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A MODIFIED KOHLBERG CRITERION AND A NONLINEAR METHOD
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Abstract. We propose a new nonlinear method for finding a coalition array in
a cooperative game, a new coherent criterion for concluding whether its array
corresponds to the nucleolus or not, and an adjusting process for obtaining the
nucleolus strictly from its nonlinear approximation.

1. INTRODUCTION

The nucleolus of a cooperative game was first defined by Schmeidler [8] in
1969. Subsequently, Kohlberg [6] proposed two criteria, called property I and prop-
erty II, for x to be the nucleolus. In particular, property II is a characterization of
the nucleolus by the notion of balancedness of a collection of coalitions, which is
closely related to the calculation methods of the nucleolus. Thereafter, many authors
have developed various types of algorithms to calculate the nucleolus. However, in
all approaches, the calculations are performed by solving linear problems. In this
paper, we introduce a new approach. Kido [5] has developed a nonlinear approxi-
mation method for the nucleolus: by solving a good-natured nonlinear minimization
problem, such as minimization with respect to an �p-norm in a convex cell, we
can obtain a sufficiently good approximation of the nucleolus. Next, we modify
property II in order to verify the sufficiency of the approximation easily. This check
is accomplished through a new type of coalition array, that is, a modified version
of the coalition array defined by Kohlberg [6]. Furthermore, the modified criterion,
say property IIM, is suitable for this nonlinear approach and is efficient because
a rank condition is used (this idea was introduced by Dragan [2] for finding the
prenucleolus). If the approximation is judged to be sufficient, as a final step, we
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construct a single small size of linear equations and solve it. This process adjusts
the existing small difference between the nucleolus and its nonlinear approximation.
In other words, the obtained solution of the system of linear equations is the proper
nucleolus.

2. DEFINITIONS AND MAIN RESULTS

Let N = {1, 2, . . . , n} be a set of n players. Let v be a real valued function
of 2N , where 2N is the collection of all subsets, called coalitions, of N ; v(∅) is
assumed to be 0 as usual. The pair (N, v) denotes an n-person cooperative game in
a characteristic function form with a transferable utility. Let x = (x1, · · · , xn) in
Rn denote a payoff vector, where xi denotes the payoff for player i in N . For any
nonempty coalition S of N , we define x(S) =

∑
i∈S xi. A payoff vector x is said

to be efficient if x(N ) = v(N ), individually rational if x i ≥ v({i}) for all i in
N , and an imputation if it is both efficient and individually rational. I(v) denotes
the set of imputations, which is clearly a compact convex subset of Rn. Throughout
this paper, we assume the following.

Assumption 2.1. I(v) �= ∅.

Let x ∈ Rn be a payoff vector. We define e(S, x) = v(S) − x(S), called the
excess of S at x, for any nonempty coalition S.

The following definitions are defined by Kohlberg.

Definition 2.1. ([6]). Let b0, b1, · · · , bp be collections of coalitions. We call b0,
b1, · · · , bp a coalition array if

(i) for every S ∈ b0, there exists a unique i ∈ N such that S = {i};
(ii) for every nonempty coalition S of N , there exists a unique j : 1 ≤ j ≤ p

such that S ∈ bj.

Definition 2.2. ([6]). Let x be an imputation. Define a coalition array, called
the coalition array that belongs to (v, x), as follows.




b0(v, x) = {{i} : xi = v({i})},
b1(v, x) = {S ⊂ N : S �= ∅, S attains the maximal excess},
b2(v, x) = {S ⊂ N : S �= ∅, S attains the second maximal excess},

...

bp(v, x) = {S ⊂ N : S �= ∅, S attains the pth maximal excess}.
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Definition 2.3. ([6]). A coalition array b0, · · · , bp has property II if, for each
k = 1, · · · , p, there exists a 2n-dimensional vector w : w ≥ 0 such that

∑
S∈b0∪···∪bk

wSeS = eN and wS > 0 for S ∈ b1 ∪ · · · ∪ bk.

Our aim in this paper is to construct an efficient criterion to judge whether a
nonlinear approximation to the nucleolus of a given cooperative game is achieved
sufficiently. For this purpose, we introduce some slightly modified definitions. (Ad-
ditionally, we remark that our definitions are easily generalized to the corresponding
definitions for coalition structures).

Definition 2.4. Let I0, I1, · · · , Ip be collections of coalitions. We call I0,
I1, · · · , Ip a modified coalition array if (i) I0 is the union of {N} and a set of
some one-element coalitions; and (ii) for every nonempty proper subset S of N ,
there exists a unique j : 1 ≤ j ≤ p such that S ∈ Ij .

Definition 2.5. Let x be an imputation. Define a modified coalition array
I0, I1, · · · , Ip as follows.




I0 = {N} ∪ b0, where b0 = {{i} : i ∈ N, xi = v({i})},
I1 = {S ⊂ N : ∅ �= S �= N, S attains the maximal excess},
I2 = {S ⊂ N : ∅ �= S �= N, S attains the second maximal excess},

...

Ip = {S ⊂ N : ∅ �= S �= N, S attains the pth maximal excess},
where all types of maximal excesses are collected over all nonempty proper subsets
of N . We call I0, · · · , Ip the modified coalition array that belongs to (v, x).

Definition 2.6. We say that a collection of coalitions S is (v, x)-balanced
(with weights {δS}) if (i) there exist an index i : 0 ≤ i ≤ p and a nonempty subset
Ji of Ii, maybe Ji = Ii, such that S = {I0, · · · , Ii−1, Ji}; and (ii) there exist
nonnegative weights {δS : S ∈ ∪ S} such that δS > 0 for each S ∈ ∪ S \ b0 and
eN =

∑
S∈∪ S

δSeS , where eS is a characteristic function of S for any subset S

of N . Here, we call i the degree of S and define S+ = {S ∈ ∪S : δS > 0},
b+
0 = S+ ∩ b0 and b0

0 = b0 \ b+
0 . Since all notions depend on the collection S and

its weights {δS}, we may denote this dependency explicitly by, for example, i(S),
δS(S), S+({δS}), or S+({δS(S)}).

Definition 2.7. Let S and S′ be two (v, x)-balanced collections of coalitions
such that (i) ∪S � ∪S′; (ii) there is no other (v, x)-balanced collection of coalitions
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S′′ : ∪S � ∪S′′ � ∪S′; and (iii) i(S) = i(S′) or ∪S = I0 ∪ · · · ∪ Ii(S′)−1. Then, we

say that S′ is a (v, x)-balanced 1-extension of S and denote it by S
B1≺ S′. Next, if

S and S′ are two (v, x)-balanced collections of coalitions such that

S
B1≺ S1

B1≺ · · · B1≺ Sm

B1≺ S′

for some (v, x)-balanced collections of coalitions S1, · · · , Sm, then, we say that S′

is a (v, x)-balanced extension of S and denote it by S
B≺S′. We call this a maximal

balanced collection of coalitions with respect to the ordering
B≺ a (v, x)-maximal

balanced collection of coalitions. We also say that a maximal balanced collection
of coalitions S′ is a (v, x)-maximal balanced extension of a non-maximal (v, x)-

balanced collection of coalitions S if S
B≺ S′.

Since I0 is a (v, x)-balanced collection of coalitions, I0 always has a (v, x)-

maximal balanced extension with respect to the ordering
B≺.

Definition 2.8. Let S be a (v, x)-maximal balanced extension of I0 (with
non- negative weights {δS}). Then, we say that (v, x) has property IIM if rank
(eS : S ∈ S+) = n.

Although the above definition appears to depend on S and {δS}, we can observe
the well-definedness from Corollary 2.1. The next lemma shows a characterization
of (v, x)-balancedness.

Lemma 2.1. Let S be a collection of coalitions such that ∪S = I 0 ∪ I1 ∪ · · ·∪
Ij−1∪Jj , where Jj is a nonempty subset of Ij for some j : 1 ≤ j ≤ p. Then, S is a
(v, x)-balanced collection of coalitions if and only if there exists a (v, x)-balanced
collection of coalitions S̄ with weights {δ̄S : S ∈ ∪S̄} such that

(i) ∪S̄ � ∪S;
(ii) there exists wS ∈ R for each S ∈ S̄+({δ̄S}), δT > 0 for each T ∈ T =

∪S \ ∪S̄, and δT ≥ 0 for each T ∈ b0
0({δ̄S}) such that

∑
S∈S̄+({δ̄S})

wSeS =
∑
T∈T

δT eT +
∑

T∈b00({δ̄S})
δT eT .

Furthermore, if I0 ∪ · · · ∪ Ij−1 ⊂ ∪S̄, S is a (v, x)-balanced extension of S̄.

Proof. First, we show the if part. Define δ̄ = 1
2 minS∈S̄+ δ̄S > 0. Take K > 0

sufficiently large so that δ̄ > 1
K wS for every S ∈ S̄+. Since eN =

∑
S∈S̄+ δ̄SeS ,
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we have

eN =
∑

S∈S̄+

(δ̄S − 1
K

wS)eS +
∑
T∈T

1
K

δT eT +
∑

T∈b00({δ̄S})

1
K

δT eT .

This shows that S is (v, x)-balanced. Next, we prove the only if part. Let {δS :
S ∈ ∪S} be weights for S, and S̄ be any (v, x)-balanced collection of coalitions
with weights {δ̄S : S ∈ ∪S̄} such that ∪S̄ � ∪S. Since eN =

∑
S∈S̄+({δ̄S}) δ̄SeS =∑

S∈S+ δSeS , we have the desired equation:
∑

S∈S̄+({δ̄S})
(δ̄S − δS)eS =

∑
T∈T

δT eT +
∑

T∈b00({δ̄S})
δT eT .

The last statement is clear.

Lemma 2.2. Let S be a (v, x)-balanced extension of I0 such that S = {I0, · · · ,

Ij−1, Jj}, where Jj is a nonempty proper subset of I j for some j : 1 ≤ j ≤ p.

Then, if S is maximal (with respect to the ordering
B≺), rank(eS : S ∈ S+) < n and

(v, x) do not have property IIM.

Proof. Assume that rank(eS : S ∈ S+) = n. Fix T ∈ Ij \ Jj arbitrarily. Then,
there exists {wS ∈ R : S ∈ S+} such that eT =

∑
S∈S+ wSeS . From Lemma 2.1,

this implies that {I0, · · · , Ij−1, Ij ∪ {T}} is a (v, x)-balanced extension of S. This
contradicts the maximality of S. Next, assume that S′ is another (v, x)-maximal
balanced extension of I0 with rank(eS : S ∈ S′+) = n. Then, from the maximality
of S′ and Lemma 2.1, we easily obtain that I0 ∪ · · · ∪ Ik is (v, x)-balanced for
every k = 0, · · · , p. This contradicts the maximality of S. Thus, (v, x) cannot have
property IIM.

Corollary 2.1. The following statements are all equivalent:

(i) There exists a (v, x)-(maximal )balanced extension S of I0 with rank(eS :
S ∈ S+) = n, that is, (v, x) has property IIM.

(ii) For every (v, x)-maximal balanced extensionSof I 0, rank(eS : S∈S+)=n.
(iii) {I0, · · · , Ij} is (v, x)-balanced for j = 0, · · · , p.
(iv) {I0, · · · , Ip} is the unique (v, x)-maximal balanced extension of I 0.

Corollary 2.2. Let S be a (v, x)-balanced extension of I0 such that S =
{I0, · · · , Ij−1, Jj} for some j : 1 ≤ j ≤ p and some nonempty proper subset J j of
Ij . Set S′ = {I0, · · · , Ij} and T = Ij \ Jj . If

rank(eS : S ∈ S+) + rank(eT : T ∈ T ∪ b0
0) = rank(eS : S ∈ ∪S′),
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then, (v, x) does not have property IIM.

Proof. From this assumption, we have

[eS : S ∈ S+] ⊕ [eT : T ∈ T ∪ b0
0] = [eS : S ∈ ∪S′].

Then, using Lemma 2.1, we obtain that S′ cannot be a (v, x)-balanced extension of
S. Thus, from Corollary 2.1, we know that (v, x) does not have property IIM.

Theorem 2.1. The following three conditions are equivalent.

(i) (v, x) has property IIM.
(ii) The coalition array that belongs to (v, x) has property II.
(iii) x is the nucleolus.

Proof. We know that (ii) and (iii) are equivalent from Theorem 5 of Kohlberg
[6]. Therefore, we have to prove only the equivalence of (i) and (ii).

First, we prove that (i) implies (ii). By Corollary 2.1, if (v, x) has property
IIM, {I0, · · · , Ij} is (v, x)-balanced for every j = 0, 1, · · · , p. Fix j and assume
that N ∈ b1 ∪ · · · ∪ bj . In this case, we know b0 ∪ · · · ∪ bj = I0 ∪ · · · ∪ Ij

or b0 ∪ · · · ∪ bj = I0 ∪ · · · ∪ Ij−1. In either case, we obtain that there exists
bj
0 ⊂ b0 such that bj

0 ∪ b1 ∪ · · · ∪ bj is balanced. On the contrary, assume that
N /∈ b1 ∪ · · · ∪ bj . Then, from the (v, x)-balancedness of {I0, · · · , Ij}, we have
eN =

∑
S∈I0∪···∪Ij

δSeS , where δS > 0 for every S ∈ I1 ∪ · · · ∪ Ij and δS ≥ 0 for
every S ∈ I0. Since I0 = {N} ∪ b0, we obtain

(1− δN)eN =
∑

S∈b0∪···∪bj

δSeS,

where (1− δN ) > 0, δS > 0 for each S ∈ b1∪ · · ·∪ bj and δS ≥ 0 for each S ∈ b0.
Since j = 0, · · · , p is fixed arbitrarily, condition (ii) is proved.

Next, we show that (ii) implies (i). Fix j = 1, 2, · · · , p arbitrarily. If N ∈
b1∪· · ·∪bj , then I0∪· · ·∪Ij = b0∪· · ·∪bj or I0∪· · ·∪Ij−1 = b0∪· · ·∪bj . This shows
that {I0, · · · , Ij} or {I0, · · · , Ij−1} is (v, x)-balanced. In the case: N /∈ b1∪· · ·∪bj ,
since eN =

∑
S∈b0∪···∪bj

δSeS , eN = 1
2eN +

∑
S∈b0∪···∪bj

δS
2 eS . This shows the

(v, x)-balancedness of {I0, · · · , Ij}. Inductively, {I0, · · · , Ip} or {I0, · · · , Ip−1} is
the (v, x)-maximal balanced extension of I0. Remark that I0 ∪ · · ·∪ Ij−1 = b0 ∪· · ·
∪bj for some j implies Ip =∅. Then, from Corollary 2.1, condition (i) is proved.

3. CALCULATING THE NUCLEOLUS

In this section, we introduce a new algorithm to obtain the nucleolus of an n-
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person cooperative game (N, v) such that I(v) �= ∅. This algorithm depends com-
pletely on the nonlinear approximation result of the nucleolus established in Kido
[5]:

Theorem 3.1. (Theorem 2 [5]). There exists k̄ ∈ R such that for every k < k̄,
x̄p,k converges to x̄ in (Rn, || · ||1) as p → ∞, where x̄ is the nucleolus and
x̄p,k = argminx∈I(v)

∑
∅�=S⊂N |e(S, x)− k|p is the �p-k-nucleolus defined in [5].

Let S(x) = {S1(x), · · · , S2n−1(x)} denote a sequence of all nonempty coali-
tions such that e(S1(x), x) ≥ e(S2(x), x) ≥ · · · ≥ e(S2n−1(x), x). Fix k to be suf-
ficiently small. Then, from Theorem 3.1 and continuity of excesses with respect to
x, S(x̄p,k) approximates S(x̄) as p → ∞. Recalling that every numerical calculation
by a computer has some numerical error, let us judge e(Sj(x), x) = e(Sj+1(x), x)
by |e(Sj(x), x) − e(Sj+1(x), x)| < ε for sufficiently small ε > 0. (However,
ε must be slightly larger than ε(x̄) = min{e(Sj(x̄), x̄) − e(Sj+1(x̄), x̄) : j =
1, · · · , 2n − 2, e(Sj(x̄), x̄) − e(Sj+1(x̄), x̄) > 0} when ε(x̄) is sufficiently small.)
Then, if p is sufficiently large, S(x̄p,k) is equivalent to S(x̄). Therefore, the modified
coalition array, say I0, · · · , Iq, that belongs to (v, x̄p,k) is equal to that belonging to
(v, x̄). Let ej = e(S, x̄p,k) for any S ∈ Ij for j = 1, · · · , q. Set S = I0 and make a
(v, x)-balanced 1-extension of S repeatedly until (i) rank(eS : S ∈ S+) = n holds;
(ii) Lemma 2.2 is applied; or (iii) Corollary 2.2 is applied. In the case of (ii) or
(iii), S(x̄p,k) is not a good approximation of S(x̄); therefore, increase p, recalculate,
reconstruct, and recheck I0, · · · , Iq. In the case of (i), as a final step, we only solve
a single system of linear equations to obtain the strict solution of x̄ (not x̄p,k!). The
entire system of linear equations is




(1)
n∑

j=1

x̄j = x̄(N ) = v(N );

(2) x̄j = v({j}) for each j ∈ b0;

(3) e(Sk1 , x̄) = · · · = e(Sknj
, x̄), where {Sk1, · · · , Sknj

} = Ij for each

j = 1, · · · , q.

However, we can select only a subsystem with rank n in order to calculate x̄.

Example 3.1. The following list shows a cooperative game (N, v) for N =
{1, · · · , 5} and x = (0.0979, 0.2779, 0.0992, 0.1379, 0.3871) as a numerical
approximation of x̄p,k for p = 800 and k = −2.

Set I0 = {N}, I1 = {S1, S2} = {S : e(S, x) � 0.355}, and I2 = {S3, S4, S5,
S6} = {S : e(S, x) � 0.325}. Since eS1 + eS2 = eN , S = {I0, I1} is a (v, x)-
balanced extension of I0. However, rank(eN , eS1 ,eS2)=2<5. Therefore, the process
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coalition members of coalition S
S player1 player2 player3 player4 player5 v(S) e(S, x)

∗ 0 −0.387
∗ 0 −0.138

S1 ∗ ∗ 0.88 0.355
∗ 0 −0.099

S3 ∗ ∗ 0.8125 0.326
∗ ∗ 0.46 0.223
∗ ∗ ∗ 0.89 0.266

∗ 0 −0.278
∗ ∗ 0.56 −0.105

S4 ∗ ∗ 0.74 0.324
∗ ∗ ∗ 0.91 0.107
∗ ∗ 0.68 0.303
∗ ∗ ∗ 0.48 −0.284
∗ ∗ ∗ 0.57 0.055
∗ ∗ ∗ ∗ 0.63 −0.272

∗ 0 −0.098
∗ ∗ 0.35 −0.135

S5 ∗ ∗ 0.56 0.324
∗ ∗ ∗ 0.71 0.087
∗ ∗ 0.4925 0.295
∗ ∗ ∗ 0.69 0.106
∗ ∗ ∗ 0.55 0.215
∗ ∗ ∗ ∗ 0.37 −0.352

S6 ∗ ∗ 0.7 0.324
∗ ∗ ∗ 0.72 −0.043
∗ ∗ ∗ 0.64 0.126
∗ ∗ ∗ ∗ 0.44 −0.461

S2 ∗ ∗ ∗ 0.83 0.355
∗ ∗ ∗ ∗ 0.95 0.088
∗ ∗ ∗ ∗ 0.61 −0.003

N ∗ ∗ ∗ ∗ ∗ 1 0

is continued. Next, since 2eS3 + eS4 + eS5 + eS6 = 2eN , we easily know that S =
{I0, I1, I2} is a (v, x)-balanced extension of I0 and rank(eS : S ∈ S) = 5, that is,
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(v, x) has property IIM. Lastly, by solving a system of linear equation:



x1 + x2 + x3 + x4 + x5 = v(N ),

v(S1) − (x4 + x5) = v(S2) − (x1 + x2 + x3),

v(S3) − (x3 + x5) = v(S4) − (x2 + x4),

v(S3) − (x3 + x5) = v(S5) − (x1 + x4),

v(S3) − (x3 + x5) = v(S6) − (x1 + x2),

we obtain the solution x = (0.0975, 02775, 0.1, 0.1375, 0.3875). This is the nucle-
olus of the given game.

4. CONCLUSIONS

We summarize the procedure introduced in this paper to obtain the nucleolus by
a nonlinear method:

(1) Let k be sufficiently small;
(2) Let p be so large that x̄p,k approximates x̄ well; then calculate x̄p,k;
(3) Set the modified coalition array that belongs to (v, x), where excesses are to

be identified if the difference is less than a sufficiently small positive number
ε;

(4) Make a (v, x)-balanced extension S of I0;
(5) Check the rank condition of S;
(6) If S does not have property IIM, let ε be smaller and return to step (3), or let

p be larger and return to step (2);
(7) If rank(eS : S ∈ S) < n, extend S more and return to step (5);
(8) Construct a system of linear equations with a regular coefficient matrix; and

solve this;
(9) The solution is the nucleolus of (N, v).

Recalling the Karmarkar method for linear programmings, I expect that this
nonlinear method is efficient especially for large-scale games.

REFERENCES

1. G. Bruyneel, Computation of the nucleolus of a game by means of minimal balanced
sets, Oper. Res. Verfahren, 34 (1979), 35-51.

2. I. Dragan, A Procedure for finding the nucleolus of a cooperative n person game, Z.
Oper. Res., 25 (1981), 119-131.



1590 Kazuo Kido

3. B. Fromen, Reducing the number of linear programs needed for solving the nucleolus
problem of n-person game theory, European J. Oper. Res., 98 (1997), 626-636.

4. K. Kido, Convergence theorems for �p-norm minimizers with respect to p, J. Optim.
Theory Appl., 125 (2005), 577-589.

5. K. Kido, A nonlinear approximation of the nucleolus, in: Proceedings of the Inter-
national Conference on Nonlinear Analysis and Convex Analysis (Tokyo, 2003), W.
Takahashi and T. Tanaka, (Eds.), Yokohama Publishers, Yokohama, Japan, 2004, pp.
169-176.

6. E. Kohlberg, On the nucleolus of a characteristic function game, SIAM J. Appl.
Math., 20 (1971), 62-66.

7. G. Owen, A generalization of the Kohlberg criterion, Int. J. Game Theory, 6 (1977),
249-255.

8. D. Schmeidler, The nucleolus of a characteristic function game, SIAM J. Appl. Math.,
17 (1969), 1163-1170.

9. E. Wallmeier, A procedure for computing the f-nucleolus of a cooperative game,
in: Selected topics in operations research and mathematical economics (Karlsruhe,
1983), Lecture Notes in Econom. and Math. Systems, 226, Springer, Berlin, 1984,
pp. 288-296.

Kazuo Kido
Faculty of Business and Commerce,
Keio University,
2-15-45 Mita,
Minato-ku, Tokyo 108-8345,
Japan
E-mail: kkido@fbc.keio.ac.jp


