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OPTIMIZATION THEORY FOR SET FUNCTIONS
IN NONDIFFERENTIABLE FRACTIONAL PROGRAMMING

WITH MIXED TYPE DUALITY

T.-Y. Huang, H.-C. Lai and S. Schaible

Abstract. We revisit optimization theory involving set functions which are
defined on a family of measurable subsets in a measure space. In this paper,
we focus on a minimax fractional programming problem with subdifferentiable
set functions. Using nonparametric necessary optimality conditions, we intro-
duce generalized (F , ρ, θ)-convexity to establish several sufficient optimality
conditions for a minimax programming problem, and construct a new dual
model to unify the Wolfe type dual and the Mond-Weir type dual as special
cases of this dual programming problem. Finally we establish a weak, strong,
and strict converse duality theorem.

1. INTRODUCTION

In optimization theory, various types of mappings are considered. It may be
”point to point”, ”point to set”, ”set to point”, or ”set to set”. In this article, we
will confine ourselves to optimization for set to point mappings, that is set functions
defined on a σ-algebra of measurable subsets in a measure space. In 1979, Morris
[17] was the first to develop the general theory for optimizing set functions. Several
authors have shown interesting in optimization problems with set functions that arise
in many situations dealing with an optimal selection of measurable subsets. These
problems have been encountered in fluid flow, electrical insulator design, optimal
plasma confinement, and regional design problems. For example, see [1, 2, 5, 17].
The analysis of optimization problems involving set functions has been developed
by many researchers. For details, one can consult [ 4, 6-16, 18-20].
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In this paper, we mainly study the duality structure for a minimax fractional pro-
gramming problem of set functions. Usually a dual programming problem depends
on necessary optimality conditions by some additional assumptions to establish the
sufficiency of an optimal solution for the primary problem. Then we constitute the
dual model relative to the original programming problem. Usually, these duality
forms are difficult to understand the motivation in the dual models. It is often given
by a more general dual constitution in the literature, but only by the requirement for
mathematical analysis.

We do here a mixed type dual to unify two known dual types, the Wolfe type
dual and the Mond-Weir type dual, as special cases. We are also established a weak,
strong and strict converse duality theorem for the dual problem in this framework.

2. PRELIMINARY

For convenience, we revisit some elementary concepts of set functions. Let
(X, Γ, µ) be an atomless finite measure space with L1(X, Γ, µ) separable. For
any f ∈ L1 and Ω ∈ Γ, we denote by

∫
Ω f dµ = 〈f,XΩ〉, where XΩ stands for

the characteristic function of Ω. Since µ(X) < ∞, each Ω ∈ Γ corresponds to
XΩ ∈ L∞ ⊂ L1. By atomlessness of the measure space, any Ω ∈ Γ with µ(Ω) > 0
implies that there exists Λ ⊂ Ω with µ(Λ) > 0. As L1 is separable, there exists
a countable set {XΩ}Ω∈Γ ⊂ L∞ dense in L1. It follows that the theory of set
functions defined on Γ can be taken over the sequence of measurable subsets in X .
Hence even Γ is not a linear space, we can discuss the convexity, differentiability
and continuity of set functions defined on Γ with respect to the weak∗ topology
induced from L1. Accordingly, for any (Ω, Λ, λ) ∈ Γ×Γ× [0, 1] one can associate
a sequence Vn = Ωn ∪∧n ∪ (Ω∩∧) in Γ with Ωn ⊂ Ω\∧ and ∧n ⊂ ∧\Ω such that

XΩn

w∗→ λXΩ\Λ and XΛn

w∗→ (1 − λ)XΛ\Ω

implies

(2.1) XΩn∪∧n∪(Ω∩∧)
w∗→ λXΩ + (1− λ)XΛ.

where w∗→ denotes the weak∗ convergence of elements in L∞(X, Γ, µ). We call such
sequence {Vn} a Morris sequence. Recall that a subfamily S ⊂ Γ is called convex
if for any (Ω, Λ, λ) ∈ S × S × [0, 1], there exists a Morris sequence Vn satisfying
(2.1).

A set function F : S −→ R is convex if for any (Ω, Λ, λ) ∈ S × S × [0, 1],
there exists a Morris sequence {Vn} such that
(2.2) lim sup

n−→∞
F (Vn) ≤ λF (Ω) + (1 − λ)F (Λ).
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A vector f ∈ L1(X, Γ, µ) is called a subgradient of a set function
F : Γ −→ R at Ω0 if it satisfies the inequality

(2.3) F (Ω) ≥ F (Ω0) + 〈XΩ − XΩ0 , f〉 for all Ω ∈ Γ.

The set of all subgradients f of a set function F : Γ −→ R is denoted by
∂F (Ω0), namely the subdifferential of F at Ω0. If ∂F (Ω0) �= φ, the set function F
is called subdifferentiable at Ω0. Of course

∂F (Ω) ⊂ L1(X, Γ, µ) for all Ω ∈ S .
A set function F : Γ −→ R is w∗-lower(upper) semicontinuous at Ω ∈

S = dom F ≡ {Ω ∈ Γ; F (Ω)is finite} if for any sequence Ωn in S with XΩn

w∗→
XΩ, we have

−∞ < F (Ω) ≤ lim inf
n→∞ F (Ωn)

(lim sup
n−→∞

F (Ωn) ≤ F (Ω) < ∞.)

F is w∗-continuous at Ω if

lim
n−→∞F (Ωn) = F (Ω)

for any sequence {Ωn} ⊂ S with XΩn

w∗→ XΩ.

3. PROGRAMMING PROBLEM OF SET FUNCTIONS

Consider the following minimax fractional programming problem with subdif-
ferentiable set functions as the form:

(P)
min

Ω

(
max
1≤i≤p

Fi(Ω)
Gi(Ω)

)
subject to Ω ∈ S and Hj(Ω) ≤ 0, j ∈ M = {1, 2, · · ·} ≡ m

where S is a subfamily of measurable subsets, and the set functions Fi, Gi, i ∈ p

and Hj, j ∈ m are subdifferentiable on S . Without loss of generality, we assume
that Gi(Ω) > 0 and Fi(Ω) ≥ 0 for any Ω ∈ S , and all functions are proper.

Let q = maxi∈p{Fi(Ω)/Gi(Ω)}. Then Fi(Ω)− qGi(Ω) ≤ 0, i ∈ p.

The problem (P ) is equivalent to the following parametric programming prob-
lem

(3.1)
(P̃ ) Minimize q

subject to Fi(Ω) − qGi(Ω) ≤ 0, i ∈ p

(3.2) Hj(Ω) ≤ 0, for all Ω ∈ S, j ∈ m.
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Writing the objective function of (P ) as

(3.3) ϕ(Ω) ≡ max
i∈p

Fi(Ω)/Gi(Ω)

one can easily get (cf. Lai and Liu [13, Section 2])

(3.4) ϕ(Ω) = max
y∈I

〈y, F (Ω)〉/〈y, G(Ω)〉,

where I = {y ∈ R
p
+|

∑p
i=1 yi = 1}.

We will use the inner product

〈y, F (Ω)〉 = y	F (Ω) =
p∑

i=1

yiFi(Ω) in R
p

It can be derived the necessary optimality conditions of (P ) from the parametric
optimality conditions of (P̃ ). (cf. Lai and Liu [13, section 2]).

Actually the solution of (P̃ ) is equivalent to finding the minimax solution
(Ω∗; y∗) for the Lagrangian:

L(Ω, y; q, z) = 〈y, F (Ω)〉 − q〈y, G(Ω)〉+ 〈z, H(Ω)〉
with multipliers q∗ ∈ R+ and z∗ ∈ R

m
+ .

The minimax solution (Ω∗, y∗) is deduced to the Kuhn-Tucker type condition
for subdifferentiable set functions. Hence we get the necessary optimality conditions
for problem (P ) as follows.

Theorem 3.1. (Necessary Conditions) Let Ω∗ ∈ S be an optimal solution of
problem (P ) with optimal value q ∗ ∈ R+. If the constraint qualification holds for
(P̃ ), the same as in (P ), and all set functions F i, Gi, 1 ≤ i ≤ p andHj, 1 ≤ j ≤ m
are subdifferentiable on S , then there exist

y∗ ∈ I = {y ∈ R
p
+|

p∑
i=1

yi = 1} ⊂ R
p
+ and z∗ ∈ R

m
+

such that (Ω∗, q∗, y∗, z∗) satisfies the following conditions:

(3.5) 0 ∈ ∂(y∗	F )(Ω∗) + q∗∂(−y∗	G)(Ω∗) + ∂(z∗	H)(Ω∗) + NS(Ω∗)

(3.6) y∗	F (Ω∗) − q∗y∗	G(Ω∗) = 0

(3.7) z∗	H(Ω∗) = 0

where z∗j = 0 if Hj(Ω∗) < 0 and z∗k > 0 if Hk(Ω∗) = 0 and

(3.8) NS(Ω∗) = {f ∈ L1(X, Γ, µ) | 〈XΩ −X ∗
Ω, f〉 ≤ 0 for all Ω ∈ S}
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Remark 3.1.

(1) In Theorem 3.1, the set Ω∗ ∈ S is called a regular solution of (P) if there
exist no h ∈ ∂(z∗	H) and η ∈ NS(Ω∗) such that h + η = 0

(2) From (3.6), q∗ = ϕ(Ω∗) = 〈y∗, F (Ω∗)〉/〈y∗, G(Ω∗)〉 substituting q∗ and the
equality (3.7) into (3.5), we then get

(3.9)
0 ∈ y∗	G(Ω∗)[∂(y∗	F )(Ω∗) + ∂(z∗	H)(Ω∗)]

−[(y∗	F )(Ω∗) + (z∗	H)(Ω∗)] ∂(y∗	G)(Ω∗) + NS(Ω∗)

4. GENERALIZED (F , ρ, θ)-CONVEXITY

The existence of an optimal solution for problem (P ) could be established from
the inverse of the necessary conditions with some extra assumptions. Many authors
effort to search such conditions, and constitutes the duality programming problem.
In this paper we will use the concept of generalized (F , ρ, θ)-convexity (see Lai and
Liu [12]) to treat with these tasks. For convenience, we recall (F , ρ, θ)-convexity
as the following. This (F , ρ, θ)-convexity is an extension of generalized (F , ρ)-
convexity defined in Preda [19] for nondifferentiable set functions.

We consider a sublinear functional with respect to the third variable by:

F : Γ × Γ × L1(X, Γ, µ) −→ R

Let ρ ∈ R and θ : Γ×Γ −→ R+ = [0,∞) such that θ(Ω, Ω0) �= 0 if Ω �= Ω0. Then
for a subdifferentiable set function F : Γ−→R, we give the following definitions:

(1) F is said to be (F , ρ, θ)-convex at Ω0 if for each Ω ∈ Γ and f ∈ ∂F (Ω0),
we have

F (Ω) − F (Ω0) ≥ F (Ω, Ω0; f) + ρθ(Ω, Ω0)

(2) F is said to be (F , ρ, θ)-quasiconvex
(
prestrict (F , ρ, θ)-quasiconvex

)
at

Ω0 if for each Ω ∈ Γ and f ∈ ∂F (Ω0), we have that

F (Ω) ≤ F (Ω0)
(
F (Ω) < F (Ω0)

)
=⇒ F (Ω, Ω0; f) ≤ −ρθ(Ω, Ω0).

(3) F is said to be (F , ρ, θ)-pseudoconvex
(
strict (F , ρ, θ)-pseudoconvex

)
at

Ω0 if for each Ω ∈ Γ and f ∈ ∂F (Ω0), we have that

F (Ω, Ω0; f) ≥ −ρθ(Ω, Ω0) ⇒ F (Ω) ≥ F (Ω0)
(
F (Ω) > F (Ω0)

)
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Remark 4.1. If the functional F : Γ× Γ×L1(X, Γ, µ) −→ R is taken by the
special case

F (Ω, Ω0; f) = 〈XΩ −XΩ0 , f〉
then F is reduced to be a convex set function at Ω0 (cf. [12]).

5. DUALITY PROGRAMMING PROBLEMS

According to Theorem 3.1, the Wolfe type (WD) and Mond-Weier type (MWD)
dual models related to problem (P) involving set functions can be formulated as the
following forms:

(WD) Maximize (y	F (U) + z	H(U))/y	G(U)

subject to y ∈ I ≡
{

y ∈ R
p
+

∣∣∣ p∑
i=1

yi = 1
}

, z ∈ R
m
+ and

0 ∈ y	G(U)[∂(y	F )(U) + ∂(z	H)(U)]

−∂(y	G)(U)[y	F (U) + z	H(U)] + NS(U).

(MWD) Maximize y	F (U)/y	G(U)

subject to y ∈ I, z ∈ R
m
+ and

0 ∈ y	G(U)[∂(y	F )(U) + ∂(z	H)(U)]

−∂(y	G)(U)y	F (U) + NS(U),

z	H(U) ≥ 0.

where NS(U0) ≡ {f ∈ L1(X, Γ, µ) | 〈XU − XU0, f〉 ≤ 0 for all U ∈ S}.
In this paper, we are mainly concerned to construct a new type dual prob-

lem(MD) which is called a mixed type problem containing (WD) and (MWD) as its
special cases. It is constituted by dividing the constrained inequalities to be several
families of inequalities, and one adds one part of constraints in the numerator of
the objective of problem (P ) as a new objective fractional function. Such a mixed
type dual is then constructed as the form

(5.1)

(MD) Maximize(y	F (U) + z	M0
H(U))/y	G(U)

subject toy ∈ I, z ∈ Rm
+ , U ∈ S ⊂ Γand

0 ∈ y	G(U)[∂(y	F )(U) +
k∑

α=0
∂(z	Mα

H)(U)]

−∂(y	G)(U)[y	F (U) + z	M0
H(U)] + NS(U).
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(5.2)

z	Mα
H(U) ≥ 0, α = 0, 1, 2, · · · , k

z = (zM0, zM1, · · · , zMk
)	 ∈ R

m
+

where Mα ⊆ M, α = 0, 1, · · · , k with Mα ∩ Mβ = ∅ if α �= β

and
⋃k

α=0 Mα = M, z	Mα
H(U) =

∑
j∈Mα

zjHj(U).

It is remarkable that if M0 = M (the others Mα = ∅ ∀α = 1, · · · , k), then
(MD) coincides with the Wolfe type dual. If M0 = ∅ and M1 = M (that is all
Mα = M , α = 1, · · · , k), then (MD)=(MWD). In this dual problem (MD), we
assume throughout that y	F (U) + z	M0

H(U) ≥ 0 and y	G(U) > 0.
Now, by the preparations before, we will establish the weak, strong, and strict

converse duality theorem in this section.

Theorem 5.1. (Weak Duality). Let Ω ∈ FP and (U, y, z) ∈ FMD be any
feasible solutions of (P ) and (MD), respectively, and denoted by

A(·) = y	G(U)[y	F (·) + z	M0
H(·)]− y	G(·)[y	F (U) + z	M0

H(U)].

Suppose that F (Ω, U ;−η)≥ 0 for each η ∈ NS(U). Further assume that any one
of the following six conditions holds:

(a) y	F is (F , ρ1, θ)-convex, −y	G is (F , ρ2, θ)-convex, z	Mα
H , α = 0, 1, · · · , k

are (F , ρ3α, θ)-convex and

y	G(U)ρ1 + [y	F (U) + z	M0
H(U)]ρ2 + y	G(U)

k∑
α=0

ρ3α ≥ 0;

(b) A is (F , ρ1, θ)-pseudoconvex, z	Mα
H, α = 1, 2, · · · , k are (F , ρ2α, θ)-quasi-

convex, and ρ1 + y	G(U)
k∑

α=1
ρ2α ≥ 0;

(c) A is (F , ρ1, θ)-quasiconvex, z	Mα
H, α = 1, 2, · · · , k are strictly (F , ρ2α, θ)-

pseudoconvex, and ρ1 + y	G(U)
k∑

α=1
ρ2α ≥ 0;

(d) A is prestrictly (F , ρ1, θ)-quasiconvex, z	Mα
H, α = 1, 2, · · · , k are (F , ρ2α, θ)-

quasiconvex, and

ρ1 + y	G(U)
k∑

α=1

ρ2α > 0;

(e) A + y	G(U)
k∑

α=1
z	Mα

H is (F , ρ, θ)-pseudoconvex, and ρ ≥ 0;

(f) A + y	G(U)
k∑

α=1
z	Mα

H is prestrictly (F , ρ, θ)-quasiconvex, and ρ > 0.
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Thenfor each Ω ∈ Fp ,

(5.3) ϕ(Ω) ≥ (y	F (U) + z	M0
H(U))/y	G(U).

Proof. Suppose on the contrary that the inequality (5.3) were not true, we then
have

(5.4) ϕ(Ω) < (y	F (U) + z	M0
H(U))/y	G(U).

By (3.4),

ϕ(Ω) = max
y∈I

y	F (Ω)/y	G(Ω)

≥ y	F (Ω)/y	G(Ω) for any y ∈ I.

Then (5.4) would be

y	F (Ω)/y	G(Ω) < (y	F (U) + z	M0
H(U))/y	G(U),

or

(5.5) y	G(U)y	F (Ω) − y	G(Ω)[y	F (U) + z	M0
H(U)] < 0.

By adding y	G(U)z	M0
H(Ω) to both sides of (5.5), we get

(5.6)
y	G(U)[y	F (Ω) + z	M0

H(Ω)]− y	G(Ω)[y	F (U) + z	M0
H(U)]

< y	G(U)z	M0
H(Ω) ≤ 0

since Ω ∈ FP , z	M0
H(Ω) ≤ 0 as z ∈ Rm

+ .
Hence (5.6) implies

(5.7) A(Ω) < 0 = A(U).

Since Ω ∈ FP and (5.2), we have

(5.8) z	Mα
H(Ω) ≤ 0 ≤ z	Mα

H(U), α = 0, 1, · · · , k

From equation (5.1), there exist

f ∈ ∂(y	F )(U), hα ∈ ∂(z	Mα
H)(U), α = 0, 1, · · · , k

g ∈ ∂(−y	G)(U) and η ∈ NS(U)
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such that

y	G(U)[f +
k∑

α=0

hα] + [y	F (U) + z	M0
H(U)]g + η = 0.

By the sublinearity of F , we have

(5.9) F (Ω, U ; y	G(U)[f +
k∑

α=0

hα] + [y	F (U) + z	M0
H(U)]g) ≥ F (Ω, U ;−η).

We have to evaluate the following expressions

(�)

y	G(U)[y	F (Ω) − y	F (U)]

−[y	F (U) + z	M0
H(U)][y	G(Ω)− y	G(U)]

+y	G(U)[z	H(Ω)−
k∑

α=0

z	Mα
H(U)]

(
where z	H(Ω) ≡

k∑
α=0

z	Mα
H(Ω) =

m∑
j=1

zjHj(Ω)
)

= y	F (Ω)y	G(U)− y	G(Ω)[y	F (U) + z	M0
H(U)]

−y	F (U) · y	G(U) + [y	F (U) + z	M0
H(U)]y	G(U)

+[z	H(Ω)−
k∑

α=0

z	Mα
H(U)]y	G(U)

< 0+y	G(U)·[z	H(Ω)+z	M0
H(U)−

k∑
α=0

z	Mα
H(U)]

(
by (5.5)<0

)
(since y	G(U)> 0and z	H(Ω)≤0 if Ω∈FP , y	G(U)z	H(Ω)≤0.)

≤ 0 + 0 + y	G(U)[z	M0
H(U)−

k∑
α=0

z	Mα
H(U)]

= −y	G(U)
k∑

α=1

z	α H(U)

≤ 0 ( by (5.2), z	Mα
H(U) ≥ 0, α = 1, 2, · · · , k).

Consequently the expression (�) is strictly less than 0.
If hypothesis (a) holds, then we have

(5.10) y	F (Ω) − y	F (U) ≥ F (Ω, U ; f)+ ρ1θ(Ω, U)
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(5.11) −[y	G(Ω)− y	G(U)] ≥ F (Ω, U ; g)+ ρ2θ(Ω, U)

(5.12) z	Mα
H(Ω)− z	Mα

H(U) ≥ F (Ω, U ; hα) + ρ3αθ(Ω, U)α = 0, 1, 2, · · · , k.

We multiply (5.10) by y	G(U), (5,11) by y	F (U) + z	M0
H(U) and (5,12) by

y	G(U), and adding the resultant inequalities , then using the inequalities (�) and
(5.9), and again by sublinearity of F , eventually, we get

0 >
(
y	G(U)ρ1 + [y	F (U) + z	M0

H(U)]ρ2 + y	G(U)
k∑

α=0

ρ3α

)
θ(Ω, U).

This contradicts the fact of condition (a). Hence the inequality (5.4) is not true.
This proves that (5.3) holds.

If hypothesis (b) holds, A is (F , ρ1, θ)-pseudoconvex and then we have

(5.13) F
(
Ω, U ; y	G(U)(f + h0) + [y	F (U) + z	M0

H(U)]g
)

< −ρ1θ(Ω, U)

Since z	Mα
H(U), α = 1, 2, · · · , k are (F , ρ2α, θ)-quasiconvex, it follows from (5.8)

that, for hα ∈ ∂(z	Mα
H)(U),

(5.14) F (Ω, U ; hα) ≤ −ρ2αθ(Ω, U), α = 1, 2, · · · , k

Multiply (5.14) by y	G(U) (> 0) and adding to (5.13), then from (5.9) and the
sublinearity of F , we get

(
ρ1 + yT G(U)

k∑
α=1

ρ2α

)
θ(Ω, U) < 0.

This is a contradiction, so that (5.4) is not true. Hence (5.3) holds.
The proof of the theorem under the hypotheses (c) and (d) can be carried out

along with the same lines of (b).
If hypothesis (e) holds, by the inequalities (5.7) and (5.8), we have

(5.15) A(Ω) + y	G(U)
k∑

α=1

z	Mα
H(Ω) < A(U) + y	G(U)

k∑
α=1

z	Mα
H(U)

Using the (F , ρ, θ)-pseudoconvexity of A+y	G(U)
∑k

α=1 z	Mα
H and the inequality

(5.15), we have

(5.16) F
(
Ω, U ; y	G(U)[f +

k∑
α=0

hα] + [y	F (U) + z	M0
H(U)]g

)



Optimization Theory for Set Functions in Fractional Programming 2041

< −ρθ(Ω, U).

Consequently, the inequalities (5.16) and (5.9) yield

ρθ(Ω, U) < 0.

This contradicts the fact ρ ≥ 0. Hence (5.4) is not true, and then (5.3) holds.
Hypothesis (f) follows along with the same line as (e). Therefore the proof of

theorem is complete.

Next, if Ω∗ ∈ S is an optimal solution of (P ), then by Theorem 3.1, there exist
y∗ ∈ I ⊂ R

p
+ and z∗ ∈ R

m
+ such that (Ω∗, y∗, z∗) ∈ FMD is a feasible solution of

the dual problem (MD). Furthermore if we assume that the conditions of Theorem
5.1 are fulfilled, then one can get

min
Ω∈S

ϕ(Ω) = ϕ(Ω∗)

≥ maximize
(Ω∗, y∗, z∗) ∈ FMD

(
(y∗	)F (Ω∗) + z∗	M◦H(Ω∗)

)
/y∗	G(Ω∗)

≥ max
y∗∈I

y∗	F (Ω∗)/y∗	G(Ω∗) = ϕ(Ω∗).

It follows that (Ω∗, y∗, z∗) is an optimal solution of (MD). Hence (P ) and (MD)
have the same optimal value, and we have the following theorem.

Theorem 5.2. (Strong Duality). Let Ω∗ ∈ S be an optimal solution of (P ).
Then there exist y∗ ∈ I ⊂ R

p
+ and z∗ ∈ R

m
+ such that (Ω∗, y∗, z∗)· ∈ FMD. is a

feasible solution of (MD). Assume further that the conditions of Theorem 5.1 are
fulfilled. Then (Ω∗, y∗, z∗) is an optimal solution of (MD), and their optimal values
are equal, that is, min(P ) = max(MD).

Finally we assume that Ω∗ and (Ω◦, y◦, z◦) are respectively the optimal solutions
of (P ) and (MD). Then questions arise whether Ω∗ = Ω◦ and how their optimal
values are related.

The following theorem will answer these questions if we could provide some
additional assumptions as in the following theorem.

Theorem 5.3 (Strict Converse Duality). Let Ω∗ and (Ω◦, y◦, z◦) be the optimal
solutions of the problem (P ) and the dual problem (MD), respectively. Suppose that
the assumptions in Theorem 5.2 are fulfilled. Furthermore, suppose the function
A(·) defined in Theorem 5.1 is given by

A(·) = y◦	G(Ω◦)[y◦	F (·) + z◦	M◦H(·)]− y◦	G(·)[y◦	F (Ω◦) + z◦	M◦H(Ω◦)],

and any one of the following two conditions holds.
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(i) A(·) is strictly (F , ρ1, θ)-pseudoconvex, z◦	Mα
H(·), α = 1, 2, · · · , k are (F ,

ρ2α, θ)-quasiconvex, and ρ1 + y◦	G(Ω◦)
∑k

α=1 ρ2α ≥ 0;

(ii) A(·)+y◦	G(Ω◦)
∑k

α=1 z◦	Mα
H(·) is strictly (F , ρ, θ)-pseudoconvex, and ρ ≥

0.

Then Ω◦ = Ω∗ is an optimal solution of (P ), as well as the optimal values of
problem (P ) and the dual problem (MD) are equal, that is

min(P ) = max(MD).

Proof. Suppose on the contrary that Ω◦ �= Ω∗. By Theorem 5.2, if Ω∗ is (P )-
optimal, then there exist y∗ ∈ I and z∗ ∈ R

m
+ such that (Ω∗, y∗, z∗) is an optimal

solution of problem (MD), and have equal optimal values:

ϕ(Ω∗) =
(
y∗	F (Ω∗) + z∗	M◦H(Ω∗)

)
/y∗	G(Ω∗).

Using the process given in the proof of Theorem 5.1 replacing Ω by Ω∗ and (U, y, z)
by (Ω◦, y◦, z◦), we have the strictly inequality

ϕ(Ω∗) >
(
y◦	F (Ω◦) + z◦	M◦H(Ω◦)

)
/y◦	G(Ω◦).

This contradicts the fact that

ϕ(Ω∗) =
(
y∗	F (Ω∗) + z∗	M◦H(Ω∗)/y∗	G(Ω∗)

)
=

(
y◦	F (Ω◦) + z◦	M◦H(Ω◦)

)
/y◦	G(Ω◦).

Therefore we conclude that the final result follows from Theorem 5.1 that Ω◦ = Ω∗,
and have min(P ) = max(MD).
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