such that A ⊂ x + K q
µ. Since clKq

µ, we obtain x ∈ PrIMin(A | K). Next, assume
that x ∈ PrIMin(A | K). By using Theorem 2, we have

⋃
λ∈(1,∞) IMin(A | Kq

µ).
Therefore, there exists µ ∈ (1,∞) such that EV q

A(x) ≥ µ.

We could show that points, which has superior values with respect to the evaluate
function, is strongly efficient points. Next, we state other merits which are had their
points.

Theorem 6. Let x0 be in A and EV q
A(x0) ∈ (−∞, 0]. Assume that

(1) L ⊂ int(Kq
−EV

q
A(x0)

) ∪ {θ} and L is a convex cone;

(2) A ⊂ B ⊂ A + int(Kq
−EV q

A(x0)
) ∪ {θ}.

Then, x0 ∈ Min(B | L) holds.

Proof. At first, suppose that EV q
A(x0)<0. Since A⊂x0+Kq

µEV q
A(x0)

, we have

A ⊂ x0 +
⋂

µ∈(−∞,1)

(Kq
−EV q

A(x0)
)−EV q

A(x0)q
µ

= x0 + cl(Kq
EV q

A(x0)
)
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by using Lemma 8. Since (intKq
−EV

q
A(x0)

∪ {θ})−EV
q
A(x0)

−1 ⊂ −Lc ∪ {θ}, we obtain

B ⊂ x0 + (intKq
−EV q

A(x0)
∪ {θ})−EV q

A(x0)
−1 + (intKq

−EV q
A(x0)

∪ {θ})
= x0 + (intKq

−EV q
A(x0)

∪ {θ})
= x0 + (−L)c ∪ {θ}.

This means that x0 ∈ Min(B | L) holds. Next, suppose that EV
q
A(x0) = 0. Since

A ⊂ x0+Kq
−µ for µ ∈ (0, 1), we have A ⊂ x0+

⋂
µ∈(0,1) Kq

−µ = x0+Kq
0 by using

Lemma 5. Since Kq
0 ⊂ (−L)c ∪ {θ}, we obtain B ⊂ x0 + Kq

0 + intKq
0 ∪ {θ} ⊂

x0 + (−L)c ∪ {θ}.
Theorem 7. Let x0 be in A, EV q

A(x0) ∈ (0,∞), η be in E∗, H := {x ∈ E |
〈η, x〉 ≥ 0} and H ⊂ int(K q

−EV q
A(x0)

) ∪ {θ}. Assume that
(1) L ⊂ Kq

−EV
q
A(x0)

and L is a pointed convex cone;

(2) A ⊂ B ⊂ A + N , where N =
⋃{M ⊂ E | M is a half-space, M ⊂

(int(Kq
−EV q

A(x0)
) ∪ {θ}) ∩ ((−L)c ∪ {θ})}.

Then, x0 ∈ Min(B | L) holds.

Proof. Since A ⊂ x0 + Kq
µEV q

A(x0)
for each µ ∈ (0, 1), we have

A ⊂ x0 +
⋂

µ∈(0,1)

K
q
µEV q

A(x0)
= x0 + cl(Kq

EV q
A(x0)

)

by using Lemma 9 and Lemma 8. Therefore, we obtain

B ⊂ A + Kq
EV q

A(x0)
⊂ x0 + cl(Kq

EV q
A(x0)

0) ⊂ x0 + (−N )c ∪ {θ} + N.

Since Kq
0 ⊂ (int(Kq

−EV q
A(x0)

)∪{θ})∩ ((−L)c∪{θ}), we have N is nonempty, and
(−N )c∪{θ} is a pointed convex cone. Therefore we obtain (−N )c⊂{θ}+N =(−N )c

⊂ {θ}, also B⊂x0 + (−L)c∪{θ}. This means that x0∈Min(B|L) holds.

4. PROPERTIES OF THE EVALUATE FUNCTION AND EXISTENCE FOR MAXIMA OF THE
EVALUATE FUNCTION

In this section, we state some properties of the evaluate function which was
defined in the previous section. And, by using given properties, we obtain existence
theorems for the maxima of the evaluate function.

Proposition 1. Let e be in E , x in A and α a positive number. The following
properties are satisfied:
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(1) EV q
A+R+q(x + αq) = −∞;

(2) EV q
A+e(x + e) = EV q

A(x);
(3) EV q

αA(αx) = EV q
A(x).

Proof.
(1) Since −q /∈ Kq

λ for each λ, x is not belong to (x+αq)+Kq
λ for each λ ∈ R.

Therefore, we have EV q
A+R+q(x + αq) = −∞.

(2) This proof is easy and omitted.
(3) Since Kq

λ is a cone, we have that αA ⊂ αx + Kq
λ holds if and only if

A ⊂ x + Kq
λ holds.

Theorem 8. The evaluate function EV q
A is upper semi-continuous on A.

Proof. Assume that there exist x ∈ A and a net {xα}α∈I of A such that {xα}α∈I

converges at x and EV q
A(x) < lim supα∈I EV q

A(xα). When EV q
A(x) = ∞ holds, it

is clear that EV q
A(x) < lim supα∈I EV q

A(xα) is a contradiction. Next, suppose that
EV q

A(x) = ∞, and let a real number λ be EV q
A(x) < λ < lim supα∈I EV q

A(xα).
Since EV

q
A(x) < λ, there exists a ∈ A such that a /∈ x + cl(K q

λ). On the other
hand, there exists α0 ∈ I such that λ < supα≥β EV q

A(xβ) for each α ≥ α0 since
λ < lim supα∈I EV q

A(xα). For each α ≥ α0, we can choose βα ≥ α such that
a ∈ xβα + cl(Kq

λ). It is clear that {xβα}α∈I converges at x, then we obtain
a − x ∈ cl(Kq

λ). This is a contradiction.

If A is convex, x ∈ A is important for value of evaluate function

Theorem 9. Let E be a normed space, x in A, r positive number and
y ∈ A ∩ B(x, r), where B(x, r) := {z ∈ E | ‖z − x‖ < r}. If A is convex, then
EV q

A(y) = EV q
A∩B̄(x,r)

(y) holds, where B̄(x, r)(y) is the closure of B(x, r) in E .

Proof. At first, we show EV q
A(x) = EV q

A∩B̄(x,r)
(x). Since A ∩ B̄(x, r) ⊂ A,

we have EV q
A(x) ≤ EV q

A∩B̄(x,r)
(x). It is clear that EV q

A(x) ≥ EV q
A∩B̄(x,r)

(x)
when EV q

A(x) = ∞, so we suppose that EV q
A(x) = ∞. Assume that EV q

A(x) <

λ < EV q
A∩B̄(x,r)

(x). Since EV q
A(x) < λ, there exists a ∈ A such that a ∈

x + K
q
λ. Let α = max{r, ‖a − x‖}, then we have r

2α ∈ (0, 1). Since A is
convex and λ < EV q

A∩B̄(x,r)
(x), we obtain x + r

2α(a − x) ∈ A ∩ B̄(x, r) ⊂
x + Kq

λ. Therefore we have a − x ∈ Kq
λ, and this is a contradiction. Next, we

show EV q
A(y) = EV q

A∩B̄(x,r)
(y). Since y ∈ B(x, r), we have there exists r′ > 0

such that A ∩ B̄(y, r′) ⊂ A ∩ B̄(x, r) ⊂ A. Therefore we have EV q
A∩B̄(y,r′)(y) ≤

EV q
A∩B̄(x,r)

≤ EV q
A(y). Moreover we have EV q

A∩B̄(y,r′)(y) = EV q
A(y) by the

above proof, and the proof is finished.
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Lemma 10. Let x be in A. Then, we have

EV q
A(x) = EV q

A+R+q(x)

Proof. This proof is easy, and omitted.

Lemma 11. Let E be a normed space, A a nonempty convex subset of E , x
in A, r > 0 and y in A ∩ B(x, r). Then, we have

EV
q
A(y) = EV

q

A∩B̄(x,r)
(y).

Proof. There exists r ′ > 0 such that B̄(y, r′) ⊂ B(x, r). By Lemma 9, we
have EV q

A∩B(y,r′)(y) = EV q
A(y). Since A∩B̄(y, r′) ⊂ A∩B(x, r) ⊂ A, we obtain

EV q
A(y) ≤ EV q

A∩B(x,r)(y) ≤ EV q
A∩B̄(y,r′).

In the rest of this section, we state existence theorems for maxima of the evaluate
function.

Proposition 2. Let x0 be inA. IfEV
q
A(x0) > 0, thenEV

q
A(x0) = maxEV

q
A(A)

holds.

Proof. It is clear that EV q
A(x0) = max EV q

A(A) when EV q
A(x0) = ∞, so

we suppose that EV q
A(x0) = ∞. Assume that there exists y0 ∈ A such that

EV q
A(x0)<EV q

A(y0). Since EV q
A(x0)>0, we have x0∈IMin(A | Kq

λ0
). Also, we

have y0∈IMin(A | Kq
λ0

) since λ0<EV q
A(y). By using Proposition 2.2 of Chapter 2

in [9], we obtain {x0} = IMin(A | Kq
λ0

) = {y0}. This is a contradiction.

Proposition 3. If A is compact, then there exists x0 ∈ A such that EV q
A(x0) =

maxEV q
A(A).

Theorem 10. Let E := R
n, 0 < r and y in A. Assume that A ⊂ B(y, r) +

Rq and A is R+q-closed and R+q-convex. Then, there exists x0 ∈ A such that
EV q

A(x0) = maxEV q
A(A).

Proof. Since (A + R+q) ∩ B̄(y, r) is compact, there exists x0 ∈ (A + R+q) ∩
B̄(y, r) such that

EV
q

(A+R+q)∩B̄(y,r)
(x0) = maxEV

q

(A+R+q)∩B̄(y,r)
((A + R+q) ∩ B̄(y, r)).

Let r < s. By using Lemma 9 and Lemma 10, we have

EV q
A(x0) = maxEV q

A((A + R+q) ∩ B(y, s)).
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We show that EV q
A(x) ≤ EV q

A(x0) for each x ∈ A. Let x ∈ A. When x ∈ B(y, r),
it is clear that EV q

A(x) ≤ EV q
A(x0) holds. Assume that x ∈ B(y, r). Since

A ⊂ B(y, r) + Rq, there exists z ∈ B(y, r) and α > 0 such that x = z + αq. For
each λ ∈ R, z is not in x + K. Therefore, we obtain EV q

A(x) = −∞.

5. A EVALUATE FUNCTION FOR LOCAL PROPERLY EFFICIENT POINTS

In the rest of paper, let E be a metric space. We do not obtain a relation between
evaluate function EV q

A and local proper efficiency. In this section, we introduce
another evaluate function and consider a relation between this evaluate function and
local proper efficiency.

Definition 6. Let EV ′q
A be a function from E to [−∞,∞] defined by

EV ′q
A (x) := lim

r→∞EV q
A∩B(x,r)(x) for each x ∈ E.

Since EV q
A∩B(x,r) is non-increasing with respect to r when r is sufficiently large,

EV ′q
A (x) is well-define.

Theorem 11. Let x be in A. The following properties are satisfied:

(1) EV ′q
A (x) > −1 ⇒ x ∈ LPrMin(A|K);

(2) x ∈ LPrMin(A|K) ⇒ EV ′q
A (x) ≥ −1.

Proof. (1) Let r be a positive number. By the definition of EV
′q
A , there exists

ε0 > 0 such that −1 < EV q
A∩B(x,ε)

(x) for each ε > ε0. Assume that ε0 ≤ r.
Let −λ be in (−1, EV q

A∩B(x,r)
), then we have A ∩ B(x, r) ⊂ x + Kq

−λ. By
using Theorem 4, we have x ∈ Min(A ∩ B(x, r)|Kq

λ). By using Lemma 4, we
obtain K ⊂ intK q

λ ∪ {θ}. On the other hand, assume that r < ε0. Let −λ be in
(−1, EV q

A∩B(x,ε0)
), then we have A∩B(x, r) ⊂ x + Kq

−λ. By the same as ε0 ≤ r,
we obtain x ∈ Min(A ∩ B(x, r)|Kq

λ) and K ⊂ intK q
λ ∪ {θ}. (2) Let ε > 0. Since

x ∈ PrMin(A ∩ B(x, ε)|K), there exists λ ∈ (0, 1) such that x ∈ Min(A|K q
λ) by

using 1. By using Theorem 4, we have A ∩ B(x, ε) ⊂ x + Kq
−λ. Therefore, we

obtain EV q
A∩B(x,ε)

(x) > −1.

We state relations betweenEV q
A andEV ′q

A . WhenA is a convex set, the evaluate
function for local proper efficiency is equivalent the previous evaluate function.

Theorem 12. Let x be in A.

(1) EV q
A(x) ≤ EV ′q

A (x);
(2) If A is convex, then we have
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EV q
A(x) = EV ′q

A (x).

Proof. (1) It is easy and omitted. (2) By Lemma 9, it is clear.
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