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UNIFIED FIXED POINT THEOREMS FOR COMPACT CLOSED
MULTIMAPS IN GENERALIZED CONVEX SPACES

Sehie Park

Abstract. This is to establish a new fixed point theorem for compact closed
multimaps in the better admissible class defined on subsets of generalized con-
vex uniform spaces and having Klee approximable ranges. Our new theorem
unifies a large number of previous results. Some of them are listed in the
chronological order.

1. INTRODUCTION

Analytical fixed point theory is mainly concerned with applications of fixed
point theorems for multimaps in topological vector spaces and their generalizations.
In the last two decades, the author has tried to unify and generalize various results
in that theory; see the references in the end of this paper.

In fact, in [4,5,11], we obtained very general fixed point theorems for generalized
upper hemicontinuous multimaps having convex values defined on convex subsets
of topological vector spaces. Moreover, in [8-10,15,17], another general fixed point
theorems for compact closed multimaps in the “admissible” or “better admissible”
classes defined on subsets of topological vector spaces were deduced as unifications
of many previously known results.

On the other hand, it became evident that some fixed point theorems in topolog-
ical vector spaces can be extended to generalized convex spaces which are abstract
convex spaces without any linear structure. In fact, in our recent work [18], for
example, we introduced the concept of the Klee approximability of subsets of gen-
eralized convex uniform spaces and showed that any compact closed multimap in
the “better admissible” class defined on a generalized convex space into itself with
the Klee approximable range has a fixed point. This theorem contains a large
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number of known results on topological vector spaces or on various subclasses of
generalized convex spaces. Such subclasses are those of admissible spaces (in the
sense of Klee), Φ-spaces, sets of the Zima-Hadzić type, locally G-convex spaces,
and LG-spaces.

The present paper is a continuation of [18]. In this paper, we deduce a new gen-
eral fixed point theorem for a compact closed multimap in the “better admissible”
class defined on a subset of a generalized convex space into itself with the Klee
approximable range. This theorem unifies many of our previous results in [3-18]
and clarify relations among them. We list some of such results in the chronological
order.

In Section 2, we introduce multimap classes defined on generalized convex
spaces and some mutual relations among them. Section 3 deals with the Klee
approximability of the ranges of multimaps and a new fixed point theorem for the
compact, closed, and better admissible multimaps defined on a subset of generalized
convex spaces. In Section 4, we list some of our previous results which are direct
consequences of the main theorem in the chronological order. Consequently, our new
theorem unifies and generalize nearly one hundred fixed point theorems appeared
in the history of generalizations of the Brouwer theorem; see [9].

For all terminology and notations, we follow [18].

2. MULTIMAP CLASSES IN GENERALIZED CONVEX SPACES

In this section, we follow mainly [18,20] and references therein.

Definitions. A generalized convex space or a G-convex space (E, D; Γ) con-
sists of a topological space E and a nonempty set D such that for each A ∈ 〈D〉
with the cardinality |A| = n + 1, there exist a subset Γ(A) of E and a continuous
function φA : ∆n → Γ(A) such that J ∈ 〈A〉 implies φA(∆J ) ⊂ Γ(J).

Here, 〈D〉 denotes the set of all nonempty finite subsets of D, ∆n the standard
n-simplex with vertices {ei}n

i=0, and ∆J the face of ∆n corresponding to J ∈ 〈A〉;
that is, if A = {a0, a1, . . . , an} and J = {ai0, ai1, . . . , aik} ⊂ A, then ∆J =
co{ei0 , ei1, . . . , eik}. We may write ΓA := Γ(A). When D ⊂ E , the space is
denoted by (E ⊃ D; Γ). In case E = D, let (E; Γ) := (E, E; Γ).

Examples. The following are typical examples of G-convex spaces [18,21]:

(1) Any nonempty convex subset of a t.v.s.

(2) A convex space due to Lassonde.

(3) A C-space (or an H-space) due to Horvath. Hyperconvex metric spaces are
very particular ones of C-spaces.
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(4) An L-space due to Ben-El-Mechaiekh et al. The so-called FC-spaces are
particular ones of L-spaces.

(5) A φA-space (X, D; {φA}A∈〈D〉) consisting of a topological spaceX , a nonempty
set D, and a family of continuous functions φA : ∆n → X for A ∈ 〈D〉 with
|A| = n + 1, can be made into a G-convex space [21].

Definition. Let (E, D; Γ) be a G-convex space, X a nonempty subset of E ,
and Y a topological space. We define the better admissible class B of multimaps
from X into Y as follows:

F ∈ B(X, Y ) ⇐⇒ F : X � Y is a map such that, for any ΓN ⊂ X ,
where N ∈ 〈D〉 with the cardinality |N | = n + 1, and for any continuous function
p : F (ΓN ) → ∆n, the composition

∆n
φN−→ ΓN

F |ΓN−−−� F (ΓN )
p−→ ∆n

has a fixed point. Note that ΓN can be replaced by the compact set φN (∆n) ⊂ X .

There are lots of subclasses of B; see [18] and references therein. We give
some subclasses of B as follows:

Examples. For topological spaces X and Y , an admissible class Aκ
c (X, Y )

[resp., Aσ
c (X, Y )] of maps F : X � Y is one such that, for each nonempty

compact [resp., σ-compact] subset K of X , there exists a map G ∈ Ac(K, Y )
satisfying G(x) ⊂ F (x) for all x ∈ K; where Ac consists of finite compositions of
maps in a class A of maps satisfying the following properties:

(i) A contains the class C of (single-valued) continuous functions;
(ii) each T ∈ Ac is u.s.c. with nonempty compact values; and
(iii) for any polytope P , each T ∈ Ac(P, P ) has a fixed point, where the interme-

diate spaces are suitably chosen.

Here, a polytope P is a homeomorphic image of a standard simplex. There are lots
of examples of A and Aκ

c ; see [9] and references therein.
Subclasses of the admissible class Aκ

c are classes of continuous functions C,
the Kakutani maps K (with convex values and codomains are convex spaces), the
Aronszajn maps M (with Rδ values), the acyclic maps V (with acyclic values),
the Powers maps Vc (finite compositions of acyclic maps), the O’Neill maps N

(continuous with values of one or m acyclic components, wherem is fixed), the ap-
proachable maps A (whose domains and codomains are uniform spaces), admissible
maps of Górniewicz, σ-selectionable maps of Haddad and Lasry, permissible maps
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of Dzedzej, the class Kσ
c of Lassonde, the class Vσ

c of Park et al., approximable
maps of Ben-El-Mechaiekh and Idizk, and many others.

Note that for a G-convex space (X, D; Γ) and any space Y , an admissible class
Aκ

c (X, Y ) is a subclass of B(X, Y ). Some examples of maps in B not belonging
to Aκ

c were known. Note that the connectivity map due to Nash and Girolo is such
an example.

Definition. Let (E, D; Γ) be a G-convex space and Z a set. A map F : E � Z
is said to have the KKM property and is called a K-map if, for any map G : D � Z

satisfying
F (ΓA) ⊂ G(A) :=

⋃

y∈A

G(y) for all A ∈ 〈D〉,

the family {G(y)}y∈D has the finite intersection property. We denote

K(E, Z) := {F : E � Z | F has the KKM property}.

Similarly, when Z is a topological space, a KC-map is defined for closed-valued
maps G, and a KO-map for open-valued maps G. Some authors use the notation
KKM(E, Z) instead of KC(E, Z).

Examples.

(1) Every G-convex space (E, D; Γ) has a map F ∈ K(E, Z) for any nonempty
set Z. For a trivial example, choose F (x) := Z for all x ∈ E . If 1E ∈
K(E, E), then f ∈ K(E, E) for any function f : E → E .

(2) It is known that for a G-convex space (E, D; Γ), we have the identity map
1X ∈ KC(E, E)∩KO(E,E); see [2,20]. Moreover, for any topological space
Y , if F : E → Y is a continuous single-valued map or if F : E � Y has a
continuous selection, then it is easy to check that F ∈ KC(E, Y )∩KO(E, Y ).
Note that there are many known selection theorems due to Michael and others;
see [19].

(3) In early 1990’s, the author introduced the admissible class Aκ
c (X, Y ) of mul-

timaps X � Y between topological spaces and showed that this class has
the KKM property when X is a convex space and Y is a Hausdorff space.
Motivated by this, Chang and Yen [1] defined the KKM class of maps on
convex subsets of topological vector spaces. Naturally, their KC class contains
Aκ

c -class on convex spaces, but significant proper examples of the former not
in the latter are hard to find. Further, Chang et al. extended the KKM-class
to S-KKM class. On the other hand, the author extended the Aκ

c -class to
the ‘better’ admissibleB-class on convex spaces, supplied a large number of
examples, and showed that, in the class of compact closed multimaps from
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convex spaces into Hausdorff spaces, two subclassesB and KC coincide [7].
Moreover, recently H. Kim showed that two classes KKM and s-KKM of mul-
timaps from a convex space into a topological space are identical whenever
s is surjective [this is the only case s-KKM is meaningful]. For G-convex
spaces, such multimap classes are extended and investigated by a number of
authors. For references, see [20].

The following is known [20], where C is the class of continuous functions:

Proposition 2.1. Let (E, D; Γ) be a G-convex space and Z a topological
space. Then

(1) C(E, Z) ⊂ Aκ
c (E, Z) ⊂ B(E, Z);

(2) C(E, Z) ⊂ KC(E, Z)∩ KO(E, Z); and
(3) [2] Aκ

c (E, Z) ⊂ KC(E, Z)∩ KO(E, Z) if Z is Hausdorff.

Consider the following condition for a G-convex space (E ⊃ D; Γ):

(∗) Γ{x} = {x} for each x ∈ D; and, for each N ∈ 〈D〉 with the cardinality
|N | = n+1, there exists a continuous function φN : ∆n → ΓN such that φN (∆n) =
ΓN and that J ∈ 〈N 〉 implies φN(∆J) = ΓJ .

Note that every convex space satisfies condition (∗).

Theorem 2.2. ([20]). Let (E, D; Γ) be a G-convex space and Z a topological
space.

(1) If Z is a Hausdorff space, then every compact map F ∈ B(E, Z) belongs to
KC(E, Z).

(2) If F : E � Z is a closed map such that FφN ∈ KC(∆n, Z) for any N ∈ 〈D〉
with the cardinality |N | = n + 1, then F ∈ B(E, Z).

(3) In the class of closed maps defined on a G-convex space (E ⊃ D; Γ) satisfy-
ing condition (∗) into a space Z, a map F ∈ KC(E, Z) belongs toB(E, Z).

Remark. In (2), note that for any map F ∈ Aκ
c (E, Z), we have FφN ∈

Aκ
c (∆n, Z) ⊂ KC(∆n, Z) ∩ KO(∆n, Z) when Z is Hausdorff; see [2].

Corollary 2.3. In the class of compact closed maps defined on a G-convex
space (E ⊃ D; Γ) satisfying condition (∗) into a Hausdorff space Z, two subclasses
KC(E, Z) and B(E, Z) are identical.

Corollary 2.4. In the class of compact closed maps defined on a convex
space (X, D) into a Hausdorff space Z, two subclasses KC(X, Z) and B(X, Z)
are identical.
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Remark. This is noted in [7] by a different method. In view of Corollary
2.4, the class B is favorable to use for convex spaces since it has already plenty of
examples and is much easier to find examples.

3. A UNIFIED FIXED POINT THEOREM

In this section, we begin with a generalized version of our previous definition
of the Klee approximability of ranges as in [18].

Definition. A generalized convex uniform space (E, D; Γ;U) is a generalized
convex space such that (E,U) is a uniform space with a basis U of the uniformity
consisting of symmetric entourages. For each U ∈ U , let

U [x] = {x′ ∈ X | (x, x′) ∈ U}

be the U -ball around a given element x ∈ E .

We introduce particular types of subsets of generalized convex uniform spaces
adequate to establish our fixed point theory:

Definition. For a generalized convex uniform space (E, D; Γ;U), a subset X
of E is said to be admissible (in the sense of Klee) if, for each nonempty compact
subset K of X and for each entourage U ∈ U , there exists a continuous function
h : K → X satisfying

(1) (x, h(x)) ∈ U for all x ∈ K;
(2) h(K) ⊂ ΓN for some N ∈ 〈D〉; and
(3) there exist continuous functions p : K → ∆n and φN : ∆n → ΓN with

|N | = n + 1 such that h = φN ◦ p.

For more general purposes, we introduce a generalized version of our previous
definition of the Klee approximability of ranges of multimaps which was used
instead of the admissibility of domains:

Definition. Let (E, D; Γ;U) be a generalized convex uniform space. A subset
K of E is said to be Klee approximable if, for each entourage U ∈ U , there exists
a continuous function h : K → E satisfying conditions (1)-(3) in the preceding
definition. Especially, for a subset X of E , K is said to be Klee approximable into
X whenever the range h(K) ⊂ ΓN ⊂ X for some N ∈ 〈D〉 in condition (2).

In the category of topological vector spaces or C-spaces, the concepts of locally
convex spaces, LC-spaces, Φ-spaces, subsets of the Zima-Hadzić type, admissible
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subsets, and Klee approximable sets are quite well-known. They were introduced
in order to generalize known fixed point theorems.

In our previous work [18], we extended those concepts to G-convex uniform
spaces and established the mutual relations among them as follows:

Theorem 3.1. In the class of G-convex uniform spaces, the following hold:

(1) Any LG-space is of the Zima-Hadzi ć type.
(2) Every LG-space is locally G-convex whenever every singleton is Γ-convex.
(3) Any nonempty subset of a locally G-convex space is a Φ-set.
(4) Any Zima-Hadzić type subset of a G-convex uniform space such that every

singleton is Γ-convex is a Φ-set.
(5) Every Φ-space is admissible. More generally, every nonempty compact Φ-

subset is Klee approximable.

We have the following main fixed point result in this paper:

Theorem 3.2. Let (E, D; Γ;U) be a G-convex uniform space, X ⊂ Y subsets
of E , and F : Y � Y a multimap such that F |X ∈ B(X, Y ) and F (X) is Klee
approximable into X. Then F has the almost fixed point property (that is, for each
U ∈ U , F has a U -fixed point xU ∈ Y satisfying F (xU ) ∩ U [xU ] �= ∅).

Further if E is Hausdorff, F is closed, and F (X) is compact in Y , then F has
a fixed point x0 ∈ Y (that is, x0 ∈ F (x0)).

Proof. Since K := F (X) is Klee approximable intoX , for each symmetric en-
tourage U ∈ U , there exists a continuous function h : K → X satisfying conditions
(1) - (3) of the definition of Klee approximable subsets, and we have

∆n
φN−→ ΓN

F |ΓN−−−� F (ΓN )
p−→ ∆n

for some N ∈ 〈D〉 with |N | = n + 1 and ΓN ⊂ X . Let p′ := p|F (ΓN). Since
F |X ∈ B(X, Y ), the composition p′ ◦ (F |ΓN

) ◦ φN : ∆n � ∆n has a fixed point
aU ∈ ∆n. Let xU := φN (aU). Then

aU ∈ (p′ ◦ F ◦ φN )(aU) = (p′ ◦ F )(xU)

and hence
xU = φN (aU) ∈ (φN ◦ p′ ◦ F )(xU).

Since h = φN ◦ p by definition, we have

xU = h(yU ) for some yU ∈ (F |ΓN
)(xU).
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Therefore, for each entourage U ∈ U , there exist points xU ∈ X and yU ∈ F (xU )
such that (xU , yU) = (h(yU ), yU) ∈ U . So, for each U , there exist xU , yU ∈ X
such that yU ∈ F (xU ) and yU ∈ U [xU ].

Now suppose that F is closed and F (X) is compact. Since F (X) is relatively
compact, we may assume that the net yU in F (X) converges to some x0 ∈ F (X).
Since (xU , yU) ∈ U for each U ∈ U , by the Hausdorffness of E , the net xU also
converges to x0. Since the graph of F is closed in Y × Y and (xU , yU) ∈ Gr(F ),
we have (x0, y0) ∈ Gr(F ) and hence we have x0 ∈ F (x0). This completes our
proof.

Note that, by choosing particular subclass of multimaps or particular types of
G-convex spaces, we can deduce a large number of known or new fixed point
theorems from Theorem 3.2.

4. VARIOUS CONSEQUENCES OF THE MAIN THEOREM

In this section, we list some of our previous results which are direct consequences
of Theorem 3.2 in the chronological order. For simplicity, all topological spaces are
assumed to be Hausdorff unless explicitly stated otherwise.

In 1992, the celebrated Himmelberg fixed point theorem was extended to acyclic
maps in [3]:

Theorem 4.1. Let X be a convex subset of a locally convex t.v.s. Then every
compact acyclic map T : X � X has a fixed point.

Theorem 4.1 was extended to the class Ac (1993, [5]), Vσ
c (1994), Aσ

c (1994,
[6]), and B (1997, [7]).

In 1993 [5], we obtained the following with a different method:

Theorem 4.2. Let X be a compact convex subset of a t.v.s. E on which its
dual E∗ separates points. Then any map F ∈ Aκ

c (X, X) has a fixed point.

In 1998 [8], Theorem 4.1 was extended to a non-locally convex t.v.s. as follows:

Theorem 4.3. Let X be an admissible convex subset of a t.v.s. E . Then any
compact map F ∈ Ac(X, X) has a fixed point.

In 2000 [10] and others, a particular form of Theorem 4.3 for F ∈ Vc(X, X)
(that is, a finite composition of acyclic maps) was applied to a Simons type cyclic
coincidence theorem for acyclic maps, the von Neumann type intersection theorems
for graphs of compact compositions of acyclic maps, the Nash type equilibrium



Unified Fixed Point Theorems for Compact Closed Multimaps 1987

theorems, saddle point or minimax theorems, quasi-equilibrium problems, and quasi-
variational inequalities, where most of related convexity were replaced by acyclicity.

Since an admissible convex subset of a t.v.s. is an admissible G-convex space,
we have the following from Theorem 3.2:

Theorem 4.4. Let X be an admissible convex subset of a t.v.s. E . Then any
compact closed map F ∈ B(X, X) has a fixed point.

Theorem 4.4 was given in 1998 [8], where we listed more than sixty papers in
chronological order, from which we could deduce particular forms of Theorem 4.4.

For X = Y , Theorem 3.2 reduces the following form of the main theorem of
[15] in 2004:

Theorem 4.5. Let X be a subset of a t.v.s. E and F ∈ B(X, X) a compact
closed map. If F (X) is Klee approximable into X , then F has a fixed point.

For X = Y = E , Theorem 3.2 reduces to the following main theorem of [18]
in 2007:

Theorem 4.6. Let (X, D; Γ;U) be a G-convex uniform space and F ∈
B(X, X) a multimap such that F (X) is Klee approximable. Then F has the
almost fixed point property.

Further if F is closed and compact, then F has a fixed point x 0 ∈ X (that is,
x0 ∈ F (x0)).

This theorem contains a large number of known results on topological vector
spaces or on various subclasses of the class of admissible G-convex spaces. Such
subclasses are those of admissible spaces, Φ-spaces, sets of the Zima-Hadzić type,
locally G-convex spaces, and LG-spaces; see [18]. Mutual relations among those
subclasses and some related results on approximable maps, Kakutani maps, acyclic
maps, Φ-maps, and others are investigated in [18].

Corollary 4.7. Let (X, D; Γ;U) be an admissible G-convex space. Then any
compact closed map F ∈ B(X, X) has a fixed point.

Corollary 4.8. Let (X, D; Γ;U) be a compact admissible G-convex space.
Then any map F ∈ Aκ

c (X, X) has a fixed point.

The following is a consequence of Theorem 3.2:

Theorem 4.9. Let X and Y be subsets of a t.v.s. E such that X ⊂ Y and
F : Y � Y a map.
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(1) If F |X ∈ B(X, Y ) and F (X) is Klee approximable into X , then F |X has
the almost fixed point property (that is, for any V ∈ V , F | X has a V -fixed
point xV ∈ X satisfying F (xV ) ∩ (xV + V ) �= ∅).

(2) Further if F is closed and F |X is compact, then F has a fixed point.

Note that, in (1), E is not necessarily Hausdorff. Theorem 4.9 would be better
than [17, Theorem 2.2]. In [17], it should be B = Bp.

5. APPLICATIONS

Earlier fixed point theorems in Section 4 were applied to the following problems
in the author’s works in 1991-2007; see [9] and MATHSCINET.

Best approximations, variational inequalities, quasi-variational inequalities, the
Leray-Schauder type alternatives, existence of maximal elements, minimax inequal-
ities, the Walras excess demand theorems, generalized equilibrium problems, gen-
eralized complementarity problems, condensing maps, openness of multimaps, the
Birkhoff-Kellogg type theorems, saddle points in nonconvex sets, acyclic or other
versions of the Nash equilibrium theorems, quasi-equilibrium theorems, extensions
of monotone sets, eigenvector problems, the KKM theory, and others.
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