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TOPOLOGICAL DEGREE METHODS IN BOUNDARY
VALUE PROBLEMS FOR DEGENERATE FUNCTIONAL
DIFFERENTIAL INCLUSIONS WITH INFINITE DELAY

Q. H. Ansari, Y. C. Liou, V. Obukhovskii and N. C. Wong*

Abstract. We consider the general boundary value problem for a degenerate
semilinear functional differential inclusion in a Banach space with infinite de-
lay. We construct the multivalued integral operator whose fixed points are mild
solutions of the above problem and study its properties. We apply the topo-
logical degree method to obtain the general existence principle and consider
some particular cases, including Cauchy and periodic problems.

1. INTRODUCTION

In the recent time two directions in the theory of differential equations and
inclusions in Banach spaces are intensively developing and attract the attention
of many researchers. The first one is the theory of degenerate (or Sobolev type)
differential equations and inclusions (see, e.g., [1, 2, 5, 14, 16, 17] and the references
therein). One of the reasons of growing interest to this branch is the fact that many
types of PDEs arising in problems of mathematical physics and applied sciences
may be naturally presented in this form.

The second direction is connected with the study of functional differential equa-
tions and inclusions with infinite delay. Starting from the work of J.K. Hale and J.
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Kato [8], who suggested the axiomatic approach to the definition of the phase space
of distributed infinite delays, this subject is investigated very actively (see, e.g., [6,
7, 9, 10, 15] and the references therein).

In the present paper, generalizing some results of the works [1, 14], we suggest
a version of synthesis of both theories, considering the general type boundary value
problem for a degenerate semilinear functional differential inclusion in a Banach
space with infinite delay. We construct the multivalued integral operator whose
fixed points are mild solutions of the above problem and study its properties. In
particular, we give conditions under which this multioperator is condensing with
respect to the vector measure of noncompactness of a special form. This allows us
to apply the methods of topological degree theory for condensing multimaps (see,
e.g. [3, 12]) and to obtain the general existence result (Theorem 24). We consider
some particular cases including Cauchy and periodic problems.

2. PRELIMINARIES

2.1. Multivalued linear operators

We begin with some necessary definitions and results from the theory of multi-
valued linear operators. Details can be found in [1, 2] and [5].

Let E be a complex Banach space.

Definition 1. A multivalued map (multimap) A : E → 2E is said to be a
multivalued linear operator (MLO) on E if:

(1) D (A) = {x ∈ E : Ax �= ∅} is a linear subspace of E;
(2) {

Ax+ Ay ⊆ A (x+ y) , ∀x, y ∈ D (A) ;

λAx ⊆ A (λ x) , ∀λ ∈ C , x ∈ D (A) .

It is an easy consequence of the definition to note that Ax + Ay = A (x+ y)
for all x, y ∈ D (A) and λAx = A (λ x) for all x ∈ D (A), λ �= 0. It is also clear
that A is a MLO on E if and only if its graph ΓA is a linear subspace of E×E. A
MLO A is said to be closed if ΓA is a closed subspace of E × E. The collection
of all closed MLO’s in E will be denoted by ML (E) .

Definition 2. The inverse A−1 of a MLO is defined as:

(1) D
(
A−1

)
= R (A);

(2) A−1y = {x ∈ D (A) : y ∈ Ax} .
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It is obvious that (y, x) ∈ ΓA−1 if and only if (x, y) ∈ ΓA and hence A−1 ∈
ML (E) if A ∈ML (E) .

Denote by L (E) the space of all single-valued bounded linear operators on E.

Definition 3. The resolvent set ρ (A) of a MLO A is defined as the collection
of all λ ∈ C for which:

(1) R (λI − A) = D
(
(λI −A)−1

)
= E ;

(2) (λI −A)−1 ∈ L (E) .

Definition 4. The operator-valued function R (·, A) : ρ (A) → L (E)

R (λ, A) = (λI − A)−1

is called the resolvent of a MLO A.

Remark 5. If E is a real Banach space and A is a MLO on E , we may
consider the complexification Ẽ = E + iE and Ã defined by

Γ
Ã

= {(x, y1) + i (x, y2) : x ∈ D (A) , y1, y2 ∈ Ax}.

Then we set, by definition, ρ (A) = ρ(Ã).
Let U : R+ = [0,+∞) → L (E) be a C0-semigroup of operators, i.e., we

suppose the following conditions:

(i) U (t+ s) = U (t)U (s) , ∀t, s ∈ R+;
(ii) for each x ∈ E, the function t→ U(t)x is continuous on R+.

Notice that the usual condition U (0) = I is absent here. From assumption (i)
it follows that U (0) = P ∈ L (E) is a projection. In case P �= I the semigroup U
is called generalized (or degenerate).

It is easy to verify that there exist constants C ≥ 1 and γ ≥ 0 such that

(1) ‖U (t) ‖L(E) ≤ Ceγt, t ∈ R+.

Therefore, for each λ ∈ Cγ = {µ ∈ C : Reµ > γ} the bounded linear operator
R (λ) may be defined by the following Laplace transformation:

R (λ)x =
∫ ∞

0
U (τ) xe−λτdτ.

The function R : Cγ → L (E) satisfies Hilbert equality and it is the resolvent
of a certain (unique) A ∈ ML (E) . This MLO A is called the generator of the
generalized semigroup U.
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Let E∗ be the dual space of E. For A ∈ ML (E) , we denote by A∗ a MLO
on E∗ defined in the following way: for h, g ∈ E∗, the relation h ∈ A∗ (g) means
that g (y) = h (x) for all pairs (x, y) ∈ ΓA. It is easy to verify that A∗0∗ = {h ∈
E∗ : D (A) ⊂ Kerh} = D (A)

⊥
.

Consider the following assumptions on A ∈ML (E) .

(A1) functionals from A∗0∗ are separated by vectors of A0, i.e., for each h ∈ A∗0∗,
h �= 0∗ there exists y ∈ A0 such that h(y) �= 0;

(A2) the Hille–Yosida condition: there exist a constant C > 0 and γ ∈ R such that
Cγ ⊂ ρ (A) and

‖R (λ, A)n ‖L(E) ≤
C

(Reλ− γ)n
, n = 1, 2, ..., λ ∈ Cγ .

Remark 6. In [1] it was shown that each of the following conditions implies
(A1): (i) the space E is reflexive; (ii) dimA0 = dimA∗0∗ <∞.

The following result holds true (cfr. [1, 5]).

Theorem 7. Conditions (A1) and (A2) are necessary and sufficient for A ∈
ML (E) to be the generator of a C0-semigroup U. Moreover, the semigroup U is
generalized iff A is not single-valued. In this case the space E may be represented
as E = E1 ⊕E1, where E0 = D (A), E1 = A0 and the restriction of U (t) on E 0

defines the usual C0-semigroup on E0 whereas the restriction on E1 vanishes.

2.2. Multivalued maps and measures of noncompacness

Let us recall some notions (see, e.g., [3, 12]). Let X be a metric space; E
be a normed space; P (E) denote the collection of all nonempty subsets of E . By
symbols K(E) and Kv(E) we denote the collections of all nonempty compact and,
respectively, compact convex subsets of E .

Definition 8. A multivalued map (multimap) F : X → K(E) is said to be
upper semicontinuous (u.s.c.) if F−1(V ) = {x ∈ X : F (x) ⊂ V } is an open
subset of X for every open V ⊂ E .

Definition 9. A multivalued map (multimap) F : X → K(E) is said to be
compact if its range F (X) is a relatively compact subset of E . If a u.s.c. multimap
F is compact on bounded subsets of X it is called completely continuous.

Definition 10. Let E be a normed space; (A,≥ 0) a (partially) ordered set. A
function β : P (E) → A is called a measure of noncompactness (MNC) in E if

β(coΩ) = β(Ω)
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for every Ω ∈ P (E).
A MNC β is called:

(a) monotone if Ω1 ⊆ Ω2 implies β(Ω1) ≤ β(Ω2);
(b) nonsingular if β(Ω ∪ {a}) = β(Ω) for every a ∈ E , Ω ∈ P (E);
(c) invariant with respect to union with compact sets if β(Ω ∪ K) = β(Ω) for

every Ω ∈ P (E), K is relatively compact in E ;
(d) invariant with respect to reflection through the origin if β(−Ω) = β(Ω) for

every Ω ∈ P (E);
(e) real if A = [0,+∞] with natural ordering.

If A is a cone in a Banach space, we say that the MNC β is:
(f) algebraically semiadditive if β(Ω 0 + Ω1) ≤ β(Ω0) + β(Ω1) for every Ω0,

Ω1 ∈ P (E);
(g) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.

As an example of the MNC possessing all these properties, we may consider
the Hausdorff MNC:

χ(Ω) = inf{ε > 0 : Ω has a finite ε - net }.

Let I ⊆ R be any closed interval. The examples of real measures of noncompactness
defined on the space of continuous functions C(I ;E) with the values in a Banach
space E are presented by the following characteristics:

(1) modulus of equicontinuity:

modC(Ω) = lim
δ→0

sup
x∈Ω

max
|t1−t2|<δ

‖x(t1) − x(t2)‖E.

(2) modulus of fiber noncompactness:

ϕ(Ω) = sup
t∈I

χE(Ω(t)),

where Ω(t) = {x(t) : x ∈ Ω}.
Let E and E ′ be normed spaces with MNC β and β ′ respectively; N : E → E′

a continuous linear operator.

Definition 11. The operator N is said to be (β, β ′)-bounded provided there
exists C ≥ 0 such that

β′(NΩ) ≤ Cβ(Ω) for all bounded sets Ω ⊂ E .
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The value ‖N‖(β,β′) which is equal to the infimum of all such coefficients is called
the (β, β′)-norm of operator N .

In particular, if E = E ′ and β = β′ then ‖N‖(β,β) is denoted by ‖N‖(β) and
called the β-norm of the operator N . For the evaluation of the χ-norm of the
operator N we can apply the formula

‖N‖(χ) = χ(NS) = χ(NB),

where S and B are the unit sphere and the unit ball in E , respectively. It is easy to
see that

‖N‖(χ) ≤ ‖N‖.
Definition 12. A multimap F : X ⊆ E → K(E) is called condensing w.r.t. a

MNC β in E (or β-condensing), if for every Ω ⊆ X , that is not relatively compact,
we have

β(F (Ω)) �≥ β(Ω).

Let U be an open set in E , K ⊆ E a convex closed set, such that UK = U ∩K
is nonempty, bounded and β a monotone nonsingular MNC in E .

LetF : UK → Kv(K) be compact or β-condensing, u.s.c. multimap. Moreover,
let x /∈ F(x) for all x ∈ ∂UK, where UK and ∂UK denote, respectively, the closure
and the boundary of the set UK in the relative topology of the space K. In this
situation for the corresponding multifield i− F the characteristic

degK(i− F , UK),

called the relative topological degree, having all standart properties, is defined (see,
e.g., [3, 12]). In particular, the difference of this characteristic from zero implies
the existence of at least one fixed point x ∈ UK, x ∈ F(x).

We will use the following notion. Let E be a Banach space; for T > 0 by the
symbol L1([0, T ];E) we will denote the space of all Bochner summable functions.

Definition 13. The sequence {fn}∞n=1 ⊂ L1([0, T ];E) is said to be semicom-
pact if it is integrably bounded and the set {fn(t)}∞n=1 ⊂ E is relatively compact
for a.e. t ∈ [0, T ].

Theorem 14. (see, e.g. [12]). Every semicompact sequence is weakly compact
in the space L1([0, d];E).

2.3. Phase space

We will employ the axiomatical definition of the phase space B, introduced
by J.K.Hale and J.Kato (see [8, 10]). The space B will be considered as a linear
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topological space of functions mapping (−∞, 0] into a Banach space E endowed
with a seminorm ‖ · ‖B .

For any function x : (−∞; T ] → E and for every t ∈ (−∞; T ], xt represents
the function from (−∞, 0] into E defined by

xt(θ) = x(t+ θ), θ ∈ (−∞; 0].

We will assume that B satisfies the following axioms.

(B1) If x : (−∞; T ] → E is continuous on [0; T ] and x0 ∈ B, then for every
t ∈ [0; T ] we have

(i) xt ∈ B;
(ii) function t �→ xt is continuous;
(iii) ‖xt‖B ≤ K(t) sup

0≤τ≤t
‖x(τ)‖ + N (t)‖x0‖B, where K,N : [0;∞) → [0;∞)

are independent of x, K is strictly positive and continuous, and N is locally
bounded.

(B2) There exists l > 0 such that

‖ψ(0)‖E ≤ l‖ψ‖B
for all ψ ∈ B.

Let us mention that under above hypotheses the space C00 of all continuous
functions from (−∞, 0] into E with compact support is a subset of each phase
space B ([10], Proposition 1.2.1). We will assume, additionally, that the following
hypothesis holds true.

(BC1) If a uniformly bounded sequence {ψn}+∞
n=1 ⊂ C00 converges to a function

ψ compactly (i.e. uniformly on each compact subset of (−∞, 0]), then ψ ∈ B and
lim

n→+∞ ‖ψn − ψ‖B = 0.

The hypothesis (BC1) yields that the Banach space BC = BC((−∞, 0];E) of
bounded continuous functions is continuously imbedded into B. More exactly, the
following proposition holds true.

Theorem 15. ([10], Proposition 7.1.1.)

(i) BC ⊂ C00, where C00 denotes the closure of C00 in B;
(ii) if a uniformly bounded sequence {ψn} in BC converges to a function ψ

compactly on (−∞, 0] then ψ ∈ B and lim
n→+∞ ‖ψn − ψ‖B = 0;
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(iii) ‖ψ‖B ≤ L‖ψ‖BC, ψ ∈ BC for some constant L > 0.

At last, we will assume the following.

(BC2) If ψ ∈ BC and ‖ψ‖BC �= 0, then ‖ψ‖B �= 0.

This hypothesis implies that the space BC endowed with ‖ · ‖B is a normed
space. We will denote it by BC.

We may consider the following examples of phase spaces satisfying all above
properties.

(1) For ν > 0 let B = Cν be a space of continuous functions ϕ : (−∞; 0] → E

having a limit lim
θ→−∞

eνθϕ(θ) with

‖ϕ‖B = sup
−∞<θ≤0

eνθ‖ϕ(θ)‖.

(2) (Spaces of “fading memory”). Let B = Cρ be a space of functions ϕ :
(−∞; 0] → E such that

(a) ϕ is continuous on [−r; 0], r > 0;
(b) ϕ is Lebesgue measurable on (−∞; r) and there exists a positive Lebesgue

integrable function ρ : (−∞;−r) → R
+ such that ρϕ is Lebesgue integrable

on (−∞; r); moreover, there exists a locally bounded function P : (−∞; 0] →
R

+ such that, for all ξ ≤ 0, ρ(ξ+ θ) ≤ P (ξ)ρ(θ) a.e. θ ∈ (−∞;−r). Then,

‖ϕ‖B = sup
−r≤θ≤0

‖ϕ(θ)‖ +

−r∫
−∞

ρ(θ)‖ϕ(θ)‖dθ.

A simple example of such a space is given by ρ(θ) = eµθ, µ ∈ R.

3. BOUNDARY VALUE PROBLEM FOR A DEGENERATE FUNCTIONAL DIFFERENTIAL
INCLUSION WITH INFINITE DELAY

Let M : D (M) ⊆ E → E be a bounded linear operator and L : D (L) ⊆
E → E a closed linear operator in a real separable Banach space E satisfying the
condition

(ML) D (L) ⊆ D (M) and M (D (L)) ⊆ R (M) .

We will consider the following general boundary value problem for a degenerate
(Sobolev type) differential inclusion in E

(2)
dMy (t)
dt

∈ Ly(t) + F (t,Myt), t ∈ [0, T ]



Topological Degree Methods in Boundary Value Problems 1835

(3) Q (My) ∈ S (My) .

With the change x (t) = My (t) we can rewrite problem (2), (3) into the fol-
lowing form

(4)
dx (t)
dt

∈ Ax(t) + F (t, xt), t ∈ [0, T ]

(5) Q (x) ∈ S (x) ,

where A = LM−1. It is clear that A ∈ ML (E) if M is not invertible and that
D (A) = M (D (L)) .

It will be supposed that:

(A) A = LM−1 satisfies conditions (A1) , (A2) of Section 2.1.

It should be mentioned that to guarantee condition (A2) , it is sufficient to assume
that:

(i) [Ly,My] ≤ γ‖My‖2, ∀y ∈ D (L) for some γ ∈ R, where [, ] is a semi-scalar
product in E and

(ii) R (λ0M − L) = E for some λ0 > γ. (See [1]).

In accordance with [1, 14] we give the following notion.

Definition 16. A function y : (−∞, T ]→E is a mild solution of the differ-
ential inclusion (2) if the function x (t) = My (t) , t ∈ [0, T ] has the form

(6) x (t) = U (t) x (0) +
∫ t

0
U (t− s) f (s) ds,

where U is the generalized semigroup generated by A and f ∈ L1 ([0, T ] ;E) is a
selection of the multifunction t � F (t, xt) .

The definition is motivated by the following facts. At first, following [5],
Theorem 2.6, it is easy to verify that given a function f ∈ L1 ([0, T ] ;E) every
Caratheodory solution to the problem

dx (t)
dt

∈ Ax (t) + f (t)

x (0) = x0 ∈ D (A)

is necessarily of the form

x (t) = U (t)x0 +
∫ t

0
U (t− s) f (s) ds .
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Further, the function t → U (t)x0 +
∫ t
0 U (t− s) f (s) ds takes its values in the

subspace D (A) = M (D (L)) ⊆ R (M) (see condition (ML) ). At last, in the
non-degenerate case M = I , the given definition agrees with the notion of mild
solution for a semilinear differential inclusion (see, e.g., [12]).

We will also say that a function x satisfying integral equation (6) is a mild
solution of inclusion (4).

In the sequel, we consider the phase space B in functions ψ : (−∞, 0] → E0,
with E0 = D (A) = M (D (L)), satisfying all axioms in Section 2.3.

We will assume that the multimap F : [0, T ]×B → Kv(E) obeys the following
conditions:
(F1) for each ψ ∈ BC, the multifunction F (·, ψ) : [0; T ] → Kv(E) admits a

measurable selection;

(F2) for a.e. t ∈ [0; T ], the multimap F (t, ·) : BC → Kv(E) is u.s.c.;
(F3) for each nonempty, bounded set Ω ⊂ BC, there exists a function αΩ ∈

L1
+[0, T ] such that

‖F (t, ψ)‖E := sup{‖z‖E : z ∈ F (t, ψ)} ≤ αΩ(t)

for a.e. t ∈ [0, T ], ψ ∈ Ω;
(F4) there exists a function k ∈ L1

+[0, T ] such that for each nonempty bounded set
Ω ⊂ BC

χ(F (t,Ω)) ≤ k(t)ϕ(Ω)

for a.e. t ∈ [0, T ], where χ is the Hausdorff MNC in E and ϕ(Ω) is the
modulus of fiber noncompactness of the set Ω.

By the symbol C((−∞; T ];E0) we wll denote the space of bounded continuous
functions x : (−∞; T ] → E0 endowed with the norm

‖x‖C = ‖x0‖B + ‖x |[0;T ] ‖C ,

where the last norm is the usual sup-norm in the space C([0; T ];E0).

For operators from boundary condition (3) we assume that:

(Q) Q : C((−∞; T ];E0) → BC is a linear bounded operator;

(S) the multimap S : C((−∞; T ];E0) → Kv(BC) is completely continuous,
i.e., it is u.s.c. and transforms bounded sets into relatively compact ones.
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From conditions (F1) − (F3) and (B1) it follows that the superposition multi-
operator PF : C((−∞; T ];E0) → P (L1([0, T ];E)), given by

PF (x) = {f ∈ L1([0, T ];E) : f(t) ∈ F (t, xt) a.e. t ∈ [0, T ]}
is well-defined (see, e.g., [4, 12]).

Definition 17. The linear operator G : L1([0, T ];E) → C((−∞; T ];E0),
defined as

Gf(t) =


t∫

0

U (t− s) f (s) ds, t ∈ [0; T ];

0, t ∈ (−∞; 0]

is called the Cauchy operator.
Following [12], one may verify that the Cauchy operator has the following

properties.

Theorem 18. For every semicompact sequence {fn}∞n=1 in the space L1([0, T ];
E) the sequence {Gfn}∞n=1 is relatively compact in C((−∞, T ];E0).

Theorem 19. The composition G ◦ PF : C((−∞, T ];E0) → Kv(C((−∞, T ];
E0)) is u.s.c. with compact convex values.

Denote by C0 the subspace of C((−∞; T ];E0), consisting of functions of the
form

x(t) = U (t) x (0) , t ∈ [0, T ]

and denote by Q0 the restriction of Q to C0.

Our main assumption on boundary operators Q and S will be the following.
(QS) There exists a continuous linear operator Λ : BC → C0 such that

(I − Q0Λ)(z − QGf) = 0 for each x ∈ C((−∞, T ];E0), z ∈ S(x) and
f ∈ PF (x).

To present an example of the realization of condition (QS), consider the linear
operator r : BC → C0 defined in the following way:

(rψ)(t) =

{
ψ(t), t ∈ (−∞, 0];

U (t)ψ (0) , t ∈ [0; T ].

Notice that from condition (B2) it follows that the operator r is continuous.

Assume that
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(Q̃) The linear continuous operator Q̃ : BC → BC defined as Q̃ψ = Q(rψ) has
the continuous inverse Q̃−1.

It is easy to see that under condition (Q̃) the operator Λ may be presented in
the following form:

(7) Λψ = r[Q̃−1(ψ)].

Supposing that condition (QS) is fulfilled, consider the multioperator
Γ : C((−∞; T ];E0) → Kv(C((−∞; T ];E0))

defined in the following way:

Γ(x) = ΛS(x) + (I − ΛQ)GPF (x).

From Theorem 19 and the conditions posed on the operators Q, S, and Λ it follows
that the multioperator Γ is u.s.c. and has convex compact values. Also, it is easy
to see that Γ is a bounded operator, i.e., it takes bounded sets into bounded ones.
Describe its subsequent properties.

Theorem 20. Fixed points of the multioperatorΓ are mild solutions of problem
(4)− (5) and hence they define mild solutions of problem (2)− (3).

Proof. Let x ∈ Γ(x). It means that there exist z ∈ S(x), f ∈ PF (x) such that

x = Λz + (I − ΛQ)Gf.

Since the function x may be represented in the form

x = Λ(z −QGf) +Gf

we obtain that x satisfies integral equation (6).
Let us verify the fulfilment of the boundary condition. Using condition (QS)

we get

Qx = Q0Λz + Q (I − ΛQ)Gf = z − (z −Q0Λz) + QGf + Q0ΛQGf
= z − (I −Q0Λ) (z −QGf) = z ∈ Sx.

Consider the MNC ν on the space C((−∞; T ];E0) with values in the cone R
2
+:

ν(Ω) = (ϕC(Ω),modC(Ω)),

where ϕC is the modulus of fiber noncompactness in the space C((−∞; T ];E0).
Notice that

ϕC(Ω) = sup
0≤t≤T

ϕBC(Ωt),
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where Ωt ⊂ BC, Ωt = {xt : x ∈ Ω} and, for t ∈ [0, T ] :

ϕBC(Ωt) = sup
−∞≤τ≤0

χ(Ωt(τ)) = sup
−∞≤τ≤0

χ(Ω(t+ τ)) = sup
−∞≤τ≤t

χ(Ω(τ)),

where χ is the Hausdorff MNC in E0.

Denote by C̃ the subspace of C((−∞; T ];E0) consisting of functions vanishing
on (−∞; 0]. It is clear that C̃ is isomorphic to the space C([0, T ];E0).

Theorem 21. Let the following conditions hold:
(H1) there exists b ≥ 0 such that

ϕBC(QΩ) ≤ bϕC(Ω)

for each bounded set Ω ⊂ C̃;
(H2) for each relatively compact sequence {zn} ⊂ C̃, the sequence {ΛQzn} is

equicontinuous;
(H3) there exists a function h ∈ L1

+([0, T ]) such that

‖U (t) ‖(χ) ≤ h(t);

(H4) (1+‖Λ‖(ϕBC,ϕC)b) sup
0≤t≤T

t∫
0

h(t−s)k(s)ds = µ < 1, where k(·) is the function
from condition (F4).

Then the multioperator Γ is ν-condensing on bounded subsets of the space C((−∞;
T ];E0).

Proof. Assume that Ω is a bounded subset of C((−∞; T ];E0) for which we
have

ν(ΓΩ) ≥ ν(Ω).

Let us show that the set Ω is relatively compact.
From the above inequality it follows that

ϕC(ΓΩ) ≥ ϕC(Ω).

Taking arbitrary t ∈ [0; T ] and τ ∈ [−∞, t], let us estimate χ(ΓΩ(τ)). Since the
set ΛS(Ω) is relatively compact, it is sufficient to estimate the value

χ((I − ΛQ)GPF (Ω)(τ)).

We obtain

χ(ΛQGPF (Ω)(τ)) ≤ ϕC(ΛQGPF (Ω)) ≤ ‖Λ‖(ϕBC,ϕC)ϕBC(QGPF (Ω))
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≤ ‖Λ‖(ϕBC,ϕC)bϕC(GPF (Ω)) = ‖Λ‖(ϕBC,ϕC)b sup
0≤t≤T

χ(GPF (Ω)(t)).

To estimate χ(GPF (Ω)(t)), notice that for 0 ≤ s ≤ t, we have

χ(U (t− s)F (s,Ωs)) ≤ ‖U (t− s) ‖(χ)χ(F (s,Ωs))

≤ h(t− s)k(s)ϕBC(Ωs) ≤ h(t− s)k(s)ϕC(Ω).

Then, applying the theorem on χ-estimation of a multivalued integral (see [12],
Theorem 4.2.3) we obtain

χ(GPF (Ω)(t)) ≤
t∫

0

h(t− s)k(s)ds · ϕC(Ω).

Using now the algebraic semiadditivity of the MNC χ, we have

χ((I − ΛQ)GPFΩ(τ)) ≤ (1 + ‖Λ‖(ϕBC,ϕC)b) sup
0≤t≤T

t∫
0

h(t− s)k(s)ds · ϕC(Ω)

= µ · ϕC(Ω).

Then
ϕC(ΓΩ) = sup

0≤t≤T
sup

−∞≤τ≤t
χ(ΓΩ(τ)) ≤ µ · ϕC(Ω).

We obtain
ϕC(Ω) ≤ ϕC(ΓΩ) ≤ µ · ϕC(Ω),

and therefore

(8) ϕC(Ω) = 0.

Let us demonstrate now that the set Ω is equicontinuous. Notice that the relation

modC(Ω) ≤ modC(ΓΩ)

implies that it is sufficient to prove the equicontinuity of the set ΓΩ. In turn, it is
equivalent to the equicontinuity of each sequence

{gn} ⊂ (I − ΛQ)GPF (Ω).

For any such sequence {gn}, consider sequences {xn} ⊂ Ω and {fn}, fn ∈ PF (xn),
such that

gn = (I − ΛQ)Gfn, n = 1, 2, ... .
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From condition (F3) it follows that the sequence of functions {fn} is integrably
bounded. Equality (F3) implies that sequence {xn} satisfies the relation

χ({xn(t)}) = 0, ∀t ∈ [0, T ]

and then, from condition (F4) we obtain that

χ({fn(t)}) = 0 a.e. t ∈ [0, T ],

i.e., the sequence {fn}is semicompact. From Theorem 18 it follows that the se-
quence {Gfn} ⊂ C̃ is relatively compact and hence equicontinuous. Applying
condition (H2) we obtain that the sequence {gn} is equicontinuous.

From the Arzela-Ascoli theorem (see, e.g., [13]) it follows that the set Ω is
relatively compact w.r.t. the topology of uniform convergence on compact subsets
of (−∞; 0]. But then Theorem 15 yields the relative compactness of the set Ω in
the space C((−∞; T ];E0) also.

Remark 22. Notice that conditionH(4) obviously holds in each of the follow-
ing cases: (i) k ≡ 0, i.e., the multimap F is completely continuous in the second
argument; (ii) h ≡ 0, i.e., the semigroup U is compact. In each of these cases the
multioperator Γ is completely continuous.

So, the properties of the multioperator Γ open the possibility to apply the topo-
logical degree theory for its study. We can formulate the following general principle
for the existence of mild solutions of problem (2)-(3).

Theorem 23. Under above conditions, let an open bounded set Ω ⊂ C((−∞;
T ];E0) does not have mild solutions of problem (4)-(5) on its boundary ∂Ω and let

deg(i− Γ,Ω) �= 0.

Then the set of mild solutions of problem (2)-(3) is non empty.

As the example of application of this principle consider he following assertion.

Theorem 24. Under above conditions, let us assume, in addition, that
(H5) there exists a sequence of functions ωn ∈ L1

+[0; T ], n = 1, 2, ... such that:

lim
n→∞

1
n

T∫
0

ωn(t)dt = 0;

and
sup

‖ϕ‖B≤n

‖F (t, ϕ)‖ ≤ ωn(t) for a.e. t ∈ [0; T ];
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(H6) the following asymptotic condition holds:

lim inf
‖x‖C→∞

‖S(x)‖B
‖x‖C = 0.

Then the set of mild solutions to problem (2) − (3) is non empty.

Proof. Let us show that there exists a closed ball Br ⊂ C((−∞; T ];E0) such
that Γ(Br) ⊆ Br .

Supposing the contrary and using the boundedness of the multioperator Γ,
we may find a sequence of integers qn → ∞ and sequences {xn}, {zn} in
C((−∞; T ];E0) such that zn ∈ Γ(xn), ‖xn‖C ≤ qn, ‖zn‖C > qn, and ‖xn‖C → ∞.
Then we obtain

‖zn‖C ≤ ‖ΛSxn‖C + ‖Gfn‖C + ‖ΛQGfn‖C
≤ ‖Λ‖‖Sxn‖B + (1 + ‖ΛQ‖)‖Gfn‖C([0,T ];E),

where fn ∈ PF (xn).
Using estimate (1), we obtain

‖zn‖C ≤ ‖Λ‖‖Sxn‖B + CeγT (1 + ‖ΛQ‖)
T∫

0

‖fn(s)‖ds

yielding

1 <
‖zn‖C
qn

≤ ‖Λ‖‖Sxn‖B
qn

+ CewT (1 + ‖ΛQ‖) 1
qn

T∫
0

‖fn(s)‖ds

≤ ‖Λ‖‖Sxn‖B
‖xn‖C + CewT (1 + ‖ΛQ‖) 1

qn

T∫
0

‖fn(s)‖ds,

contrary to assumptions (H5) and (H6).
It remains to apply the fixed point theorem for condensing multimaps (see, e.g.,

Theorem 1.2.70 [3] or Corollary 3.3.1 [12]).

4. SOME PARTICULAR CASES

4.1. Condition (Q̃)

It is easy to see that the (ϕBC, ϕC)-norm of the operator r admits the following
estimate :

‖r‖(ϕBC,ϕC) ≤ R = max{1, sup
0≤t≤T

h(t)}.
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So, under condition (Q̃) we obtain the following estimate for the (ϕBC, ϕC)-norm
of the operator Λ :

‖Λ‖(ϕBC,ϕC) ≤ R‖Q̃−1‖(ϕBC).

It means that in this case condiion (H4) has the form

(H4′) (1 + R‖Q̃−1‖(ϕBC)b) sup
0≤t≤T

t∫
0

h(t− s)k(s)ds < 1.

4.2. Cauchy problem

In this case boundary condition (3) may be written in the following form

(9) QMy = u,

or, equivalently,

(10) Qx = u,

where Qx = x0, u ∈ BC is a given function. Then, obviously, Sx ≡ u, b = 0.
For each sequence {zn} ⊂ C̃ the sequence {ΛQzn} is constant and its members
equal zero, so condition (H2) is fulfilled. Further, the operator Q̃ is identity and
condition (H4) takes the following form:

(H4′′) sup
0≤t≤T

t∫
0

h(t− s)k(s)ds < 1.

From Theorem 24 we deduce the following result.

Theorem 25. Under conditions (A), (F1), (F2), (F4), (H3), (H4′′), and
(H5) there exists a mild solution of Cauchy problem (2)-(3).

4.3. Periodic problem

(11) QMy = 0,

or, equivalently,

(12) Qx = 0,

where Qx = xT − x0. Notice that from condition (B1)(iii) it follows that Q is a
continuous linear operator.

We will assume the following condition:

(A3) the linear operator U (T ) − I is invertible on E0.
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Taking into account that Sx ≡ 0, it is sufficient to construct the operator Λ
on the subspace QC̃ ⊂ BC proceeding from formula (7). Notice that in our case
the subspace QC̃ consists of continuous functions ψ : (−∞, 0] → E vanishing on
(−∞,−T ]. It is natural enough to suppose that

(QC̃) if a set Ψ ⊂ QC̃ is bounded w.r.t. the norm ‖·‖B then it is uniformly bounded.

Now, for a given function ψ ∈ QC̃, let us find a function ξ ∈ BC such that
Q̃ξ = ψ, where, as earlier, Q̃ξ = Q(rξ). We have

(13) (rξ)T − (rξ)0 = (rξ)T − ξ = ψ,

implying
ξ(0) = (U (T ) − I)−1ψ(0),

and further, for θ ∈ [−T, 0] :

(14) ξ(θ) = U (T + θ) ξ(0)− ψ(θ) = U (T + θ) (U (T ) − I)−1ψ(0)− ψ(θ).

If now θ < −T, then from (13) we obtain

(rξ)T (θ) − ξ(θ) = ξ(T + θ) − ξ(θ) = 0,

i.e., the function ξ is T -periodic on (−∞, 0] and its values are completely determined
by formula (14). Thus we constructed the operator inverse to Q̃ on QC̃.

Further, let a certain set of functions Ψ ⊂ QC̃ be bounded w.r.t. ‖ · ‖B. Then,
applying property (QC̃), we see, from formula (14), that the corresponding family
of functions Ξ = {ξ = Q̃−1ψ : ψ ∈ Ψ} is uniformly bounded on (−∞, 0], and
therefore, by Theorem 15 (iii) it is bounded in the space BC also. It means that the
operator Q̃−1 is continuous on QC̃.

The operator Λ on QC̃ may be presented in the explicit form:

(Λψ)(t) =

{ [
U (T + t) (U (T ) − I))−1ψ (0)− ψ (t)

]
T
, t ∈ [−∞, 0];

U (t) (U (T ) − I)−1ψ(0), t ∈ [0; T ],

where by [·]T we denote the T -periodic extension to [−∞, 0] of a function given
on [−T, 0].

It is easy to see that condition (H1) is fulfilled with the constant b = 1.
Further, let {zn} ⊂ C̃ be a relatively compact sequence. Then the sequence

{ψn} ⊂ QC̃, ψn = Qzn = (zn)T , is equicontinuous and {ψn(0)} is a relatively
compact subset of E0. But then, from the construction of the operator Λ, we see that
the sequence {Λψn} is also equicontinuous and hence condition (H2) is fulfilled.
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Now, notice that the (ϕBC)-norm of the operator Q̃−1 on QC̃ may be estimated
in the following way:

‖Q̃−1‖(ϕBC) ≤ sup
0≤t≤T

h(t) · ‖ (U (T )− I)−1 ‖(χ) + 1.

Then condition (H4′) may be written in the following form:

(H4′′′) [1+R( sup
0≤t≤T

h(t) · ‖(U (T )− I)−1‖(χ) +1)] · sup
0≤t≤T

t∫
0

h(t− s)k(s)ds < 1.

The multioperator Γ in the periodic problem has the form

Γ(x) = (I − ΛQ)GPF (x).

To present it in the explicit form, notice that for f ∈ PF (x) we have

(QGf)(t) =

T+t∫
0

U (T + t− s) f(s)ds, t ∈ [−T, 0].

So, Γ(x) consists of all functions z ∈ C((−∞; T ];E0) which, for f ∈ PF (x), have
the form

z(t) =



 T+t∫
0

U (T + t− s) f(s)ds

−U (T + t) (U (T )− I)−1

T∫
0

U (T − s) f(s)ds


T

, t ∈ (−∞, 0] ;

t∫
0

U (t− s) f(s)ds− U (t) (U (T ) − I)−1

T∫
0

U (T − s) f(s)ds,

t ∈ [0, T ]

(cfr. [11, 12]).
The application of Theorem 24 yields the following assertion.

Theorem 26. Under conditions (A), (A3), (F1), (F2), (F4), (H3), (H4′′′),
(H5), and (QC̃), the periodic problem (2), (11) has a mild solution.
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