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A SCHUR-NEWTON ALGORITHM FOR ROBUST POLE
ASSIGNMENT OF DESCRIPTOR SYSTEMS

Tiexiang Li and Eric King-wah Chu

Abstract. We propose an algorithm for the pole assignment problem for descriptor
systems with proportional and derivative state feedback. The algorithm is the
first of its kind, making use of the Schur form and minimizing the departure
from normality of the closed-loop poles by Newton’s method. Three illustrative
examples are given.

1. INTRODUCTION

We consider the robust pole assignment of the descriptor system (RPAP_DS)
(1) EXx(t) = Ax(t) + Bu(t)

where z(t) € R", u(t) € R™, A, B and F are real matrices of appropriate dimensions
with E possibly singular and \z(t) = &(t) (or z(t+ 1)) for a continuous- (or discrete-)
time system. We assume that the pencil (A, E) is regular or det(cA — BE) # 0,
and that the system (A, E, B) is controllable [24], i.e. rank(aA — SE,B) = n =
rank(E, B), for arbitrary a, 3 € C. Also consult [2, 4, 11] on the issue of controllability
and the related problem of regularization.

By robust pole assignment (RPAP), we mean to seek feedback matrices F' and G so
that the closed-loop pencil (A+BF, E+BG) possesses a prescribed desirable spectrum.
It is equivalent to modifying the system in (1) with proportional and derivative state
feedback ©u = Foz — G&. It is well-known [24] that our problem is solvable when the
control system (1) is controllable.

There have been many previous attempts in tackling RPAPs. For ordinary systems,
please consult [3, 6, 8, 16, 17, 21] and the references therein. Second-order systems
have been considered in [7, 9] and descriptor systems in [2, 5, 10, 23, 24] (some with
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only proportional feedback). Robustness is optimized directly in [6-10, 15-17, 23, 24]
and indirectly in [3, 5]. For ordinary systems, a method in [16] has been implemented
in the MATLAB command place [18]. The Schur form [12] has been utilized in
pole assignment problems in [3, 5, 8, 17, 21, 22]. However, robustness is not directly
optimized in [3, 5] and the Schur form is not directly computed in [21, 22]. A Schur
form optimizing the robustness measure of the departure from normality for ordinary
systems is computed directly in [8] in a non-iterative manner. Only suboptimality is
achieved in [8], due to the freedom in the first Schur vector, but full optimality is
possible after a Newton refinement step [17].

In this paper, our methods for descriptor systems is a generalization of the ones in
[8, 17] for ordinary systems. This Schur-Newton algorithm represents the only known
method which minimizes the departure from normality of the closed-loop system by
computing directly the closed-loop Schur form.

Lastly, there are many concepts of controllability for descriptor systems and many
different possibilities in measuring robustness. Various optimization techniques can be
applied to these robustness measures, as in [23, 24]. Comparing methods under different
assumptions or optimizing different robustness measures is difficult, if at all possible.
Optimizing robustness measures blindly usually runs into slow convergence, the lack
of a good feasible starting value or other related problems. The main contribution of
this paper is the availability of a good feasible starting value, from the Schur algorithm
in Section 3, which can be refined efficiently by the Schur-Newton refinement in
Section 4. The numerical examples in Section 5 show much promise for the Schur-
Newton algorithm but more thorough testing will have to be done.

2. DEPARTURE FROM NORMALITY

We shall quote the departure from normality measure for generalized eigenvalue
problems [19], generalizing the similar measure for ordinary systems [1, 12, 14, 20].

Definition 2.1. Let {A, B} be a regular matrix pair and U4 gy be the set of all
pairs of transformations {Z, U} which satisfy the following conditions:
(i) Z,U € C™*", Z is nonsingular and U is unitary;
(i) Z='AU and Z~'BU are both upper triangular; and
(iii) [(Z7YAU)u? + [(Z7'BU)u|> = 1 (i = 1,---,n) where (A);; is the (i,7)
element of A.

Let (Z,U) € Ugapy and diag(A) € C" denote the diagonal matrix sharing the
diagonal of A. Denote

w(Z,U) = ||(Z AU — diag(Z ' AU), Z7'BU — diag(Z ' BU)||»
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and

Ay(A,B) = inf w(Z,U0).
2( ) {Z,U}EU{A’B} ( )

Then As(A, B) is called the departure from normality measure of {A, B}.

Definition 2.2. Let 0(A,B) = {(aj, 5;)} denote the spectrum of the pencil
aA — BB and let (o, B8) € o(C, D). The spectral variation of (C, D) from (A, B)
equals

s4,B)(C, D) = %%%{S(a,ﬁ)}v S(a,8) = mzin{\aﬁz‘ — B}

Theorem 2.1. (Henrici Theorem [19]). Let {A, B} and {C, D} be regular pairs
of the same dimension, Ao( A, B) is the departure from normality measure of { A, B},
and suppose Ao(A,B) # 0. Let W = (A, B) and W = (C, D), then

n —~
S(A,B)(C, D) < M[l + A2(A, B)] dQ(W, W)

where day(W, W) = || sin O(W, W)Hg denotes the distance between W and W,

As(A, B)
[1+ Ag(A, B) do(W, W)’

and g(n) is the unique nonnegative root of g+ g2 +---+g* =n (n > 0).

Based on Theorem 2.1, we shall minimize the departure from normality of the
closed-loop matrix pencil in the effort to control the robustness of the closed-loop
spectrum or system.

2. SCHUR ALGORITHM

Multiplying the nonsingular matrix Z~! and orthogonal matrix X on the both sides
of A+ BF and F + BG, we get

Z YA+ BF)X =Dy, +N,, Z 'E+BG)X = Dg+ Nj,
or
2) (A4 BF)X = Z(Dy + N.), (E+ BG)X = Z(Dg+ Np),

where D, Dg are diagonal, and N, Ng are straightly upper triangular.
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Assuming without loss of generality that the feedback matrix B has full rank and
possesses the QR decomposition

B =[Q1, Q2] [}BB] = Q1Rp,

then Q) B =0 and Bf = R;'Q].
Pre-multiplying the equations in (2), respectively, by @ and BT, we obtain

() QiAX —QJZDy— Q3 ZNa =0, QiEX —Q3ZDs— Qg ZNs=0,
and
(4) F=Ryp'Q{[Z(Da+Na)X" — 4], G=R;'Q{[Z(Ds+ Ng)X' - EJ.

For a given eigenvalue pairs {D,, Dgs}, we can select Z, X from (3) then obtain the
solution to the pole assignment problem using (4).

0 IO) (where C, D need not to be square),

X =[x, 29, -+, 2] € R, v(X)=[z],29,--,2,]", v(AXB)=(B"®
A) v(X),

Vec(I) = [1]0,1]0,0,1|---]0,---,0,1]T € R™"+1)/2=¢_ Note that both v(-) and
Vec(+) stack columns of matrices but the latter discards zeroes for strictly upper trian-
gular matrices.

In this paper, we denote C' ® D =

3.1. Real Eigenvalues

Let us first consider the case when all the closed-loop eigenvalues are real, with
the closed-loop system matrix pair (A., E.) = (A+ BF,E + BG) = (ZA,X",Z
AsX ") in Schur form. Here we have (Ay,Ag) = (Do + Na, Dg + Ng), with
D, = diag{ai, - ,a,}, Dg = diag{31, - -, Bn} being real, No = [1, 72, - , ),
Ng = [61,62, e ,én} being straightly upper triangular and nilpotent, and 7; =
s mj—14) s ¢ = [Cijr -1, are the vectors constructed from 7); and ;
with the zeroes at the bottom deleted (thus 71, (; are degenerate and 7, (; € R,
The Schur vector matrix X is orthogonal. The case when some of the eigenvalues of
A are complex will be considered later. From (3), for j = 1,2,-- -, n, we then have

Jj—1 Jj—1

Qs Az — 0jQg 2 — Qg anjzk =0=Qy Ez; — 3;Qs 2 — Qg ZijZk-
k=1 =1

With X_j = [z1,--- ,xj1], Z-j = [21, -+, zj—1] (J > 2), we can select z;, z;, 1;
and ¢; from

Qs Azj — Q3 2j — Q3 Z—jnj = 0 = Q3 Exj — Q3 2 — Q3 Z_iG;.
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In order to obtain the Schur decomposition (A, E.) = (A+BF, E+BG) = (ZA,X T,
ZAgX T) with X being unitary and Z being nonsingular, we select X jjxj =0=

ijzj and ||z;|| = 1. Consequently, we select z;, z;, n; and (; from
KA [ Q1A —Q; -QiZ; 0 ]
T T T
“j QB —f;Q, 0 —Qy Zj
(5) Mj =0 5 Mj = T
i X, 0 0 0
G 0 A 0 0 |

Notice that the null space N (M) above is non-empty and the algorithm is feasible, as
its dimension lies between 2m and 2(m + j — 1).

From Theorem 2.1, we can minimize the size of (7;,(;), leading to the optimal
departure from normality measure and robustness of the closed-loop spectrum. From
here on, || N,||? + || Ng||?, the departure from normality, is the robustness measure in
the RPAP_DS. We thus arrive to the subproblem from which z;, z;, n; and (; are
chosen: (for j > 1)

Zj
. 2 2 . Zj
(6) min_ [n;]F + Gl subject to M; =0.
llll= ur
L G
Let [S], S}, Sj5, S/]T be a unitary basis of the null space of M;, with z; = Sj1u;,
zj = Sjouj, n; = Sjzu; and (; = Sjau;. It is easy to see that x;, z;, n; and (; can

be chosen, for a given value of j, by finding the smallest generalized singular value

(GSV) [12] and its associated singular vector for {(SjTl, SjTQ)T, (Sjg, SjTZl)T}.
For a given ordering of the close-loop poles, x;, z; are constrained in (6) but
cannot be chosen uniquely, as 7;, (; are degenerate. Similar comments apply in the

complex case below.
3.2. Complex Eigenvalues

When some of the closed-loop eigenvalues are complex, we can modify our algo-
rithm using real arithmetic so that a real feedback matrix F, G can be obtained. Using
the following modified real Schur form, the real vectors x;, x;11, 25, 2Zj+1, 7j, Nj+1
and (j, (j4+1 are chosen via

Qs Alzj,zj] — Qg (2, zj+1] Daj — Qa3 Z—j [nj, nj+1] =0,

Q3 E[xj,2j41) — QF (2, 2j41] Dgj — Q3 Z—j [, (1] = 0, ij [z, 2j41] =0
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where

Daj:[ iy uj]7 Dﬂj:[ K Tj]_

Vi Wy T K
Equivalently, we have

xj
Tj+1
%
M; | ZEL L — 0, Mg

1)
Nj+1
™ “

L Gi+1

[ Le(QIA) DLeoQ -L®QiZ; 0
L®(QIE) Dj;®Q3 0 ~L®Q;3 Z-;
LeXT, 0 0 0

0 L® ZIj 0 0

while minimizing ||[1;, 7j41]% + 1[Gy Cjalll5 with ||[[25, 2;41]|| » = 1. Notice that
the null space V(M) in (7) is non-empty and the algorithm is feasible, as its dimen-
sion lies between 4m and 4(m + j — 1). Also, we have not imposed the quadratic
constraint that z; | x;;1. The conditioning of the pseudo-Schur vectors [z, zj41]
is then controlled by [|[n;, n;+1]l|% + [¢j» Cj+1]ll5» or the size of the upper trian-
gular parts of A,, Ag corresponding to the complex conjugate pair of eigenvalues in
(Daj, Dgj). Note, in the real Schur form, that (D,j, Dg;) can be replaced by any
matrix pair with the same eigenvalues, with :chxjH = 0. This orthogonality condi-
tion is a difficult quadratic constraint and is abandoned for simplicity. To pay for this
simplicity, the pseudo-Schur vector matrix X is no longer orthogonal. However, it is
still nearly orthogonal, with X " X being block-diagonal and 2 x 2 diagonal blocks for
individual complex conjugate pairs of closed-loop eigenvalues. The conditioning of the
eigenvalues are then partly controlled by the sizes of 7;, 7,41 in N, and (;, (41 in
Ng.

Let [SjTl, SjTQ, SjTg, SjT4, SjT5, SjT6, SjT7, SjTg} ! be a unitary basis for the null space
defined in (7). We are looking for the vectors

Tj =Sy, Tjp1 = Sjauj, 2z = Sz, Zjp = Sjaug

nj = Sjstj,  Nj+1 = Sjeus, G = Sjruy, Gi+1 = Sjsu;
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. . . 2 2 2
which satisfy miny, ||[1nj, nj11]ll 7 + G Gl st [z, 2]l = 1, or
: T/,gT T T/,QT T T/,gT T

Similar to the real case earlier, the minimization can be achieved via the GSVs of the

T T
matrix pair{(sﬁ,sjg,sjg,s;l) ,(sjg,sjg,s;,sjg) }

Remark. In Theorem 2.1, Z is only required to be nonsingular, but this will
be difficult to achieve in practice. If it is unconstrained, an ill-conditioned Z may
cause problems in the Schur-Newton refinement in the next Section. Consequently, we
require in the calulcations in (5) and (7) that Z has orthogonal columns.

4. SCHUR-NEWTON OPTIMIZATION ALGORITHM

From the Schur algorithm in Section 3, we obtain the starting value for the Newton
refinement technique in this Section.

4.1. Real Eigenvalues

We seek feedback matrices F, G € R™*"™ such that

MA + BF,E + BG) = A { [(3 ?) , (é 8)]} — \(Du, Dg)

for given D, = diag{a1, -, an}, Dg = {01, -+, Pn}. We have (A+ BF)Y Dg =
(E+ BG)Y D,, where the columns of Y are the eigenvectors. With Z is nonsingular,
X is orthogonal and 3 + 37 =1 (j = 1,--- ,n), we then have

Z YA+ BF)X =Dy, +N,, Z 'E+BG)X = Dg+ Ns.
Let (Q denote (5, then we arrive at:

Optimization Problem 1.
Given A € R™™ B € R™™ (A, B) is regular, Q € R™*(n=m) is unitary and
Q"B =0;

min [[[Na, Ng]|[3

QTAX -Q"ZD, —Q"ZN, =0 N,,Ngaren xn strictly upper triangular,
st.{QTEX —QTZDs —QTZNsg =0, X isn x n orthogonal, Z is nonsingular.
X'TX-I=0
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Optimization Problem 1 is equivalent to:

min Vec(N,) " Vec(N,) + Vec(Ng) T Vec(Ng)

I®QTA)w(X) - (Dy @ Q" )v(Z) — (N ®QT)v(Z) =0
st.¢ (I®QTEWX)—(Dj @QMu(Z)— (N3 @QM)v(Z) =0
do(X) Tv(X) — Vec(I) =0
where
[0 m2 m3 -+ Mn ] [ M ]
13
0 0
123 2n s
Ny=|: + 0 . i | eRY Vec(Ny)=| & | eRUD/2=p
Nin
Th—1,n :
0 0 o --- 0 | 1]
0 Ci2 ¢13 -+ (n C13
0 0 (o3 -+ (on (o3
Ngz : : 0 ' : ER”XTL, Vec(Ng): € RP,
- : Cn—1,n Cin
0 0 0 -~ 0 | :
_Cn—l,n_
Here, we write C**" =[cy, - - -, ¢,], s0

do(C) =[c1®[c1,cal D+ D [er, -+, c)] € RFmxq
We then consider the Lagrangian function of Optimization Problem 1:
L(v,e,6,v(X),v(Z), Vec(Ny), Vec(Ng)) = Vec(Ny) T Vec(N,)
+Vec(Ng) TVec(Ng) + 7T [(I© QT A)v(X) — (Dy @ QT)v(Z)

~(Ng ®QNw(2)] + £ [(I® QT E)v(X)
—(Dj ®QNw(2) — (Nj ® QT)v(2)] + 67 [do(X) Tv(X) — Vec(])]
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where
v = Q;! 7 || vn T eR™,
R: [717727"' 7’)’71} )
5—@/’ 52 ’ ’&7” e Rin,
W - [517527"' 75n] ;
0= Ql‘j;‘ e |\5T2/]T = [611|021, 622] - - - [On1, Onay -+, O] | € RY.
1 2 n
The derivatives of L satisfy
®  fi=5 = (9QTA(X) - (D] Q"u(2) - (N © @ )u(2) .
O =0 =(0Q BW(X) - (D] 5@ ()~ (V] Q" )(2) =0,
(10) fz= g—g = do(X) Tv(X) — Vec(I) =0,
(11) fi= 85&) — (I®ATQ)y +(I1® ETQ)e + v(XA) =0,
oL
(12) fs = (2) —[(Da® Q)+ (Na®@Q)ly— (D@ Q) + (Ng® Q)le =0,
_ oL _ _ ToT. _
(13) f6 = m = QVGC(NQ) dl(Q Z) Y= 0,
_ oL _ _ ToT. _
where
(2611 621 631 0 Op |
021 2022 032 On2
A = 2(533 :
: : 5n,n—1
_5n1 5n2 5n3 257’”1
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Y f7T )T, which can be formulated

as
[y ] [ 7 [f1]
€ 5 f2
0 o 3
(15) v(X) = | v(X) | =J;" | fa
v(Z) v(Z) fs
Vec(N,) Vec(N,) fe
Vec(Np)] ., LVec(Np) Lf7]
where the symmetric
0fi 0fi Ofi Oh  Oh  Of of ]
Oy Oe 06 O0vu(X) 0Ov(Z) OVec(N,) 0OVec(Npg)
Jp=1: i : : | =
Ofr Ofr Ofr  Ofq Of7 Of7 Of7
| Oy 0de 05 Ov(X) Ov(Z) OVec(No) 0OVec(Ng) ]|
00 0 I®QTA -DI®QT -NToQT -d1(QT2) 0
0 0 0 I®QTE -Df©QT -Nj QT 0 —-d1(QT 2)
* 0 0 do(X)T +da(XT) 0 0 0
* ok ok ARIT 0 0 0
*oox ok * 0 —d3 (Qy2, -+ ,m])  —d3 (Qle2, -+ ,en])
* ok % * * 21y 0
L+ * % * * 0 21,
and
0 0
di(C = c R/W’LXP’
1(©) c®le,c @ -® e, ..., n]
_clT -
c2T S c2T
dy(CT) = |3 ®cf By | e Raxkn
[cp @ oy
_ C2 3Dy c4DCsDey Cn®---Dep knxp

Applying Newton’s method to Optimization Problem 1, we obtain Z, X then by
using (4), the feedback matrices F, G. Now, we can write down the Schur-Newton

Algorithm for the RPAP_DS with real eigenvalues:
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Algorithm 1 (Real Schur-Newton).

(1) Use the Schur algorithm in Section 3 to find an initial X, Zy and Ny, Ngo.

(2) Substitute X, Zoy, Nao, Ngo into (11)-(14), producing an over-determined linear
system for (v ,&0,00 ) '

In In q
n® | I®ATQ IRE'Q do(X)+da(X )| [0
7 {|-(Da®Q+Na®Q) —(Ds®Q+Ns®Q) 0 €0
p { di(QTZ)T 0 0 [%J
(16) p { 0 d1(QTZ)T 0
0
B 0
" |2 Vec(Na)
2 Vec(Ng)

where [ = n —m, p, q are defined as before and n? 4+ p > In + ¢. Use the least
squares method to solve the over-determined system in (??) for g, €9 and .

(3) Choose {0, €0, 90, v(X0), v(Zp), Vec(Nao), Vec(Ngo) } to be the starting values,
run Newton’s iteration (15) until convergence to X, Z and N, Ng.

(4) Substitute the X, Z and N,, Ng into (??) to obtain the feedback matrices F, G.

4.2. Complex Eigenvalues

Let {(0417 ﬁl)v T (an—287 ﬁn—2s)§ (Ml tivy, K1 :|:’i7'1), T (MS +ivs, ks = 'L.Ts)}
be the prescribed eigenvalues, where s is the number of complex eigenvalue pairs. As
in the real eigenvalue case, we seek feedback matrices F, G € R™*" such that

vaors 00 -3 {[(2 0).(0 O]} =m0

where oy, Bj, s vis ki, ER, 0F + 05 =1 =i + P+ Rf+ 77 (G =1,---,n—
2s; 1 =1,---,s), and D, = diag{o, -+, n_a2s; 1 £iv1, -+, pus £ ivs}, Dg =
diag{fB1, -, Bn_2s; K1 071, -+, ks £ 75 }. With a nonsingular Z and orthogonal X,
we require

Z YA+ BF)X =Dy, +N,, Z '(E+BG)X = Dg+ Nj,

where

B ap by ags—1  bas
Da = |01 D ® On—2s S |:bl a,2:| @ © |:b28—1 a'23:|:|
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)

d2s
cas ||’

)

with
a’17... 7a287 b17... 7b2S€R7
a2j—1+a2j:2uj7j:17'“78;
2 2 4
agj—1a2j — boj—1bgj = pj+ vy, j=1,---,s.
Dp=|p® ®fone® | 2@ 0|2
= n—2s
di 2 dos—1
617... 7C2S7d17... 7d2S€R7
Coj—1+ C25 =2K4, J=1,---,5;
2 2
Coj—1C2j —dgj1doj =K+ 75, j=1,---s.
72 3 Nn—2s Mn—2s+1 TIn—2s+2
! ! ! ! !
[0 1,2 7,3 M1,n—2s M ,n—2s+1 Mn—2s+2
0 M3 1M2,n—2s N2,n—2s+1 N2,n—2s+2
0
NMn—2s—1,n—2s
Na — 0 Nn—2s,n—2s+1 Nn—2s,n—2s5+2
0 0
0 0
C2 (3 Cn—2s Cn—2s+1 Cn—2s+2
ol ! ! !
[0 Ci2 (1,3 C1,n—2s Cln—2s+1 Clin—2s+2
0 (o3 C2,n—2s C2,n—2s+1 C2,n—2s+2
0 .
Cn—2s—1,n—2s
Nﬁ — O Cn—2s,n—2s+1 Cn—2s,n—2s+2

We arrive at the optimization problem for complex eigenvalues:

Optimization Problem 2.
Given A € R™™, B € R™™, (A, B) regular, Q € R ("™ is orthogonal and

0
0

0
0

Mn—1 Mn
! !
mMn—1 M,n
mn2,n—1 n2,n
Tm—2n—-1 Th—-2n
0 0
0 0
Cn—l Cn
! !
Cln-1 Cin |
CQ,n—l CQ,n
Cn—2,n—1 Cn—2,n
0 0
0 0
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Q"B =0;
min ||[Na, N3] [
QTAX —Q"Z(Dy + No) =0 Dy, Dg, Ny, N are as defined before,
st.{QTEX —QTZ(Dg+ Ng) =0 X isn x n orthogonal, Z is n x n nonsingular.
X'TX-I=0
Optimization Problem 2 is equivalent to:

min Vec(N,) " Vec(Ny) + Vec(Ng) " Vee(N3)  s.t.
(I©Q"Au(X)—(Dg ®Q")v(Z) — (NT®QT) (2) =
(I©QTE)(X)~(Dj ©Q")w(Z) — (

air +azs —2p1 =0

ags—1 + a2s — 25 = 0_

c1t+eco—2k1=0

Cos—1 + Cos — 2Ks = 0_

a1ag — blbg — (M% + 1/12) =0

a5 105 — bas 1bas — (3 +vZ) = 0]

cico — didy — (/’i%—l-’i'%) =0

| C25—1C2s — d2s—1d‘28 — (K +73) = 0]
for which the Lagrangian function equals
L(v,e,6,w,0,¢,0,v(X),v(Z),a,b, c,d, Vec(Ny), Vec(Ng))
= Vec(N,) " Vec(N,) + Vec(Ng) " Vec(Np)
+7 (T ®@QTAW(X) — (D ® QT v(Z) — (Ng ®Q")v(Z)]
e[I®@QTE)(X)~(Dj @QNu(Z) — (N5 ®QT)v(2)]

+ 6 [do(X) Tw(X) — Vec(I —i—ij agj—1
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+azj — 25) + 375 05(caj—1 + c25 — 2k;)
S

+ > &ilagj-1a9; — bojaboj — (15 + 7))

j=1
+ Y ojleaj1c; — dyj_1da; — (K5 +77)]
j=1
where
w:(w17w27"'7w8)—r7 0:(017027“'708)T7
é.: (517527"' 758)T7 g = (0_170_27 7JS)T7
a = (a17a27"' 7a28)T7 b= (blvb27 . 7628)T7
c= (617627"' 7628)T7 d= (d17d27' 7d28)
The derivatives of L are
oL
an fi=g=Us QT A)w(X) - (Dy ©Q"(Z) - (Ng @ Q" )v(2) =0,
oL
(18) fo=7-=(® QTE)w(X)— (Dj ®@Q")v(Z) - (Ng ® Q"v(Z) =0,
oL
(19) 3= 55 = do(X) Tw(X) = Vec(I) = 0,
+as —2
2 [ oL - ai a? H1
( ) 4= aw - . ’
a2s—1 + a5 — 2ug
+ep—2
) f B a_L - C1 C2‘ K1
( ) 5 = 80 - . ?
C2s—1 + Cos — 2K
—biby— (3 +13) =0
oL aiaz — biby ‘(/h vi)
(22) Je = 5 : ;
| a2s-1a25 — bas—1bas — (U2 + v2) = 0]
oL cicg — didy —'(/ﬁ% +71)=0
(23) fr=57= ; ,
g
| Cos—1C25 — dos—1das — (K2 + 72) = 0]
oL
= =(I®AT I®ET XA)=0
0h k=g = U EATQNF U@ ETQE+u(XA) =0
oL
(25) fo= = —[(Da® Q)+ (Na®Q)]y—[(Dg® Q) + (Ng® Q)le =0,
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(26) o i
w1 §1a2
aL w1 flal FY;LI——QS—FI
flO = % - T - ’U(QT[ZTL—QS'Flv"' 7271]) :07
Ws Esa2s ’)’;Lr
(27) _ws-_ _58?23—1_
§1bo )
aL flbl PY;LI——QS—FI
fllE%:_ - HSU(QT[Zn_25+1,---,Zn])zo,
58628 L ’)’;Lr
sbas_
(28) | Esbas—1]
(0] [ oiea ]
aL 01 1€ 67—’[—284—1
fa=5l= ]+ - 0(Q [znmssts -+ s 2a)) = 0,
03 O05Cosg 5;,[
05 sC2s5—
(29) el L7s0e]
_ o1ds -
aL Jldl 67—1'——28+1
fs=gg=—| i |- I, 0(Q T [2n—2s41, "+ 2n)) = 0,
osdos 5;-[
_Jsd2s—1_
9L 7 T T
(30) J1a= aVec(N,) = 2Vec(N,) —di(Q' Z,s) v =0,
oL ~

where d;(C, s) =

0 P 0 1k
e Cnos 0 e G
B ® [cl,---,cn_zs_l]@{cl 2 }@---@ {Cl 2 0 } ’

0 C1- - Cn-=2s
o I 0 I
M= 7 gfeer o

S

We can then obtain the symmetric gradient matrix of f = | flT , f2T A flTE)]T:

A
=l 3l
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where J; =0, J3 = JQT,

[Q1 & —di(QTZ,s) —du(QTZ,s) 0 0 —d1(QT Z,5) 0
Qo ®g 0 0 —d3(QTZ,s) —du(QT Z, ) 0 —d1(QT 2, 5)
= 0 0 0 0 0 0 0
Jo=10 o ds(e) 0 0 0 0 0
0 0 0 0 ds(e) 0 0 0
0 0 ds(a) —ds (b) 0 0 0 0
LO O 0 0 ds(c) —ds(d) 0 0
[ A®IO 0 0 0 0 0 0
0 —ds(QR,s) —dg(QR,s) —ds(QW,s) —dg(QW,s) —ds(QR,s)T —ds(QW,s)T
d7 (&) 0 0 0 0 0
_ —d7(§) 0 0 0 0
Ja= d7(o) 0 0 0
—dr7 (o) 0 0
L 21,
with
M=I2QTA, QHB=I2QTE,
®=-DI®QT-N]®Q", ®=-DJeQ"-N]oQ",
p=(Mn—-2s8)(n—2s—1)/2+2s(n—s—1),
e=[1,1,---,1)T, E=do(X)T +da(XT),
2s
_ 0 0 -
k(n — 2s)
d4(C,8)= 0 0 ,
[cn_zs+2 ] CRRRECs [C” ] } k(2s)
L Cn—2s+1 Cn—1] |
0 0
k(n — 2s)
d4 C, S) = ,
=\ | :
Cn-2st1 @ Cpogsta D ® 1 D ¢ b k(2s)

ds5(¥) = ds([1, - -+, ¥as] 1)) = [, Y1) B [10a, 93] B - - B [1h2s, 2s—1],
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_ 0 0 _
} k(k — 2s)
d6(C,s) = 0 0 :
0 Cn—2s+2- 0 Cn
| [Cn—2s+1 0 © © |:Cn—1 0:|_ } k(2$)

K 2 Vs
()T 0]} 1
()" @ (c3)] o
(c4)T ® (ca) @ (C4)T 0
B (Cn_28)‘r DD Cn—QS)T 0]} n—2s—1
d8(07 8) B (Cn—2s+1)T Q- D (Cn—28+1)T 0 } n—2s
(Cn—2s+2)T S (Cn—28+2)T 0 } no
(1) @@ (ca) " 0 }on—2
() @@ () 0]}  n-2

Similar to Algorithm 1, we solve Optimization Problem 2 by Newton’s iteration for the
real F, G:

Algorithm 2 (Complex Schur-Newton).

(1) Use the Schur method in Section 3 to find the initial X, Zy and Ny, Ngo.

(2) Substitute X¢, Zy, Nao, Ngo into (24)-(31), we obtain {’)/0, €0, 09, wo, B0, &0, 00,
agp, bo, Co, do}.

(3) With {”yo, €0, (507 wo, 00, fo, ao, ag, bo, Co, do, ’U(XQ), ’U(ZQ), VeC(Nao), VeC(Ngo)}
as starting values, run Newton’s iteration until convergence to X, Z and N,
Ng.

(4) Substitute X, Z and N,, N into (4) to obtain the feedback matrices F', G.

Remark.

e At Step 2, we set a, b, ¢, d being the same as the given eigenvalues, obtaining g
by substituting Zg, N0 into (30) and £q by substituting Zy, Ngg into (31). Then
from (24)-(29), we obtain &gy, wy, 0y, & and oy.
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e The starting pOint{’Ym €0, 00, wo, B0, &0, 00, ag, bo, co, do, ’U(XQ), ’U(ZQ), VeC(Nao),
Vec(Ngp)} is often far away from being optimal. In such an event, we apply the
GBB Gradient method [13] to decrease the objective function sufficiently, before
Newton’s iteration is applied.

e At Step 4, since the matrix X is orthogonal, we can use X ' in place of X L.

These remarks also hold for Algorithm 1.

5. NUMERICAL EXAMPLES

Algorithms 1 and 2 are applied to three examples, all with singular E's. The
convergence tolerance is 1078, The numerical computations were carried out on a
MATLAB 7.01 [18] with machine accuracy equals 2.22x10 6, We use Ob7js.;,,, and
ObJyewton respectively to denote the values of the departure from normality measure
from the Schur and Schur-Newton algorithms (before and after the Newton refinement
in Section 4).

Exl. n=4,m=2 A, ={1,1,1,1.0e — 8}, \g = {20, —1, =3, —4};

65 65 —19.5 19.5 1000 0 0 0 65 0
01 —01 0 0 1 1 00 0 0

A=17 0o 05 —10"'F=11 9 o0 1]"B=|0 ol
0 0 04 0 0 0 01 0 0.4

ObJscaur = 239, ObJyewton = 14;

)

10925 —-0.906 0.581 —0.455 G- —15.3 —0.005 —0.860 0.440
-~ 11.075  —124 178 —=7.25| " | 6.39 17.4 —54.9 225

Ex2. n=4,m=2 A ={1,1,1,1}, \g = {—1, -2, -3, —4};

00 0 0 100 0 10
1 10 100 1000 100 0 0 1
A=10 1 10 100 F=1o 0 0 1|" B= 1o o
00 1 10 0011 00

ObJscpur = 30789,  ObJyewton = 42;

|
Il

0.196 -0.576 —-0.125 —-3.99 G— —-19.0 —-0.115 3.78 —8.02
-1.24 -10.4 —100 —997|> ~ | 17.8 —0.036 4.73 1.40 |’
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Ex3. n=5m=2 A ={1,1,1,1,1}, \g = {=0.2,—0.5, =1, =1 +i, -1 —i};

F:

—0.1094 0.0628 0 0 0
1.306 —2.132 0.9807 0 0
A= 0 1.595 —3.149 1.547 0 )

0 0.0355 2.632 —4.257 1.855
0 0.0023 0 0.1636 —0.1625

10 000 0 0

10 000 0.0638 0
E=({0 0 0 0 1|, B=]0.0838 —0.1396{ ;

001 01 0.1004 —0.206

00010 0.0063 —0.0128

O0bJschur = 60, ObJyeyron = 94;

—46.4 50.9 —55.0 6.12 29.5 G- —22.5 —2.46 17.5 —-216 21.2
—23.3 22.1 —25.1 5.53 21.4|’ ~ |-18.6 —2.05 21.0 —150 21.8|"

Comments.

(1)

For Ex1 and Ex2 with real eigenvalues, the starting vectors from the Schur
algorithm in Section 3 fall within the domain of convergence for the Schur-
Newton algorithm. This coincides with our experience with other RPAP_DS with
real eigenvalues. The subsequent Newton refinement produces a local minimum
which improves the robustness measure substantially.

For the RPAP_DS with complex eigenvalues like Ex3, the starting vectors from
Schur are often infeasible. Preliminary correction by Newton’s iteration can
be applied to the constraints in Optimization Problem 2, with gradient J,. This
produces a feasible starting vector for the Schur-Newton algorithm. However, the
improvement in the robustness measure can be limited, as shown in Ex3. Apart
from having an infeasible starting vector far from a local minimum, the main
difficulty lies in the choice of finding accurate starting values for the Lagrange
multipliers. However, improvements are still possible theoretically and achieved
in practice, as seen in Ex3.
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