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PROXIMAL POINT ALGORITHMS AND FOUR RESOLVENTS
OF NONLINEAR OPERATORS OF MONOTONE TYPE

IN BANACH SPACES

Wataru Takahashi

Abstract. In this article, motivated by Rockafellar’s proximal point algorithm
in Hilbert spaces, we discuss various weak and strong convergence theorems
for resolvents of accretive operators and maximal monotone operators which
are connected with the proximal point algorithm. We first deal with proximal
point algorithms in Hilbert spaces. Then, we consider weak and strong conver-
gence theorems for resolvents of accretive operators in Banach spaces which
generalize the results in Hilbert spaces. Further, we deal with weak and strong
convergence theorems for three types of resolvents of maximal monotone oper-
ators in Banach spaces which are related to proximal point algorithms. Finally,
in Section 7, we apply some results obtained in Banach spaces to the problem
of finding minimizers of convex functions in Banach spaces.

1. INTRODUCTION

Let H be a real Hilbert space. We know many problems in nonlinear analysis
and optimization which are formulated as follows: Find

(1) u ∈ H such that 0 ∈ Au,

where A is a maximal monotone operator from H to H . Such u ∈ H is called a
zero point (or a zero) of A. A well-known method for solving (1) in a Hilbert space
H is the proximal point algorithm: x1 ∈ H and

(2) xn+1 = Jrnxn, n = 1, 2, . . . ,

where {rn} ⊂ (0,∞) and Jrn = (I + rnA)−1. This algorithm was first introduced
by Martinet [26]. In [39], Rockafellar proved that if lim infn→∞ rn > 0 and
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A−10 �= ∅, then the sequence {xn} defined by (2) converges weakly to a solution
of (1); see also Brézis and Lions [3] and Lions [24]. It was shown by Güler [8]
that the sequence {xn} generated by this algorithm does not converge strongly in
general. On the other hand, we know three iterative methods for approximation of
fixed points of nonexpansive mappings in a Hilbert space.

Halpern [9] introduced the following iterative scheme to approximate a fixed
point of a nonexpansive mapping in a Hilbert space. For the proof, see Wittmann
[55] and Takahashi [45].

Theorem 1.1. ([55]). Let C be a closed convex subset of a Hilbert space H
and let T be a nonexpansive mapping of C into itself such that the set F (T ) of
fixed points of T is nonempty. Let P be the metric prjection of H onto F (T ). Let
x ∈ C and let {xn} be a sequence defined by x1 = x and

xn+1 = αnx + (1− αn)Txn, n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] satisfies

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞ and
∞∑

n=1

|αn+1 − αn| < ∞.

Then, {xn} converges strongly to Px ∈ F (T ).

Mann [25] also introduced the iterative scheme for finding a fixed point of a
nonexpansive mapping. For the proof, see Takahashi [45].

Theorem 1.2. ([33]). Let C be a closed convex subset of a Hilbert space H

and let T be a nonexpansive mapping of C into itself such that F (T ) is nonempty.
Let P be the metric projection of H onto F (T ). Let x ∈ C and let {xn} be a
sequence defined by x1 = x and

xn+1 = αnxn + (1− αn)Txn, n = 1, 2, . . . ,

where {xn} ⊂ [0, 1] satisfies

0 ≤ αn < 1 and
∞∑

n=1

αn(1 − αn) = ∞.

Then, {xn} converges weakly to z ∈ F (T ), where z = limn→∞ Pxn.

Nakajo and Takahashi [30] proved the following strong convergence theorem
for nonexpansive mappings in a Hilbert space by using the hybrid method in math-
ematical programming.
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Theorem 1.3. ([30]). Let C be a closed convex subset of a Hilbert space H

and let T be a nonexpansive mapping of C into itself such that F (T ) is nonempty.
Let P be the metric projection of H onto F (T ). Let x1 = x ∈ C and



yn = αnxn + (1 − αn)Txn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x1 − xn〉 ≥ 0},

xn+1 = PCn∩Qn(x1), n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] satisfies lim supn→∞ αn < 1 and PCn∩Qn is the metric pro-
jection of H onto Cn ∩ Qn. Then, {xn} converges strongly to Px1 ∈ F (T ).

In this article, motivated by Rockafellar’s proximal point algorithm and three
iterative methods for approximation of fixed points of nonexpansive mappings, we
discuss various weak and strong convergence theorems for resolvents of accretive
operators and maximal monotone operators which are connected with Rockafellar’s
proximal point algorithm. In Section 3, we first discuss two proximal point algo-
rithms in Hilbert spaces modified by Kamimura and Takahashi. Further, we deal
with Solodov and Svaiter’s strong convergence theorem which was proved by us-
ing the hybrid method in mathematical programming. Then, we try to extend such
proximal point algorithms in Hilbert spaces to Banach spaces. These algorithms in
Banach spaces are connected with four resolvents for accretive operators and maxi-
mal monotone operators in Banach spaces. In Section 4, we prove weak and strong
convergence theorems for resolvents of accretive operators in Banach spaces which
generalize the results in Hilbert spaces. In Section 5, we deal with weak and strong
convergence theorems for two types of resolvents of maximal monotone operators
which are called metric resolvents and relative resolvents. In Section 6, we intro-
duce a new notion of resolvents of maximal monotone operators called generalized
resolvents which is different from metric resolvents and relative resolvents. Then,
we obtain weak and strong convergence theorems for such resolvents. Finally, in
Section 7, we apply some results obtained in Sections 5 and 6 to the problem of
finding minimizers of convex functions in Banach spaces.

2. PRELIMINARIES

Let E be a real Banach space with norm ‖ · ‖ and let E∗ denote the dual of E .
We denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a sequence in
E , we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ε) = inf
{

1 − ‖x + y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
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for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex if
δ(ε) > 0 for every ε > 0. Let C be a nonempty closed convex subset of a uniformly
convex Banach space E . Then we know that for any x ∈ E , there exists a unique
element z ∈ C such that ‖x− z‖ ≤ ‖x− y‖ for all y ∈ C. Putting z = PC(x), we
call PC the metric projection of E onto C. The duality mapping J from E into
2E∗ is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for every x ∈ E . Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be
Gâteaux differentiable if for each x, y ∈ U , the limit

(3) lim
t→0

‖x + ty‖ − ‖x‖
t

exists. In the case, E is called smooth. The norm of E is said to be uniformly
Gâteaux differentiable if for each y ∈ U , the limit (3) is attained uniformly for
x ∈ U . It is also said to be Fréchet differentiable if for each x ∈ U , the limit (3) is
attained uniformly for y ∈ U . A Banach space E is called uniformly smooth if the
limit (3) is attained uniformly for x, y ∈ U . It is known that if the norm of E is
uniformly Gâteaux differentiable, then the duality mapping J is single valued and
uniformly norm to weak∗ continuous on each bounded subset of E . We know the
following result; see, for instance, [44].

Theorem 2.1. Let E be a smooth Banach space. Let C be a nonempty closed
convex subset of E , x1 ∈ E and x0 ∈ C. Then x0 = PCx1 if and only if

〈x0 − y, J(x1 − x0)〉 ≥ 0

for all y ∈ C, where J is the duality mapping of E .

Let E be a smooth Banach space. Following Alber [1] and Kamimura and
Takahashi [18], we denote by φ : E × E → [0,∞) the mapping defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all (x, y) ∈ E×E . It is easy to see that (‖x‖−‖y‖)2 ≤ φ(x, y) for all x, y ∈ E .
Thus, in particular, φ(x, y) ≥ 0 for all x, y ∈ E . We also know the following:

(4) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x − z, Jz − Jy〉
for all x, y, z ∈ E . It is also easy to see that if E is additionally assumed to be
strictly convex, then

(5) φ(x, y) = 0 ⇐⇒ x = y.
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Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E . Then, for all x ∈ E , there exists a unique z ∈ C
(denoted by ΠCx) such that

(6) φ(z, x) = min
y∈C

φ(y, x).

The mapping ΠC is called the generalized projection from E onto C. We know
the following theorem:

Theorem 2.2. ([1, 18]). Let C be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E and let (x, z) ∈ E × C. Then the
following hold:

(a) z = ΠCx if and only if 〈y − z, Jx − Jz〉 ≤ 0 for all y ∈ C ;
(b) φ(z, ΠCx) + φ(ΠCx, x) ≤ φ(z, x).

A Banach space E is said to satisfy Opial’s condition [32] if for any sequence
{xn} ⊂ E , xn ⇀ y implies

lim inf
n→∞ ‖xn − y‖ < lim inf

n→∞ ‖xn − z‖

for all z ∈ E with z �= y. A Hilbert space satisfies Opial’s condition.
Let C be a closed convex subset of E . A mapping T : C → E is said to be

nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. We denote the set of all
fixed points of T by F (T ). A closed convex subset C of E is said to have normal
structure if for each bounded closed convex subset K of C which contains at least
two points, there exists an element x of K which is not a diametral point of K, i.e.,

sup{‖x − y‖ : y ∈ K} < δ(K),

where δ(K) is the diameter of K. We know that a closed convex subset of a
uniformly convex Banach space has normal structure. We know Kirk’s fixed point
theorem [20] for nonexpansive mappings.

Theorem 2.3. Let E be a reflexive Banach space and let C be a bounded
closed convex subset of E which has normal structure. Let T be a nonexpansive
mapping of C into itself. Then, T has a fixed point in C.

Let I denote the identity operator on E . An operator A ⊂ E × E with domain
D(A) = {z ∈ E : Az �= ∅} and range R(A) =

⋃{Az : z ∈ D(A)} is said to be
accretive if for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2, there exists j ∈ J(x1 −x2)
such that 〈y1 − y2, j〉 ≥ 0. If A is accretive, then we have

‖x1 − x2‖ ≤ ‖x1 − x2 + r(y1 − y2)‖
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for all r > 0. An accretive operator A is said to satisfy the range condition if
D(A) ⊂ ⋂

r>0 R(I + rA). If A is accretive, then we can define, for each r > 0, a
nonexpansive single valued mapping Jr : R(I +rA) → D(A) by Jr = (I +rA)−1.
It is called the accretive resolvent of A. We also define the Yosida approximation
Ar by Ar = (I − Jr)/r. We know that Arx ∈ AJrx for all x ∈ R(I + rA) and
‖Arx‖ ≤ inf{‖y‖ : y ∈ Ax} for all x ∈ D(A) ∩ R(I + rA). We also know that
for an accretive operator A satisfying the range condition, A−10 = F (Jr) for all
r > 0. An accretive operator A is said to be m-accretive if R(I + rA) = E for all
r > 0. Let C be a closed convex subset of E . Let D be a subset of C and let P
be a mapping of C into D. Then P is said to be sunny if

P (Px + t(x − Px)) = Px

whenever Px + t(x − Px) ∈ C for x ∈ C and t ≥ 0. A mapping P of C into C
is said to be a retraction if P 2 = P . We denote the closure of the convex hull of
D by coD.

Theorem 2.4. Let E be a smooth Banach space and let C be a nonempty
closed convex subset of E . Suppose that D ⊂ C and P is a retraction of C onto
D. Then P is sunny and nonexpansive if and only if

〈x − Px, J(Px − y)〉 ≥ 0

for all x ∈ C and y ∈ D, where J is the duality mapping of E .

A multi-valued operator A : E → 2E∗ with domain D(A) = {z ∈ E : Az �= ∅}
and rangeR(A) =

⋃{Az : z ∈ D(A)} is said to be monotone if 〈x1−x2, y1−y2〉 ≥
0 for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2. A monotone operator A is said to
be maximal if its graph G(A) = {(x, y) : y ∈ Ax} is not properly contained in the
graph of any other monotone operator. The following theorems are well known; for
instance, see [45].

Theorem 2.5. Let E be a reflexive, strictly convex and smooth Banach space
and let A : E → 2E∗ be a monotone operator. Then A is maximal if and only if
R(J + rA) = E∗ for all r > 0.

Theorem 2.6 Let E be a strictly convex and smooth Banach space and let
x, y ∈ E . If 〈x − y, Jx− Jy〉 = 0, then x = y.

A duality mapping J of a smooth Banach space is said to be weakly sequen-
tially continuous if xn ⇀ x implies that Jxn

∗
⇀ Jx, where ∗

⇀ means the weak∗
convergence.
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3. PROXIMAL POINT ALGORITHMS IN HILBERT SPACES

Let H be a Hilbert space. Then, from Theorem 2.5 we know that a monotone
operator A ⊂ H × H is maximal if and only if A is m-accretive. Motivated by
Rockafellar’s result [39], Kamimura and Takahashi [16] proved the following two
convergence theorems.

Theorem 3.1. ([16]). Let H be a Hilbert space and let A ⊂ H × H be a
maximal monotone operator with A−10 �= ∅. Let Jr = (I + rA)−1 for all r > 0
and let x0 = x ∈ H and let {xn} be a sequence generated by

yn ≈ Jλnxn, xn+1 = αnx + (1− αn)yn, n = 1, 2, . . . ,

under criterion ‖yn − Jλnxn‖ ≤ δn, where
∑∞

n=0 δn < ∞ and {αn} ⊂ [0, 1] and
{λn} ⊂ (0,∞) satisfy

lim
n→∞ αn = 0,

∞∑
n=0

αn = ∞ and lim
n→∞λn = ∞.

Then {xn} converges strongly to Px, where P is the metric projection of H onto
A−10.

Theorem 3.2. ([16]). Let H be a Hilbert space and let A ⊂ H × H be a
maximal monotone operator with A−10 �= ∅. Let Jr = (I + rA)−1 for all r > 0
and let x0 = x ∈ H and let {xn} be a sequence generated by

yn ≈ Jλnxn, xn+1 = αnxn + (1 − αn)yn, n = 1, 2, . . . ,

under criterion ‖yn − Jλnxn‖ ≤ δn, where
∑∞

n=0 δn < ∞ and {αn} ⊂ [0, 1] and
{λn} ⊂ (0,∞) satisfy

lim sup
n→∞

αn < 1 and lim inf
n→∞ λn > 0.

Then {xn} converges weakly to A−10, where v = limn→∞ Pxn.

Solodov and Svaiter [41] also proved the following strong convergence theorem
by the hybrid method in mathematical programming.

Theorem 3.3. ([41]). Let H be a Hilbert space and let A ⊂ H × H be a
maximal monotone operator. Let x ∈ H and let {xn} be a sequence defined by



x1 = x ∈ H,

yn = Jrnxn,

Hn = {z ∈ H : 〈z − yn, xn − yn〉 ≤ 0},
Wn = {z ∈ H : 〈z − xn, x1 − xn〉 ≤ 0},

xn+1 = PHn∩Wnx1, n = 1, 2, . . . ,
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where {rn} is a sequence of positive numbers. IfA−10 �= ∅ and lim infn→∞ rn > 0,
then {xn} converges strongly to PA−10x1.

Motivated by Kamimura and Takahashi [16], Iemoto and Takahashi [13] ob-
tained the following theorem which generalizes Theorems 3.1 and 3.2, simultane-
ously. This theorem is a complete generalization of the theorems in [16].

Theorem 3.4. Let A : H → 2H be a maximal monotone operator with
A−10 �= ∅. Let x0 = x ∈ H and let {xn} be a sequence generated by

(7)




x0 = x ∈ H,

yn ≈ Jλnxn,

xn+1 = αnx + βnxn + γnyn, n = 0, 1, 2, . . . ,

under criterion ‖yn − Jλnxn‖ ≤ δn. Then the following hold:

(1) Suppose that

lim
n→∞ αn = 0,

∞∑
n=0

αn = ∞, lim
n→∞βn = 0 and lim

n→∞ λn = ∞.

Then {xn} converges strongly to Px, where P is the metric projection of H
onto A−10.

(2) Suppose that
∞∑

n=0

αn < ∞, lim sup
n→∞

βn < 1 and lim inf
n→∞ λn > 0.

Then {xn} converges weakly to v ∈ A−10, where v = limn→∞ Pxn.

We also know that Xu [56, Theorems 5.1 and 5.2] proved strong and weak
convergence theorems which are related to Theorems 3.1 and 3.2.

4. PROXIMAL POINT ALGORITHMS FOR ACCRETIVE OPERATORS

Let E be a Banach space and let A ⊂ E × E be an accretive operator with
domain D(A) = {z ∈ E : Az �= ∅} and range R(A) =

⋃{Az : z ∈ D(A)}. For
r > 0 and x ∈ R(I + rA), define the resolvent of A as follows:

Jrx = {z ∈ E : x ∈ z + rAz}.
Then, as in Preliminaries, a single valued nonexpansive mapping Jr : R(I +rA) →
D(A) denoted by Jr = (I + rA)−1 is called the accretive resolvent of A. We
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can also define the Yosida approximation A r by Ar = (I − Jr)/r. We know that
Arx ∈ AJrx for all x ∈ R(I + rA) and ‖Arx‖ ≤ inf{‖y‖ : y ∈ Ax} for all
x ∈ D(A) ∩ R(I + rA). An accretive operator A is said to be m-accretive if
R(I + rA) = E for all r > 0. Reich [35] proved the following result:

Theorem 4.1. ([35]). Let E be a uniformly convex and uniformly smooth
Banach space and let A ⊂ E × E be an m-accretive operator such that A −10 is
nonempty. Then, for any x ∈ E , the strong limit lim t→∞ Jtx exists and belongs to
A−10. Define Qx = limt→∞ Jtx. Then Q is a sunny nonexpansive retraction of
E onto A−10.

We first obtain the following strong convergence theorem by the viscosity ap-
proximation method which generalizes Theorem 4.1.

Theorem 4.2. ([52]). Let E be a reflexive Banach space with a uniformly
Gâteaux differentiable norm and let C be a nonempty closed convex subset of
E which has normal structure. Let A ⊂ E × E be an accretive operator with
A−10 �= ∅ satisfying

D(A) ⊂ C ⊂
⋂
t>0

R(I + tA)

and let Jt be the resolvent of A for t > 0. Let f be a contractive mapping of C
into itself. Then the following hold:

(1) For t > 0, Jtf has a unique fixed point u t in C;

(2) if t → ∞, then the net {ut} converges strongly to u ∈ A−10, where u =
QA−10fu and QA−10 is a sunny nonexpansive retraction of C onto A−10.

Using Theorem 4.2, we deal with the proximal point algorithm by the viscosity
approximation method for resolvents of accretive operators in Banach spaces.

Theorem 4.3. ([52]). Let E be a reflexive Banach space with a uniformly
Gâteaux differentiable norm and let C be a nonempty closed convex subset of
E which has normal structure. Let A ⊂ E × E be an accretive operator with
A−10 �= ∅ satisfying

D(A) ⊂ C ⊂
⋂
t>0

R(I + tA)

and let Jt be the resolvent of A for t > 0. Let f be a contractive mapping of C

into itself. Let {xn} be a sequence in C defined by x1 = x ∈ C and

xn+1 = αnf(xn) + (1− αn)Jtnxn, n = 1, 2, . . . ,
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where {αn} ⊂ (0, 1) and {tn} ⊂ (0,∞) satisfy

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞ and lim
n→∞ tn = ∞.

Then {xn} converges strongly to u ∈ A−10, where u = QA−10f(u) and QA−10 is
a sunny nonexpansive retraction of C onto A−10.

As a direct consequence of Theorem 4.3, we have the following:

Theorem 4.4. Let E be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm and let A ⊂ E × E be an m-accretive operator. Let
x1 = x ∈ E and let {xn} be a sequence generated by

xn+1 = αnx + (1 − αn)Jrnxn, n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim
n→∞αn = 0,

∞∑
n=0

αn = ∞ and lim
n→∞ rn = ∞.

If A−10 �= ∅, then {xn} converges strongly to an element of A−10.

Next, we prove a weak convergence theorem of Mann’s type for accretive op-
erators in a Banach space. Before stating the theorem, we need the following two
lemmas.

Lemma 4.5. ([5]). Let C be a closed bounded convex subset of a uniformly
convex Banach space E and let T be a nonexpansive mapping of C into itself. If
{xn} converges weakly to z ∈ C and {xn − Txn} converges strongly to 0, then
Tz = z.

Lemma 4.6. ([33]). Let E be a uniformly convex Banach space whose norm is
Fréchet differentiable, let C be a closed convex subset of E and let {T 0, T1, T2, . . .}
be a sequence of nonexpansive mappings of C into itself such that

⋂∞
n=0 F (Tn)

is nonempty. Let x ∈ C and Sn = TnTn−1 · · ·T0 for all n = 1, 2, . . . . Then
the set

⋂∞
n=0 co{Smx : m ≥ n} ∩ U consists of at most one point, where U =⋂∞

n=0 F (Tn).

For the proof of Lemma 4.6, see Takahashi and Kim [53]. Now we can prove
the following weak convergence theorem.
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Theorem 4.7. ([17]). Let E be a uniformly convex Banach space whose norm
is Fréchet differentiable or which satisfies Opial’s condition, let A ⊂ E ×E be an
accretive operator which satisfies the range condition, and let C be a nonempty
closed convex subset ofE such thatD(A) ⊂ C ⊂ ⋂

r>0 R(I+rA). Let x1 = x ∈ C
and let {xn} be a sequence generated by

xn+1 = αnxn + (1 − αn)Jrnxn, n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim sup
n→∞

αn < 1 and lim inf
n→∞ rn > 0.

If A−10 �= ∅, then {xn} converges weakly to an element of A−10.

As a direct consequence of Theorem 4.7, we have the following:

Theorem 4.8. Let E be a uniformly convex Banach space whose norm is
Fréchet differentiable or which satisfies Opial’s condition and let A ⊂ E × E be
an m-accretive operator. Let x1 = x ∈ E and let {xn} be a sequence generated
by

xn+1 = αnxn + (1 − αn)Jrnxn, n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim sup
n→∞

αn < 1 and lim inf
n→∞ rn > 0.

If A−10 �= ∅, then {xn} converges weakly to an element of A−10.

Recently, Iemoto and Takahashi [14] proved the following theorem. The proof
is mainly due to Kamimura and Takahashi [17].

Theorem 4.9. Let E be a uniformly convex Banach space whose norm is
uniformly smooth and let A ⊂ E ×E be an m-accretive operator. Let x 0 = x ∈ E

and let {xn} be a sequence generated by

(8)

{
x0 = x ∈ E,

xn+1 = αnx + βnxn + γnJλnxn + en, n = 0, 1, 2, . . . .

Assume that αn + βn + γn = 1 for all n ∈ N,
∑∞

n=0 ‖en‖ < ∞ and A−10 �= ∅.
Then the following hold:
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(1) Suppose that
∞∑

n=0

αn = ∞, lim
n→∞ αn = 0, lim

n→∞βn = 0, and lim
n→∞ λn = ∞.

Then {xn} converges strongly to an element of A−10. Further, if Px =
limn→∞ xn for each x ∈ E , then P is a sunny nonexpansive retraction of E
onto A−10.

(2) Suppose that
∞∑

n=0

αn < ∞, lim sup
n→∞

βn < 1, and lim inf
n→∞ λn > 0.

Then {xn} converges weakly to v ∈ A−10.

Probelm. Can we prove a theorem of Solodov and Svaiter’s type for resolvents
of accretive operators in Banach spaces?

5. PROXIMAL POINT ALGORITHMS FOR MONOTONE OPERATORS

Let E be a smooth Banach space. Let C be a closed convex subset of E , and
let T be a mapping from C into itself. We denote by F (T ) the set of fixed points of
T . A point p in C is said to be an asymptotic fixed point of T [36] if C contains a
sequence {xn} which converges weakly to p and the strong limn→∞(xn−Txn) = 0.
The set of asymptotic fixed points of T will be denoted by F̂ (T ). A mapping T
from C into itself is called relatively nonexpansive [28] if F (T ) �= ∅, F̂ (T ) = F (T )
and φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ).

Let E be a reflexive, strictly convex and smooth Banach space, and let A be a
maximal monotone operator from E to E∗. Using Theorems 2.5 and 2.6, we obtain
that for every r > 0 and x ∈ E , there exists a unique xr ∈ D(A) such that

Jx ∈ Jxr + rAxr.

If Qrx = xr, then we can define a single valued mapping Qr : E → D(A) by
Qr = (J + rA)−1J and such a Qr is called the relative resolvent of A. We know
that A−10 = F (Qr) for all r > 0; see [44, 45] for more details. For such resolvents,
we know the following convergence theorem.

Theorem 5.1. ([34]). Let E be a Banach space and let A ⊂ E × E ∗ be a
maximal monotone operator with A−10 �= ∅. If E∗ is strictly convex and has
a Fréchet differentiable norm. Then, for each x ∈ E , limλ→∞ Qλx exists and
belongs to A−10.
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For x ∈ E and r > 0, we also consider the following equation

0 ∈ J(xr − x) + rAxr.

By Theorems 2.5 and 2.6, this equation has a unique solution xr. We denote Jr by
xr = Jrx and such Jr is also called the metric resolvent of A. We do not know
useful properties for metric resolvents; see [45]. On the other hand, we know the
following theorem [28] for relative resolvents of maximal monotone operators.

Theorem 5.2. Let E be a uniformly convex and uniformly smooth Banach
space, let A be a maximal monotone operator from E to E ∗, let Qr be the rel-
ative resolvent of A, where r > 0. If A−10 is nonempty, then Qr is a relatively
nonexpansive mapping on E .

Kohsaka and Takahashi [21] also proved a strong convergence theorem of
Halpen’s type for relative resolvents of maximal monotone operators in a Banach
space.

Theorem 5.3. ([21]). Let E be a smooth and uniformly convex Banach space
and let A ⊂ E ×E∗ be a maximal monotone operator. Let Q r = (J + rA)−1J for
all r > 0 and let {xn} be a sequence difined as follows:

x1 = x ∈ E,

xn+1 = J−1(αnJ(x) + (1 − αn)J(Qrnxn)), n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim
n→∞αn = 0,

∞∑
n=1

αn = ∞ and lim
n→∞ rn = ∞.

If A−10 �= ∅, then {xn} converges strongly to ΠA−10x, where ΠA−10 is the gener-
alized projection of E onto A−10.

For the sake of getting a weak convergence theorem of Mann’s type for relative
resolvents of maximal monotone operators in a Banach space, we need the following
strong convergence theorem.

Theorem 5.4. ([15]). Let E be a smooth and uniformly convex Banach space.
Let A ⊂ E × E∗ be a maximal monotone operator such that A−10 is nonempty,
let Qr = (J + rA)−1J for all r > 0 and let ΠA−10 be the generalized projection
of E onto A−10. Let {xn} be a sequence defined as follows: x1 = x ∈ E and

xn+1 = J−1(αnJ(xn) + (1 − αn)J(Qrnxn)), n = 1, 2, . . . ,
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where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞). Then, the sequence {ΠA−10(xn)} con-
verges strongly to an element of A−10, which is a unique element v ∈ A−10 such
that

lim
n→∞ φ(v, xn) = min

y∈A−10
lim

n→∞ φ(y, xn).

Using Theorem 5.4, we can prove the following theorem in a Banach space
which generalizes the results of Rockafellar [39] and Kamimura and Takahashi
[16] in a Hilbert space.

Theorem 5.5. ([15]). Let E be a smooth and uniformly convex Banach space
whose duality mapping J is weakly sequentially continuous. Let A ⊂ E ×E ∗ be a
maximal monotone operator such that A−10 is nonempty, let Qr = (J + rA)−1J
for all r > 0 and let ΠA−10 be the generalized projection of E onto A−10. Let
{xn} be a sequence defined as follows: x1 = x ∈ E and

xn+1 = J−1(αnJ(xn) + (1− αn)J(Qrnxn)), n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim sup
n→∞

αn < 1 and lim inf
n→∞ rn > 0.

Then, the sequence {xn} converges weakly to an element v of A−10, where v =
limn→∞ ΠA−10(xn).

As a direct consequence of Theorem 5.5, we obtain the following:

Theorem 5.6. Let E be a smooth and uniformly convex Banach space whose
duality mapping J is weakly sequentially continuous. Let A ⊂ E × E ∗ be a
maximal monotone operator such that A−10 is nonempty, let Qr = (J + rA)−1J
for all r > 0 and let ΠA−10 be the generalized projection of E onto A−10. Let
{xn} be a sequence defined as follows: x1 = x ∈ E and

xn+1 = Qrnxn, n = 1, 2, . . . ,

where {rn} ⊂ (0,∞) satisfies lim infn→∞ rn > 0. Then, the sequence {xn}
converges weakly to an element v of A−10, where v = limn→∞ ΠA−10(xn).

Problem. If E and E∗ are uniformly convex Banach spaces, does Theorem
5.6 hold without assumming that J is weakly sequentially continuous?

Now, we extend Solodov and Svaiter’s result [41] to that of a Banach space.
Kamimura and Takahashi [18] obtained the following strong convergence theorem
by using Theorem 2.2.
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Theorem 5.7. ([18]). Let E be a uniformly convex and uniformly smooth
Banach space and let A be a maximal monotone operator from E into E ∗ such
that A−10 �= ∅. Let Qr = (J + rA)−1J for all r > 0 and let {xn} be a sequence
generated by 



x1 ∈ E,

yn = Qrnxn,

Hn = {z ∈ E : 〈z − yn, Jxn − Jyn〉 ≤ 0},
Wn = {z ∈ E : 〈z − xn, Jx1 − Jxn〉 ≤ 0},

xn+1 = QHn∩Wnx1, n = 1, 2, . . . ,

where {rn} is a sequence of positive numbers such that lim inf n→∞ rn > 0. Then,
{xn} converges strongly to ΠA−10x1, where ΠA−10 is the generalized projection of
E onto A−10.

Matsushita and Takahashi [28] also proved the following strong convergence
theorem of Solodov and Svaiter’s type for relative resolvents of maximal monotone
operators by using an idea of Nakajo and Takahashi’s hybrid method.

Theorem 5.8. Let E be a uniformly convex and uniformly smooth Banach
space, let A be a maximal monotone operator from E to E ∗, let Qr be the relative
resolvent of A, where r > 0 and let {αn} be a sequence of real numbers such that
0 ≤ αn < 1 and lim supn→∞ αn < 1. Suppose that {xn} is given by



x1 = x ∈ E,

yn = J−1(αnJxn + (1− αn)JQrxn),

Hn = {z ∈ E : φ(z, yn) ≤ φ(z, xn)},
Wn = {z ∈ E : 〈xn − z, Jx − Jxn〉 ≥ 0},

xn+1 = QHn∩Wnx, n = 1, 2, . . . ,

where J is the duality mapping on E . If A−10 is nonempty, then {xn} converges
strongly to ΠA−10x, where ΠA−10 is the generalized projection from E onto A−10.

Ohsawa and Takahashi [31] proved another extension of Solodov and Svaiter’s
result [41] by using the metric resolvents of maximal monotone operators and the
metric projection in Banach spaces.

Theorem 5.9. ([31]). Let E be a uniformly convex and smooth Banach space
and let A be a maximal monotone operator from E into E ∗. Suppose {xn} is the
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sequence generated by


x1 ∈ E,

yn = Jrnxn,

Hn = {z ∈ E : 〈yn − z, J(xn − yn)〉 ≥ 0},
Wn = {z ∈ E : 〈xn − z, J(x1 − xn)〉 ≥ 0},

xn+1 = PHn∩Wnx1, n = 1, 2, . . . ,

where {rn} is a sequence of positive numbers. IfA−10 �= ∅ and lim infn→∞ rn > 0,
then {xn} converges strongly to PA−10x1, where PA−10 is the metric projection of
E onto A−10.

Problem. Can we prove theorems of Halpern’s type and Mann’s type for metric
resolvents of maximal monotone operators?

6. PROXIMAL POINT ALGORITHMS FOR NEW RESOLVENTS

In this section, we introduce a new notion of resolvents of maximal monotone
operators in a Banach space. Then, we discuss weak and strong convergence theo-
rems for the resolvents. Let E be a smooth Banach space and let D be a nonempty
closed convex subset of E . A mapping R : D → D is called generalized nonex-
pansive [10] if F (R) �= ∅ and

φ(Rx, y) ≤ φ(x, y), ∀x ∈ D, ∀y ∈ F (R),

where F (R) is the set of fixed points of R. We can first get the following theorem
for generalized nonexpansive mappings.

Theorem 6.1. Let C be a nonempty closed subset of a smooth and strictly
convex Banach space E . Let RC be a retraction of E onto C. Then RC is sunny
and generalized nonexpansive if and only if

〈x − RCx, J(RCx)− J(y)〉 ≥ 0

for each x ∈ E and y ∈ C.

Compare this theorem with Theorems 2.1, 2.2 and 2.4. A point p in C is said
to be a generalized asymptotic fixed point of T [12] if C contains a sequence {x n}
such that Jxn

∗
⇀ Jp and the strong limn→∞(Jxn − JTxn) = 0. The set of

generalized asymptotic fixed points of T will be denoted by F̌ (T ).
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Let E be a reflexive, strictly convex and smooth Banach space and let B ⊂
E∗ ×E be a maximal monotone operator. For each λ > 0 and x ∈ E , consider the
set

Rλx := {z ∈ E : x ∈ z + λBJ(z)}.
Then Rλx consists of one point. We also denote the domain and the range of Rλ

by D(Rλ) = R(I + λBJ) and R(Rλ) = D(BJ), respectively. Such Rλ is called
the generalized resolvent of B and is denoted by

Rλ = (I + λBJ)−1.

We get some properties of Rλ and (BJ)−10.

Proposition 6.2. Let E be a reflexive and strictly convex Banach space with a
Fréchet differentiable norm and let B ⊂ E ∗×E be a maximal monotone operator
with B−10 �= ∅. Then the following hold:

(1) D(Rλ) = E for each λ > 0;
(2) (BJ)−10 = F (Rλ) for each λ > 0, where F (Rλ) is the set of fixed points

of Rλ;
(3) (BJ)−10 is closed;
(4) Rλ is generalized nonexpansive for each λ > 0.

Using Theorem 5.1, we get the following result.

Theorem 6.3. Let E be a uniformly convex Banach space with a Fréchet
differentiable norm and let B ⊂ E ∗ × E be a maximal monotone operator with
B−10 �= ∅. Then the following hold:

(1) For each x ∈ E , limλ→∞ Rλx exists and belongs to (BJ)−10;
(2) if Rx := limλ→∞ Rλx for each x ∈ E , then R is a sunny generalized

nonexpansive retraction of E onto (BJ)−10.

Next, we discuss proximal point algorithms for new resolvents of a maximal
monotone operator B ⊂ E∗ × E . We start with the following lemma. Compare
this lemma with the results in Kamimura and Takahashi [18], and Kohsaka and
Takahashi [21].

Lemma 6.4. Let E be a reflexive, strictly convex, and smooth Banach space,
let B ⊂ E∗ × E be a maximal monotone operator with B−10 �= ∅, and Rr =
(I + rBJ)−1 for all r > 0. Then

φ(x, Jrx) + φ(Jrx, u) ≤ φ(x, u)
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for all r > 0, u ∈ (BJ)−10, and x ∈ E .

Now, we can prove the following strong convergence theorem, which is a gen-
eralization of Kamimura and Takahashi’s strong convergence theorem (Theorem
3.1).

Theorem 6.5. ([11]). Let E be a uniformly convex Banach space with a uni-
formly Gâteaux differentiable norm and let B ⊂ E ∗ × E be a maximal monotone
operator. Let Rr = (I + rBJ)−1 for all r > 0 and let {xn} be a sequence defined
as follows: x1 = x ∈ E and

xn+1 = αnx + (1 − αn)Rrnxn, n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy limn→∞ αn = 0,
∑∞

n=1 αn = ∞,
and limn→∞ rn = ∞. If B−10 �= ∅, then the sequence {xn} converges strongly to
R(BJ)−10(x), where R(BJ)−10 is a sunny generalized nonexpansive retraction of E
onto (BJ)−10.

Next, we can prove the following weak convergence theorem, which is a gener-
alization of Kamimura and Takahashi’s weak convergence theorem (Theorem 3.2).

Theorem 6.6. ([11]). Let E be a smooth and uniformly convex Banach space
whose duality mapping J is weakly sequentially continuous. Let B ⊂ E ∗ × E be
a maximal monotone operator, let R r = (I + rBJ)−1 for all r > 0 and let {xn}
be a sequence defined as follows: x1 = x ∈ E and

xn+1 = αnxn + (1 − αn)Rrnxn, n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim sup
n→∞

αn < 1 and lim inf
n→∞ rn > 0.

If B−10 �= ∅, then the sequence {xn} converges weakly to an element of (BJ)−10.

Further, we can prove strong convergence theorems by hybrid methods for gen-
eralized nonexpansive mappings in Banach spaces. Before discussing them, we
need the following definitions and theorems. Let E be a smooth and strictly convex
Banach space and let C be a nonempty closed subset of E . Then, a sunny gener-
alized nonexpansive retraction of E onto C is unique. Let C is a nonempty closed
subset of E . Then, C is said to be a sunny generalized nonexpansive retract (resp.
generalized nonexpansive retract) if there exists a sunny generalized nonexpansive
retraction (resp. generalized nonexpansive retraction) of E onto C. Kohsaka and
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Takahashi [23] obtained the following results for sunny generalized nonexpansive
retractions in a Banach space.

Theorem 6.7. ([23]). Let E be a reflexive, strictly convex and smooth Banach
space and let C be a nonempty closed subset of E . Then, the following conditions
are equivalent:

(1) C is a sunny generalized nonexpansive retract of E;
(2) C is a generalized nonexpansive retract of E;
(3) JC is closed and convex.

Theorem 6.8. ([23]). Let E be a reflexive, strictly convex and smooth Banach
space and let B ⊂ E ∗×E be a maximal monotone operator with B−10 �= ∅. Then,
B−10 is a sunny generalized nonexpansive retract of E .

Ibaraki and Takahashi [12] also obtained the following result concerning the set
of fixed points of a generalized nonexpansiv mapping.

Theorem 6.9. ([12]). Let E be a reflexive, strictly convex and smooth Banach
space and let T be a generalized nonexpansiv mapping from E into itself. Then,
F (T ) is closed and JF (T ) is colsed and convex.

As a direct consequence of Theorems 6.7 and 6.9, we obtain the following result.

Theorem 6.10. ([12]). Let E be a reflexive, strictly convex and smooth Banach
space and let T be a generalized nonexpansiv mapping from E into itself. Then,
F (T ) is a sunny generalized nonexpansive retract of E .

Further, Ibaraki and Takahashi [12] obtained the following results.

Lemma 6.11. Let E be a smooth and uniformly convex Banach space E , let
B ⊂ E∗ × E be a maximal monotone operator with B−10 �= ∅, and let Rr be the
generalized resolvent of B for some r > 0. Then F̌ (Rr) = F (Rr).

Lemma 6.12. Let D be a nonempty closed subset of a reflexive, strictly convex
and smooth Banach space E , let R be a sunny generalized nonexpansive retraction
of E onto D. Then F̌ (R) = F (R).

Using these theorems and lemmas, Kohsaka and Takahashi [23] and Ibaraki and
Takahashi [12] proved the following strong convergence theorems.

Theorem 6.13. Let E be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm and let B ⊂ E ∗×E be a maximal monotone operator
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such that B−10 is nonempty. Let Rr = (I + rBJ)−1 for all r > 0 and let {xn}
be a sequence generated by x1 = x ∈ E and



yn = Rrnxn;

Hn = {z ∈ E : 〈xn − yn, Jz − Jyn〉 ≤ 0};
Wn = {z ∈ E : 〈x − xn, Jz − Jxn〉 ≤ 0};

xn+1 = RHn∩Wn(x), n = 1, 2, . . . ,

where {rn} ⊂ (0,∞) satisfies lim infn rn > 0 and RHn∩Wn denotes the sunny
generalized nonexpansive retraction fromE ontoH n∩Wn for all n ∈ N. Then {xn}
converges strongly to R(x), where R denotes the sunny generalized nonexpansive
retraction from E onto J −1B−10.

Theorem 6.14. (Ibaraki and Takahashi [12]). Let E be a uniformly convex and
uniformly smooth Banach space, let B ⊂ E ∗×E be a maximal monotone operator
with B−10 �= ∅, let Rr be the generalized resolvent of B for some r > 0, and let
{αn} be a sequence of real numbers such that 0 ≤ αn < 1 and lim supn→∞ αn < 1.
Suppose that {xn} is given by



x1 = x ∈ E,

yn = αnxn + (1 − αn)Rrxn),

Hn = {z ∈ E : φ(yn, z) ≤ φ(xn, z)},
Wn = {z ∈ E : 〈x − xn, Jxn − Jz〉 ≥ 0},

xn+1 = RHn∩Wnx, n = 1, 2, . . . ,

where J is the duality mapping on E . Then {xn} converges strongly to R(BJ)−10x,
where R(BJ)−10 is a sunny generalized nonexpansive retraction from E onto
(BJ)−10.

7. APPLICATIONS

In this section, we apply some results obtained in Sections 5 and 6 to find
minimizers of convex functions in Banach spaces. Let f : E → (−∞,∞] be a
proper convex lower semicontinuous function. Then the subdifferential ∂f of f is
as follows:

∂f(z) = {v∗ ∈ E∗ : f(y) ≥ f(z) + 〈y − z, v∗〉, ∀y ∈ E}, ∀z ∈ E.

Then, we know the following theorem which was proved by Rockafellar [41].
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Theorem 7.1. ([41]). Let E be a real Banach space and let f : E → (−∞,∞]
be a proper convex lower semicontinuous function. Then, the subdifferential ∂f of
f is maximal monotone.

Using Theorems 7.1 and 5.7, we obtain the following theorem.

Theorem 7.2. ([18]). Let E be a uniformly convex and uniformly smooth
Banach space and let f : E → (−∞,∞] be a proper convex lower semicontinuous
function. Assume that {rn} ⊂ (0,∞) satisfies lim infn→∞ rn > 0 and let {xn} be
a sequence generated by




x1 ∈ E,

yn = arg min
z∈E

{f(z) +
1

2rn
‖z‖2 − 1

rn
〈z, Jxn〉},

0 = vn +
1
rn

(Jyn − Jxn), vn ∈ ∂f(yn),

Hn = {z ∈ E : 〈z − yn, vn〉 ≤ 0},
Wn = {z ∈ E : 〈z − xn, Jx1 − Jxn〉 ≤ 0},

xn+1 = QHn∩Wnx1, n = 1, 2, . . . .

If (∂f)−10 �= ∅, then {xn} converges strongly to Q(∂f)−10(x1), where Q(∂f)−10 is
the generalized projection of E onto (∂f)−10.

Proof. Since f : E → (−∞,∞] is a proper convex lower semicontinuous
function, by Rockafellar’s Theorem 7.1, the subdifferential ∂f of f is a maximal
monotone operator. We also know that

yn = arg min
z∈E

{f(z) +
1

2rn
‖z‖2 − 1

rn
〈z, Jxn〉}

is equivalent to

0 ∈ ∂f(yn) +
1
rn

Jyn − 1
rn

Jxn.

So, we have vn ∈ ∂f(yn) such that 0 = vn + 1
rn

(Jyn − Jxn). Using Theorem 5.7,
we get the conclusion.

Using Theorems 7.1 and 5.9, we also obtain the following convergence theorem.

Theorem 7.3. ([31]). Let E be a uniformly convex and smooth Banach space
and let f : E → (−∞,∞] be a proper convex lower semicontinuous function.
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Assume that {rn} ⊂ (0,∞) satisfies lim infn→∞ rn > 0 and let {xn} be the
sequence generated by



x1 ∈ E,

yn = argmin
z∈E

{f(z) +
1

2rn
‖z − xn‖2},

Hn = {z ∈ E : 〈yn − z, J(xn − yn〉 ≥ 0},
Wn = {z ∈ E : 〈xn − z, J(x1 − xn)〉 ≥ 0},

xn+1 = PHn∩Wnx1, n = 1, 2, . . . .

If (∂f)−10 �= ∅, then {xn} converges strongly to P(∂f)−10(x1), where P(∂f)−10 is
the metric projection of E onto (∂f)−10.

Proof. As in the proof, we know that

yn = arg min
z∈E

{f(z) +
1

2rn
‖z − xn‖2}

is equivalent to
0 ∈ ∂f(yn) +

1
rn

J(yn − xn).

So, we have
0 ∈ J(yn − xn) + rn∂f(yn).

Using Theorem 5.9, we get the conclusion.

Further, using Theorems 5.3 and 5.5, we have the following theorems of Halpern’
type and Mann’s type.

Theorem 7.4. ([21]). Let E be a smooth and uniformly convex Banach space
and let f : E → (−∞,∞] be a proper lower semicontinuous convex function such
that (∂f)−10 is nonempty. Let {xn} be a sequence defined as follows:

x1 = x ∈ E,

yn = arg min
y∈E

{f(y) +
1

2rn
‖y‖2 − 1

rn
〈y, Jxn〉},

xn+1 = J−1(αnJx + (1− αn)Jyn), n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim
n→∞αn = 0,

∞∑
n=1

αn = ∞ and lim
n→∞ rn = ∞.
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Then, {xn} converges strongly to Q(∂f)−10x.

Theorem 7.5. ([15]). Let E be a smooth and uniformly convex Banach space
whose duality mapping J is weakly sequentially continuous. Let f : E → (−∞,∞]
be a proper lower semicontinuous convex function such that (∂f) −10 is nonempty.
Let {xn} be a sequence defined as follows:

x1 = x ∈ E,

yn = argmin
y∈E

{f(y) +
1

2rn
‖y‖2 − 1

rn
〈y, Jxn〉},

xn+1 = J−1(αnJxn + (1− αn)Jyn), n = 1, 2, . . . ,

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim sup
n→∞

αn < 1 and lim inf
n→∞ rn > 0.

Then, {xn} converges weakly to v ∈ (∂f)−10. Further v = limQ(∂f)−10(xn),
where Q(∂f)−10 is the generalized projection of E onto (∂f)−10.

On the other hand, using the theorem (Theorem 6.6) for new resolvents of
maximal monotone operators, we obtain the following result.

Theorem 7.6. Let E be a smooth and uniformly convex Banach space whose
duality mapping J is weakly sequentially continuous. Let f : E ∗ → (−∞,∞] be a
proper lower semicontinuous convex function such that (∂f) −1(0) �= ∅. Let {xn}
be a sequence defined as follows: x1 = x ∈ E and

y∗n = arg min
y∗∈E∗

{
f(y∗) +

1
2rn

‖y∗‖2 − 1
rn

〈xn, y∗〉
}

,

xn+1 = αnxn + (1 − αn)J−1y∗n, n = 1, 2, . . . ,

(9)

where {αn} ⊂ [0, 1] and {rn} ⊂ (0,∞) satisfy

lim sup
n→∞

αn < 1 and lim inf
n→∞ rn > 0.

Then the sequence {xn} converges weakly to an element of (∂fJ)−10.

Proof. By Rockafellar’s Theorem 7.1, the subdifferential mapping ∂f ⊂ E∗×E

is maximal monotone. If Jr is the generalized resolvent of ∂f for r > 0, then we
have, for z ∈ E ,

z ∈ Jrz + r∂fJJrz
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and hence

0 ∈ ∂fJJrz +
1
r
J−1JJrz − 1

r
z = ∂

(
f +

1
2r

‖ · ‖2 − 1
r
〈z, ·〉

)
JJrz.

Thus, we have

JJrz = arg min
y∗∈E∗

{
f(y∗) +

1
2r

‖y∗‖2 − 1
r
〈z, y∗〉

}
.

Therefore, J−1y∗n = J−1JJrnxn = Jrnxn for all n ∈ N. By Theorem 6.6, {xn}
converges weakly to an element of (∂fJ)−10.

Finally, using Theorem 6.13, we have the following theorem:

Theorem 7.7. Let E be a uniformly convex Banach space with a uniformly
Gâteaux differentiable norm and let f : E ∗ → (−∞,∞] be a proper lower semicon-
tinuous convex function such that (∂f)−1(0) is nonempty. Let {xn} be a sequence
generated by x1 = x ∈ E and



yn = J−1
(
arg min

y∗∈E∗

{
f(y∗) +

1
2rn

‖y∗‖2 − 1
rn

〈xn, y∗〉
})

,

Hn = {z ∈ E : 〈xn − yn, Jz − Jyn〉 ≤ 0},
Wn = {z ∈ E : 〈x− xn, Jz − Jxn〉 ≤ 0},

xn+1 = RHn∩Wn(x), n = 1, 2, . . . ,

where {rn} ⊂ (0,∞) satisfies lim infn rn > 0 and RHn∩Wn denotes the sunny
generalized nonexpansive retraction fromE ontoH n∩Wn for all n ∈ N. Then {xn}
converges strongly to R(x), where R denotes the sunny generalized nonexpansive
retraction from E onto J −1(∂f)−1(0).
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