TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 6, pp. 1543-1559, September 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

CONVERGENCE RATES FOR ERGODIC THEOREMS OF KIDO-TAKAHASHI TYPE

Sen-Yen Shaw and Yuan-Chuan Li

Dedicated to Professor Wataru Takahashi on the occasion of his 65th birthday

Abstract. Let $\{T(t); t \ge 0\}$ be a uniformly bounded (C_0) -semigroup of operators on a Banach space X with generator A such that all orbits are relatively weakly compact. Let $\{\phi_\alpha\}$ and $\{\psi_\alpha\}$ be two nets of continuous linear functionals on the space $C_b[0,\infty)$ of all bounded continuous functions on $[0,\infty)$. $\{\phi_\alpha\}$ and $\{\psi_\alpha\}$ determine two nets $\{A_\alpha\}$, $\{B_\alpha\}$ of operators satisfying $\langle A_\alpha x, x^* \rangle = \phi_\alpha(\langle T(\cdot)x, x^* \rangle)$ and $\langle B_\alpha x, x^* \rangle = \psi_\alpha(\langle T(\cdot)x, x^* \rangle)$ for all $x \in X$ and $x^* \in X^*$. Under suitable conditions on $\{\phi_\alpha\}$ and $\{\psi_\alpha\}$, this paper discusses: 1) the convergence of $\{A_\alpha\}$ and $\{B_\alpha\}$ in operator norm; 2) rates of convergence of $\{A_\alpha x\}$ and $\{A_\alpha y\}$ for each $x \in X$ and $y \in R(A)$.

1. INTRODUCTION

Throughout this paper we assume that X is a real Banach space with norm $\|\cdot\|$, and denote by X^* its dual space and by B(X) the Banach algebra of all bounded linear operators on X. A semigroup S is called a semitopological semigroup if S is a Hausdorff space and for every $a \in S$, the mappings $s \to sa$ and $s \to as$ of S into itself are continuous. Let $C_b(S)$ (resp. $C_{ub}(S)$) denote the Banach space of all continuous (resp. uniformly continuous) bounded real-valued functions on S with the supremum norm. A linear functional $\mu \in C_b(S)^*$ on $C_b(S)$ is called a *mean or normalized state* on $C_b(S)$ if $\mu(1_S) = \|\mu\| = 1$. It is known that $\mu \in C_b(S)^*$ is a mean on $C_b(S)$ if and only if $\inf_{s \in S} f(s) \leq \mu(f) \leq \sup_{s \in S} f(s)$ for all $f \in C_b(S)$ (cf. [11, Theorem 1.4.1]). For $a \in S$ let l_a and r_a denote the contractions on $C_b(S)$ defined by $(l_a f)(s) := f(as)$ and $(r_a f)(s) := f(sa)$, respectively. Then

Received March 26, 2008.

2000 Mathematics Subject Classification: 47A35, 47A58, 41A25, 47D06, 47D09.

Key words and phrases: Strongly regular net of linear functionals, A-ergodic net, Mean ergodic theorem, (C_0) -semigroup.

Research supported in part by the National Science Council of Taiwan.

 $l_a^*, r_a^* \in B(C_b(S)^*)$ and $l_a^*\phi, r_a^*\phi \in C_b(S)^*$ for $\phi \in C_b(S)^*$. Moreover, if μ is a mean on $C_b(S)$, then $l_a^*\mu, r_a^*\mu$ are also means on $C_b(S)$.

Let S be a semitopological semigroup with the identity e and let $S := \{T(s); s \in S\} \subset B(X)$ be a uniformly bounded semigroup of operators satisfying the following conditions:

- (S1) T(s)T(t) = T(st) for all $s, t \in S$ and T(e) = I (the identity operator);
- (S2) for every $x \in X$ and $x^* \in X^*$, the function $s \to \langle T(s)x, x^* \rangle$ is continuous;
- (S3) for every $x \in X$, the orbit $Sx := \{T(s)x; s \in S\}$ is relatively weakly compact in X.

In particular, condition (S3) always holds for uniformly bounded semigroups on reflexive spaces.

It is known [2, 3] that for a mean μ on $C_b(S)$ there exists a unique operator $A_{\mu} \in B(X)$ such that $\langle A_{\mu}x, x^* \rangle = \mu(\langle T(\cdot)x, x^* \rangle)$ for all $x \in X$ and $x^* \in X^*$. In [3, Theorem 2], Kido and Takahashi prove the following mean ergodic theorem for a net $\{A_{\mu\alpha}\}$ of operators defined by a net $\{\mu_{\alpha}\}$ of means.

Theorem 1.1. If S is a uniformly bounded semigroup satisfying (S1)-(S3), and if $\{\mu_{\alpha}\}$ is a net of means on $C_b(S)$ such that $w^*-\lim_{\alpha}(l_t^*\mu_{\alpha}-\mu_{\alpha})=0$ and $\lim_{\alpha}\|r_t^*\mu_{\alpha}-\mu_{\alpha}\|=0$ in $C_b(S)^*$ for all $t \in S$, then the net $\{A_{\alpha}\}$ $(A_{\alpha} := A_{\mu_{\alpha}})$ converges strongly to a linear projection P on X with range R(P) = F(S) := $\bigcap_{s \in S} N(T(s)-I)$, null space $N(P) = \sum_{s \in S} R(T(s)-I)$, and domain D(P) = $X = F(S) \oplus \sum_{s \in S} R(T(s)-I)$.

It will be seen that under the above conditions on $\{\phi_{\alpha}\}$ in Theorem 1.1, the net $\{A_{\alpha}\}$ becomes an \mathcal{A} -ergodic net for $\mathcal{A} = \{\mathcal{T} - \mathcal{I}; \mathcal{T} \in \mathcal{S}\}$. We first recall two definitions concerning \mathcal{A} -ergodic net.

Definition 1.2. Given a family \mathcal{A} of closed linear operators in X, a net $\{A_{\alpha}\}$ in B(X) is called an \mathcal{A} -ergodic net if the following conditions are satisfied:

- (a) There is an M > 0 such that $||A_{\alpha}|| \leq M$ for all α ;
- (b) $||(A_{\alpha} I)x|| \to 0$ for all $x \in \bigcap_{A \in \mathcal{A}} N(A)$, and $R(A_{\alpha} I) \subset \overline{\sum_{A \in \mathcal{A}} R(A)}$ eventually;
- (c) for every $A \in \mathcal{A}$, $R(A_{\alpha}) \subset D(A)$ and w- $\lim_{\alpha} AA_{\alpha}x = 0$ for all $x \in X$, and $\lim_{\alpha} ||A_{\alpha}Ax|| = 0$ for all $x \in D(A)$.

When $\mathcal{A} = \{T - I; T \in S\}$ for some semigroup $S \subset B(X)$, $\{A_{\alpha}\}$ becomes a *right, weakly left S-ergodic net* as defined in [4, p. 75], which was first studied by Eberlein [1]. The special case that \mathcal{A} consists of a single closed operator \mathcal{A} and with additional conditions has been studied in [7, 8, 9, 10] to establish general strong ergodic theorem, uniform ergodic theorem, and ergodic theorems with rates.

Definition 1.3. Let $A : D(A) \subset X \to X$ be a closed linear operator, and let $\{A_{\alpha}\}$ and $\{B_{\alpha}\}$ be two nets in B(X) satisfying:

(C1) $||A_{\alpha}|| \leq M$ for all α ;

(C2) $R(B_{\alpha}) \subset D(A)$ and $B_{\alpha}A \subset AB_{\alpha} = I - A_{\alpha}$ for all α ;

- $(C3) \ R(A_{\alpha}) \subset D(A) \text{ and } A_{\alpha}A \subset AA_{\alpha} \text{ for all } \alpha, \text{ and } \|AA_{\alpha}\| = O(e(\alpha));$
- (C4) $B^*_{\alpha}x^* = \varphi(\alpha)x^*$ for all $x^* \in R(A)^{\perp}$, and $|\varphi(\alpha)| \to \infty$;
- (C5) $||A_{\alpha}x|| = O(f(\alpha))$ (resp. $o(f(\alpha))$) implies $||B_{\alpha}x|| = O(\frac{f(\alpha)}{e(\alpha)})$ (resp. $o(\frac{f(\alpha)}{e(\alpha)})$). Here e and f are positive functions satisfying $0 < e(\alpha) \le f(\alpha) \to 0$. They are used as estimators of convergence rates.

Then we call $\{A_{\alpha}\}$ a uniform A-ergodic net and $\{B_{\alpha}\}$ its companion net.

The purpose of this paper is to apply our earlier results on \mathcal{A} -ergodic nets to deduce a generalization of Theorem 1.1 for a net $\{\phi_{\alpha}\} \subset C_b(S)^*$ (Theorem 3.1), and, under suitable stronger conditions on $\{\phi_{\alpha}\}$, to deduce a convergence theorem (Theorem 3.6) for approximate solutions of Ax = y, a uniform ergodic theorem (Theorem 3.7), and a strong ergodic theorem (Theorem 3.8) with rates for C_0 -semigroups.

The main results will be given in Section 3. Before that, some related definitions and notations as well as abstract mean ergodic theorems for A-ergodic nets which we need will be recalled in Section 2. Finally, applications to some examples of nets of means will be given in Section 4 for illustration.

2. Preliminaries

We need the following lemma.

Lemma 2.1. Let $f : S \to X$ be a bounded continuous function such that f(S) is relatively weakly compact in X.

- (i) For any mean μ on $C_b(S)$, there exists a unique $z_{f,\mu} \in X$ such that $z_{f,\mu} \in \overline{\operatorname{co}}f(S)$, $\langle z_{f,\mu}, x^* \rangle = \mu(\langle f(\cdot), x^* \rangle)$ for all $x^* \in X^*$, and $||z_{f,\mu}|| \leq ||f||_{\infty}$.
- (ii) For any $\phi \in C_b(S)^*$, there exists a unique $z_{f,\phi} \in X$ such that $z_{f,\phi} \in \|\phi\||\overline{\operatorname{co}}(f(S) \cup (-f(S))), \langle z_{f,\phi}, x^* \rangle = \phi(\langle f(\cdot), x^* \rangle)$ for all $x^* \in X^*$, and $\|z_{f,\phi}\| \leq \|\phi\|||f||_{\infty}$.

Proof.

 (i) Can be found in [3]. For convenience and completeness, we give a proof here. The linear functional z_{f,μ} defined on X* by z_{f,μ}(x*) := μ(⟨f(·), x*⟩), x* ∈ X*, is continuous, i.e., z_{f,μ} ∈ X**, and

$$||z_{f,\mu}|| \le ||\mu|| \sup\{||f(s)||; s \in S\} = \sup\{||f(s)||; s \in S\} = ||f||_{\infty}.$$

We show that $z_{f,\mu} \in X$. Since f(S) is relatively weakly compact, the strongly and weakly closed set $\overline{\operatorname{co}}\{\operatorname{w-cl} f(S)\}$ is a weakly compact subset of X, and so the strongly and weakly closed subset $\overline{\operatorname{co}}(S)$ is also a weakly compact subset of X. This subset of X can also be written as $\sigma(X^{**}, X^*)$ -cl (cof(S)) when considered as a subset of X^{**} . It remains to show that $z_{f,\mu} \in \sigma(X^{**}, X^*)$ -cl (cof(S)). If it is not, then by the Hahn-Banach separation theorem and the property of a mean, there would exist an $x^* \in X^*$ such that

$$\begin{aligned} z_{f,\mu}(x^*) &< \inf\{\langle x^{**}, x^* \rangle; x^{**} \in \sigma(X^{**}, X^*)\text{-cl}\left(\operatorname{co} f(S)\right)\} \\ &\leq \inf\{\langle f(s), x^* \rangle; s \in S\} \\ &\leq \mu(\langle f(\cdot), x^* \rangle) = z_{f,\mu}(x^*). \end{aligned}$$

This is a contradiction. Thus such $z_{f,\mu}$ belongs to X. Since $\langle z_{f,\mu}, x^* \rangle = \mu(\langle f(\cdot), x^* \rangle)$ for all $x^* \in X^*$, clearly $z_{f,\mu}$ is uniquely determined by μ and f.

(ii) By part (i), we see that the map $\mu \to z_{f,\mu}$ is linear. Let $\phi \in C_b(S)^*$ be arbitrary. If $\phi = 0$, the result is obvious. So, we assume $\phi \neq 0$. If ϕ is positive, then $||\phi|| = \phi(1)$, so $\mu := \frac{\phi}{\phi(1)}$ is a mean on S and $z_{f,\phi} = \phi(1)z_{f,\mu} \in ||\phi||\overline{co}(f(S))$.

Now, if ϕ is arbitrary, then $\phi = \phi^+ - \phi^-$, where ϕ^+ and ϕ^- are the positive part and negative part of ϕ , respectively. Since $||\phi|| = ||\phi^+|| + ||\phi^-||$, we have

$$z_{f,\phi} = z_{f,\phi^+} - z_{f,\phi^-} \in ||\phi^+||\overline{co}(f(S)) - ||\phi^-||\overline{co}(f(S))|$$

$$= (||\phi^+|| + ||\phi^-||)[\alpha \overline{co}(f(S)) + \beta \overline{co}(-f(S))]$$

$$\subset ||\phi||\overline{co}(\overline{co}(f(S)) \bigcup \overline{co}(-f(S))))$$

$$= ||\phi||\overline{co}(f(S) \bigcup (-f(S))),$$

where $\alpha := \frac{||\phi^+||}{||\phi||}$ and $\beta := \frac{||\phi^-||}{||\phi||}$. This also implies $||z_{f,\phi}|| \le ||\phi|| ||f||_{\infty}$.

Corollary 2.2. Let $S := \{T(s); s \in S\} \subset B(X)$ be a uniformly bounded semigroup satisfying (S1)-(S3).

- (i) For any mean μ on $C_b(S)$, there exists a unique operator $A_\mu \in B(X)$ such that $A_\mu x \in \overline{\operatorname{co}}(Sx)$, $\langle A_\mu x, x^* \rangle = \mu(\langle T(\cdot)x, x^* \rangle)$ for all $x \in X$ and $x^* \in X^*$, and $\|A_\mu\| \leq \sup\{\|T(s)\|; s \in S\}$.
- (ii) For any $\phi \in C_b(S)^*$, there exists a unique operator $A_\phi \in B(X)$ such that $A_\phi x \in \|\phi\|\overline{\operatorname{co}}((\mathcal{S}x) \cup (-\mathcal{S}x)), \langle A_\phi x, x^* \rangle = \phi(\langle T(\cdot)x, x^* \rangle)$ for all $x \in X$ and $x^* \in X^*$, and $\|A_\phi\| \le \|\phi\|\sup\{\|T(s)\|; s \in S\}$.
- (iii) If S is a commutative semigroup, then, for any two linear functionals $\phi, \psi \in C_b(S)^*$, $A_{\phi}T(\cdot) = T(\cdot)A_{\phi}$, and $A_{\phi}A_{\psi} = A_{\psi}A_{\phi}$. Further, when S is a (C_0) -semigroup with generator A, one has $A_{\phi}Ax = AA_{\phi}x$ for $x \in D(A)$.

Proof. Set $A_{\phi}x := z_{T(\cdot)x,\phi}$ for all $x \in X$. Then (i) and (ii) follow immediately from Lemma 2.1.

(iii) Let $\phi, \psi \in C_b[0,\infty)^*$, $x \in X$, $x^* \in X^*$, and t > 0. Then we have

$$\begin{aligned} \langle A_{\phi}T(t)x, x^* \rangle &= \phi(\langle T(\cdot)T(t)x, x^* \rangle) = \phi(\langle T(t)T(\cdot)x, x^* \rangle) \\ &= \phi(\langle T(\cdot)x, (T(t))^*x^* \rangle) = \langle A_{\phi}x, (T(t))^*x^* \rangle \\ &= \langle T(t)A_{\phi}x, x^* \rangle \end{aligned}$$

and so T(t) and A_{ϕ} commute. Therefore

$$\begin{aligned} \langle A_{\phi}A_{\psi}x, x^* \rangle &= \phi(\langle T(\cdot)A_{\psi}x, x^* \rangle) = \phi(\langle A_{\psi}T(\cdot)x, x^* \rangle) \\ &= \phi(\langle T(\cdot)x, (A_{\psi})^*x^* \rangle) = \langle A_{\phi}x, (A_{\psi})^*x^* \rangle \\ &= \langle A_{\psi}A_{\phi}x, x^* \rangle. \end{aligned}$$

This proves that A_{ϕ} and A_{ψ} commute.

Remark 2.3. Since every mean on $C_{ub}(S)$ can be extended to a mean on $C_b(S)$, Lemma 2.1 and Corollary 2.2 still hold if f is bounded and uniformly continuous on S and $C_b(S)$ is replaced by $C_{ub}(S)$.

The following mean ergodic theorem is proved in [5, Theorem 1].

Theorem 2.4. Let $\{A_{\alpha}\}$ be an A-ergodic net. Then the operator P, defined by

$$\begin{cases} D(P) := \{ x \in X; s - \lim_{\alpha} A_{\alpha} x \text{ exists} \}, \\ Px = s \text{-} \lim_{\alpha} A_{\alpha} x, x \in D(P), \end{cases}$$

is a linear projection with norm $||P|| \leq M$, range $R(P) = \bigcap_{A \in \mathcal{A}} N(A)$, null space $N(P) = \overline{\sum_{A \in \mathcal{A}} R(A)}$, and domain

$$D(P) = \bigcap_{A \in \mathcal{A}} N(A) \oplus \overline{\sum_{A \in \mathcal{A}} R(A)} = \{x \in X; \{A_{\alpha}x\} \text{ has a weak cluster point}\}.$$

Here $\sum_{A \in \mathcal{A}} R(A)$ *denotes the linear space spanned by the spaces* $R(A), A \in \mathcal{A}$ *.*

Let P and B_1 be the operators defined respectively by

$$\begin{cases} D(P) := \{x \in X; \lim_{\alpha} A_{\alpha} x \text{ exists}\}; \\ Px := \lim_{\alpha} A_{\alpha} x \text{ for } x \in D(P), \end{cases} \begin{cases} D(B_1) := \{y \in X; \lim_{\alpha} B_{\alpha} y \text{ exists}\}; \\ B_1 x := \lim_{\alpha} B_{\alpha} y \text{ for } y \in D(B_1). \end{cases}$$

 $\{A_{\alpha}\}$ is said to be strongly (resp. uniformly) ergodic if D(P) = X and $A_{\alpha}x \to Px$ for all $x \in X$ (resp. $||A_{\alpha} - P|| \to 0$).

In [7, Theorem 1.1, Corollary 1.4 and Remark 1.7] we proved the following theorem.

Theorem 2.5. (Strong Ergodic Theorem). Under conditions (C1) - (C4) the following are true.

- (i) P is a bounded linear projection with range R(P) = N(A), null space $N(P) = \overline{R(A)}$, and domain $D(P) = N(A) \oplus \overline{R(A)} = \{x \in X; \{A_{\alpha}x\} \text{ has a weak cluster point}\}.$
- (ii) $\underline{B_1}$ is the inverse operator A_1^{-1} of the restriction $A_1 := A | \overline{R(A)}$ of A to $\overline{R(A)}$; it has range $R(\underline{B_1}) = D(A_1) = D(A) \cap \overline{R(A)}$ and domain $D(B_1) = R(A_1) = A(D(A) \cap \overline{R(A)})$. Moreover, for each $y \in D(B_1)$, B_1y is the unique solution of the functional equation Ax = y in $\overline{R(A)}$.

Theorem 2.6. (Uniform Ergodic Theorem [8]). Under conditions (C1) - (C3), we have: D(P) = X and $||A_{\alpha} - P|| \to 0$ if and only if $||B_{\alpha}|_{R(A)}|| = O(1)$, if and only if B_1 is bounded and $||B_{\alpha}|_{R(A)} - B_1|| \to 0$, if and only if R(A) (or $R(A_1)$) is closed, if and only if $R(A^2)$ (or $R(A_1^2)$) is closed, if and only if $X = N(A) \oplus R(A)$.

Let X be a Banach space with norm $\|\cdot\|_X$, and Y a submanifold with seminorm $\|\cdot\|_Y$. The *K*-functional is defined by

$$K(t,x) := K(t,x,X,Y,\|\cdot\|_Y) = \inf_{y \in Y} \{\|x-y\|_X + t\|y\|_Y\}.$$

If Y is a Banach space with norm $\|\cdot\|_Y$, the *completion of* Y *relative to* X is defined as

 $Y_X^{\sim}:=\{x\in X: \exists \{x_m\}\subset Y \text{such that} \lim_{m\to\infty}\|x_m-x\|_X=0 \text{ and } \sup\|x_m\|_Y<\infty\}.$

K(t, x) is a bounded, continuous, monotone increasing and subadditive function of t for each $x \in X$, and $K(t, x, X, Y, \|\cdot\|_Y) = O(t) (t \to 0^+)$ if and only if $x \in Y_X^-$.

Let $X_1 := \overline{R(A)}$ and $X_0 := D(P) = N(A) \oplus X_1$. Since the operator $B_1 : D(B_1) \subset X_1 \to X_1$ is closed, its domain $D(B_1) (= R(A_1))$ is a Banach space with respect to the norm $||x||_{B_1} := ||x|| + ||B_1x||$.

Let $B_0: D(B_0) \subset X_0 \to X_0$ be the operator $B_0:= 0 \oplus B_1$. Then its domain

$$D(B_0) (= N(A) \oplus D(B_1) = N(A) \oplus A(D(A) \cap R(A)))$$

is a Banach space with norm $||x||_{B_0} := ||x|| + ||B_0x||$, and $[D(B_0)]_{X_0} = N(A) \oplus [D(B_1)]_{X_1}$.

The following theorem from [9, 10] is concerned with optimal convergence and non-optimal convergence rates of ergodic limits and approximate solutions.

Theorem 2.7. Under conditions (C1) - (C5) the following statements hold. (i) For $x \in X_0 = N(A) \oplus \overline{R(A)}$, one has:

$$||A_{\alpha}x - Px|| = O(f(\alpha)) \Leftrightarrow K(e(\alpha), x, X_0, D(B_0), || \cdot ||_{B_0}) = O(f(\alpha))$$
$$\Leftrightarrow x \in [D(B_0)]_{X_0} \text{ (in case } f = e).$$

(ii) For $y \in D(B_1) = R(A_1)$ one has:

$$||B_{\alpha}y - B_{1}y|| = O(f(\alpha)) \Leftrightarrow K(e(\alpha), B_{1}y, X_{1}, D(B_{1}), ||\cdot||_{B_{1}}) = O(f(\alpha))$$
$$\Leftrightarrow \in A(D(A) \cap [D(B_{1})]_{X_{1}}) \text{ (in case } f = e).$$

3. MAIN RESULTS

We first deduce from Theorem 2.4 the following generalized version of the Kido-Takahashi ergodic theorem, in which a more general net $\{\phi_{\alpha}\}$ of linear functionals has replaced the net $\{\mu_{\alpha}\}$ of means in Theorem 1.1.

Theorem 3.1. If S is a uniformly bounded semigroup satisfying (S1)-(S3), and if $\{\phi_{\alpha}\}$ is a bounded net in $C_b(S)^*$ or $C_{ub}(S)^*$ satisfying $\phi_{\alpha}(1) = 1$ for all α , w^* - $\lim_{\alpha} (l_t^* \phi_{\alpha} - \phi_{\alpha}) = 0$ and $\lim_{\alpha} ||r_t^* \phi_{\alpha} - \phi_{\alpha}|| = 0$ in $C_b(S)^*$ for all $t \in S$, then the net $\{A_{\alpha}\}$ $(A_{\alpha} := A_{\phi_{\alpha}})$ converges strongly to a linear projection P on X with range $R(P) = F(S) := \bigcap_{s \in S} N(T(s) - I)$, null space $N(P) = \overline{\sum_{s \in S} R(T(s) - I)}$, and domain $D(P) = X = F(S) \oplus \overline{\sum_{s \in S} R(T(s) - I)}$.

Proof. (a) We prove the case that $\{\phi_{\alpha}\} \subset C_b(S)^*$; the proof for the case $\{\phi_{\alpha}\} \subset C_{ub}(S)^*$ is similar. Suppose $||T(s)|| \leq M$ for all $s \in S$. Take $\mathcal{A} = \{T(s) - I; s \in S\}$. Then $||A_{\alpha}|| \leq M \sup_{\alpha} ||\phi_{\alpha}||$ for all α , by Corollary 2.2(ii). Under the assumptions of the theorem we verify conditions (b) and (c) of Definition 1.2.

(b) If $x \in \bigcap_{A \in \mathcal{A}} N(A) = F(\mathcal{S})$, then T(s)x = x for all $s \in S$, so that $A_{\alpha}x = x$ for all α . On the other hand, clearly we have

$$(A_{\alpha}-I)x \in \overline{\operatorname{co}}[\{(T(s)-I)x; s \in S\} \cup \{-(T(s)-I)x; s \in S\}] \subset \overline{\sum_{s \in S} R(T(s)-I)} = \frac{1}{2} \sum_{s \in S} \frac{1}{2} \sum$$

for all $x \in X$ and α . Hence $R(A_{\alpha} - I) \subset \overline{\sum_{s \in S} R(T(s) - I)}$ for all α .

(c) The assumption that $w^* - \lim_{\alpha} (l_t^* \phi_{\alpha} - \overline{\phi_{\alpha}}) = 0$ in $C_b(S)^*$ for all $t \in S$ implies that

$$\begin{split} \langle (T(t) - I)A_{\alpha}x, x^* \rangle &= \langle A_{\alpha}x, (T(t) - I)^*x^* \rangle = \phi_{\alpha}(\langle T(\cdot)x, (T(t) - I)^*x^* \rangle) \\ &= \phi_{\alpha}(\langle (T(t\cdot) - T(\cdot))x, x^* \rangle) = \phi_{\alpha}((l_t - I)\langle T(\cdot)x, x^* \rangle) \\ &= (l_t^*\phi_{\alpha} - \phi_{\alpha})(\langle T(\cdot)x, x^* \rangle) \to 0 \end{split}$$

for all $x \in X$, $x^* \in X^*$, and $t \in S$. Hence w- $\lim_{\alpha} (T(t) - I)A_{\alpha}x = 0$ for all $x \in X$ and $t \in S$.

On the other hand, the assumption that $\lim_{\alpha} ||r_t^* \phi_{\alpha} - \phi_{\alpha}|| = 0$ in $C_b(S)^*$ for all $t \in S$ implies

$$\begin{aligned} |\langle A_{\alpha}(T(t) - I)x, x^* \rangle| &= |\phi_{\alpha}(\langle T(\cdot)(T(t) - I)x, x^* \rangle)| \\ &= |\phi_{\alpha}((r_t - I)\langle T(\cdot)x, x^* \rangle)| = |(r_t^*\phi_{\alpha} - \phi_{\alpha})(\langle T(\cdot)x, x^* \rangle)| \\ &\leq ||r_t^*\phi_{\alpha} - \phi_{\alpha}||M||x|| ||x^*|| \end{aligned}$$

for all $x \in X$, $x^* \in X^*$, and $t \in S$. Hence $||A_{\alpha}(T(t) - I)|| \le ||r_t^* \phi_{\alpha} - \phi_{\alpha}||M \to 0$ for all $t \in S$.

Thus $\{A_{\alpha}\}$ is an \mathcal{A} -ergodic net, and it follows from Theorem 2.4 that $\{A_{\alpha}\}$ converges strongly to a linear projection P on X with range $R(P) = F(\mathcal{S})$, null space $N(P) = \sum_{s \in S} R(T(s) - I)$, and domain

$$D(P) = F(\mathcal{S}) \oplus \overline{\sum_{s \in S} R(T(s) - I)} = \{x \in X; \{A_{\alpha}x\} \text{ has a weak cluster point}\}.$$

Since $A_{\alpha}x \in \overline{\operatorname{co}}(Sx)$, condition (S3) implies that $\{A_{\alpha}x\}$ has a weak cluster point for every $x \in X$. Thus D(P) = X. This proves Theorem 3.1.

In particular, if $S = [0, \infty)$, then a semigroup $S = \{T(s); s \ge 0\}$ satisfying (S1)-(S3) has to be strongly continuous, i.e., it is a (C_0) -semigroup. Since this semigroup S is commutative, the assumption in Theorem 2.1 on the net $\{\phi_{\alpha}\}$ becomes

(*0) $\lim_{\alpha} ||r_t^* \phi_{\alpha} - \phi_{\alpha}|| = 0$ in $C_b[0, \infty)^*$ for all $t \ge 0$. In this case, $\{\phi_{\alpha}\}$ is said to be *strongly regular* (cf. [3]).

Let A be the infinitesimal generator of $T(\cdot)$. Using the facts that $x \in N(A)$ if and only if T(s)x = x for all $s \ge 0$, $Ax = \lim_{t\to 0^+} t^{-1}(T(t) - I)x$ for $x \in D(A)$, and $(T(t) - I)x = A \int_0^t T(s)x ds$ for all $x \in X$, we can formulate the following corollary.

Corollary 3.2. Let $\{T(s); s \ge 0\}$ be a uniformly bounded (C_0) -semigroup with generator A such that all orbits are relatively weakly compact in X, and let $\{\phi_{\alpha}\}$ be a bounded strongly regular net in $C_b[0,\infty)^*$ or $C_{ub}(S)^*$ such that $\phi_{\alpha}(1) = 1$ for all α . Then the net $\{A_{\alpha}\}$ converges strongly to a linear projection P on X with range $\underline{R}(P) = N(A)$, null space $N(P) = \overline{R(A)}$, and domain $D(P) = X = N(A) \oplus \overline{R(A)}$.

Note that $C_{ub}[0,\infty)$ is invariant under r_t , and the restrictions of r_t , $t \ge 0$, to $C_{ub}[0,\infty)$ form a (C_0) -semigroup of operators on $C_{ub}[0,\infty)$; its infinitesimal generator is the differentiation operator \mathcal{D} , defined by $\mathcal{D}f(t) = f'(t)$ for differentiable f in $C_{ub}[0,\infty)$. Our uniform ergodic theorem and strong ergodic theorem with rates for C_0 -semigroups will be formulated under the following assumptions on a net $\{\phi_\alpha\}$ in $C_{ub}[0,\infty)^*$:

- (*1) $\limsup_{\substack{t \to 0^+ \\ \phi_{\alpha} \parallel \to 0;}} t^{-1} \| r_t^* \phi_{\alpha} \phi_{\alpha} \| < \infty \text{ for all } \alpha \text{ and } e(\alpha) := \limsup_{t \to 0^+} t^{-1} \| r_t^* \phi_{\alpha} \phi_{\alpha} \|$
- (*2) There exists a companion net $\{\psi_{\alpha}\} \subset C_{ub}[0,\infty)^*$ such that $\overline{\psi_{\alpha} \circ \mathcal{D}} = \delta \phi_{\alpha}$, where δ is the mean on $C_{ub}[0,\infty)$ defined by $(\delta f) := f(0)$ for all $f \in C_{ub}[0,\infty)$.

Note that condition (*1) is stronger than condition (*0) and under condition (*1) we actually have $\lim_{\alpha \to +} t^{-1} ||r_t^* \phi_\alpha - \phi_\alpha|| = e(\alpha)$ (see Proposition 3.4(iii)).

For convenience of application, we give a condition which is equivalent to (*1) and implies condition (C3) of Definition 1.3. We need the following lemma which was essentially proved in [6, Theorem 3.2.1].

Lemma 3.3. For $x^* \in X^*$, the following assertions are equivalent:

- (a) $x^* \in D(A^*);$
- (b) $\limsup_{t \to 0^+} t^{-1} \|T^*(t)x^* x^*\| < \infty;$
- (c) $\liminf_{t \to 0^+} t^{-1} \| T^*(t) x^* x^* \| < \infty.$

Moreover, we have

$$\begin{aligned} \|A^*x^*\| &\leq \liminf_{t \to 0^+} t^{-1} \|T^*(t)x^* - x^*\| \leq \limsup_{t \to 0^+} t^{-1} \|T^*(t)x^* - x^*\| \\ &\leq \limsup_{t \to 0^+} \|T(t)\| \|A^*x^*\|. \end{aligned}$$

Proof. (b) \Rightarrow (c) is obvious.

(a) \Rightarrow (b). If $x^* \in D(A^*)$, then we have for every $x \in X$ and t > 0

$$\begin{aligned} t^{-1} |\langle x, T^*(t)x^* - x^* \rangle| &= t^{-1} |\langle (T(t) - I)x, x^* \rangle| = t^{-1} |\langle A(1 * T(t))x, x^* \rangle| \\ &\leq t^{-1} \|A^*x^*\| \|1 * T(t)\| \|x\| \\ &\leq \sup\{\|T(s)\|; 0 < s \le t\} \|A^*x^*\| \|x\|. \end{aligned}$$

Hence

$$\limsup_{t \to 0^+} t^{-1} \|T^*(t)x^* - x^*\| \le \limsup_{t \to 0^+} \|T(t)\| \|A^*x^*\|.$$

(c) \Rightarrow (a). Suppose $\liminf_{t\to 0^+} t^{-1} ||T^*(t)x^* - x^*|| < \infty$. Since $t^{-1}(1*T(t))(t) \to I$ strongly as $t \downarrow 0$, we have for every $x \in D(A)$

$$\begin{split} |\langle Ax, x^* \rangle| &= \lim_{t \to 0^+} t^{-1} |\langle (1 * T(t)) Ax, x^* \rangle| = \lim_{t \to 0^+} t^{-1} |\langle T(t) x - x, x^* \rangle| \\ &= \lim_{t \to 0^+} t^{-1} |\langle x, T^*(t) x^* - x^* \rangle| \le \liminf_{t \to 0^+} t^{-1} \|T^*(t) x^* - x^*\| \|x\|. \end{split}$$

Therefore $x^* \in D(A^*)$ and $||A^*x^*|| \le \liminf_{t \to 0^+} t^{-1} ||T^*(t)x^* - x^*||.$

Proposition 3.4.

- (i) For a linear functional $\phi \in C_{ub}[0,\infty)^*$, $\limsup_{t\to 0^+} t^{-1} \|r_t^*\phi \phi\| < \infty$ if and only if $\liminf_{t\to 0^+} t^{-1} \|r_t^*\phi - \phi\| < \infty$, if and only if $\overline{\phi \circ \mathcal{D}} \in C_{ub}[0,\infty)^*$ (i.e., $\phi \in D(\mathcal{D}^*)$). In this case, $\limsup_{t\to 0^+} t^{-1} \|r_t^*\phi - \phi\| = \liminf_{t\to 0^+} t^{-1} \|r_t^*\phi - \phi\| = \|\phi \circ \mathcal{D}\|$.
- (ii) A net $\{\phi_{\alpha}\} \subset C_{ub}[0,\infty)^*$ satisfies the condition (*1) if and only if $\overline{\phi_{\alpha} \circ \mathcal{D}} \in C_{ub}[0,\infty)^*$ eventually and $\|\phi_{\alpha} \circ \mathcal{D}\| = e(\alpha)$.
- (iii) If $\{\phi_{\alpha}\}$ satisfies the condition (*1), then it satisfies condition (*0) and the net $\{A_{\alpha}\}$ satisfies condition (C3) of Definition 1.3.

Proof. Since $\{r_t; t \ge 0\}$ is a contraction C_0 -semigroup on $C_{ub}[0, \infty)^*$,

- (i) follows from Lemma 3.3.
- (ii) follows from (i).
- (iii) Since $\{r_t; t \ge 0\}$ is a (C_0) -semigroup on $C_{ub}[0, \infty)$, by (ii) we have for all $f \in C_{ub}[0, \infty)$

$$\|(r_t^*\phi_\alpha - \phi_\alpha)f\|_{\infty} = \|\phi_\alpha((r_t - I)f)\|_{\infty} = \|\phi_\alpha(\mathcal{D}\int_0^t r_s f ds)\|_{\infty}$$
$$\leq \|\phi_\alpha \circ \mathcal{D}\|\|\int_0^t r_s f ds)\|_{\infty} = e(\alpha)\|\int_0^t r_s ds\|\|f\|_{\infty}.$$

Hence

$$\|r_t^*\phi_\alpha - \phi_\alpha\| \le e(\alpha)\| \int_0^t r_s ds\| \to 0 \text{ for all } t \ge 0.$$

To verify condition (C3) we see that

$$\begin{aligned} |\langle A_{\alpha}t^{-1}(T(t)-I)x, x^*\rangle| &= |t^{-1}\phi_{\alpha}(\langle T(\cdot)(T(t)-I)x, x^*\rangle)| \\ &= |t^{-1}\phi_{\alpha}((r_t-I)\langle T(\cdot)x, x^*\rangle)| = t^{-1}|(r_t^*\phi_{\alpha}-\phi_{\alpha})(\langle T(\cdot)x, x^*\rangle)| \\ &\leq t^{-1}||r_t^*\phi_{\alpha}-\phi_{\alpha}||M||x|||x^*|| \end{aligned}$$

for all $x \in X$, $x^* \in X^*$, and t > 0. Hence $||A_{\alpha}t^{-1}(T(t) - I)x|| \le t^{-1}||r_t^*\phi_{\alpha} - \phi_{\alpha}||M||x||$ for all $x \in X$ and t > 0. If $x \in D(A)$, then

$$||A_{\alpha}Ax|| \leq ||A_{\alpha}(t^{-1}(T(t)-I)x - Ax)|| + ||A_{\alpha}t^{-1}(T(t)-I)x||$$

$$\leq M ||t^{-1}(T(t)-I)x - Ax|| + t^{-1}||r_t^*\phi_{\alpha} - \phi_{\alpha}||M||x||.$$

This being true for all t > 0 and all $x \in D(A)$, it follows that $A_{\alpha}A$ has a bounded closure $\overline{A_{\alpha}A}$ on X with norm $\|\overline{A_{\alpha}A}\| \leq \limsup_{t \to 0^+} t^{-1} \|r_t^*\phi_{\alpha} - \phi_{\alpha}\|M$.

By Corollary 2.2(iii), we see that, for $x \in D(A)$,

$$\lim_{t \to 0^+} t^{-1} (T(t) - I) A_{\alpha} x = A_{\alpha} \left(\lim_{t \to 0^+} t^{-1} (T(t) - I) x \right) = A_{\alpha} A x.$$

Hence $A_{\alpha}x \in D(A)$ and $AA_{\alpha}x = A_{\alpha}Ax$ for all $x \in D(A)$. Since D(A) is dense in X, for any $x \in X$ there is a sequence $\{x_n\}$ in D(A) such that $x_n \to x$. Since $A_{\alpha}x_n \to A_{\alpha}x$ and $AA_{\alpha}x_n = A_{\alpha}Ax_n \to \overline{A_{\alpha}Ax}$ as $n \to \infty$, it follows from the closedness of A that $A_{\alpha}x \in D(A)$ and $AA_{\alpha}x = \overline{A_{\alpha}Ax}$. We have shown that $R(A_{\alpha}) \subset D(A)$ and $A_{\alpha}A \subset AA_{\alpha} = \overline{A_{\alpha}A}$. The assumption (*1) implies that $\|AA_{\alpha}\| = O(e(\alpha))$. This verifies (C3).

Next, we observe consequence of condition (*2). For this we need the next proposition.

Proposition 3.5. Let $T(\cdot)$ be a uniformly bounded (C_0) -semigroup on a Banach space with infinitesimal generator A. Then

(i) For every $x \in X$ and $x \in X^* \langle T(s)x, x^* \rangle$ is bounded and uniformly continuous on $s \ge 0$, i.e., $\langle T(\cdot)x, x^* \rangle \in C_{ub}[0, \infty)$. Sen-Yen Shaw and Yuan-Chuan Li

- (ii) $\langle T(\cdot)x, x^* \rangle \in D(\mathcal{D})$ and $\mathcal{D}\langle T(\cdot)x, x^* \rangle = \langle T(\cdot)Ax, x^* \rangle$ for all $x \in D(A)$ and $x^* \in X^*$.
- (iii) Let $\phi, \psi \in C_{ub}[0,\infty)^*$ be such that $\overline{\psi \circ D} = \delta \phi$. Then $R(A_{\psi}) \subset D(A)$ and $A_{\psi}A \subset AA_{\psi} = I - A_{\phi}$.

Proof.

(i) Let $x \in X$ and $x \in X^*$ be arbitrary. It is clear that $|\langle T(s)x, x^* \rangle| \le \sup_{s \ge 0} ||T(s)|| \cdot ||x|| \cdot ||x^*|| < \infty$ for all $s \ge 0$. For every $t, s \ge 0$, we have

$$\begin{split} |\langle T(t)x, x^* \rangle - \langle T(s)x, x^* \rangle| &= |\langle T(t)x - T(s)x, x^* \rangle| \\ &\leq \sup_{r \geq 0} ||T(r)|| \cdot ||T(|t-s|)x|| \cdot ||x^*|| \to 0 \text{ as } |t-s| \to 0. \end{split}$$

This proves $\langle T(s)x, x^* \rangle$ is uniformly continuous on $s \ge 0$ and so (i) holds. (ii) holds because for $x \in D(A)$ and $x^* \in X^*$

$$\begin{aligned} |t^{-1}(r_t - I)\langle T(\cdot)x, x^* \rangle &- \langle T(\cdot)Ax, x^* \rangle| \\ &= |t^{-1}(\langle T(\cdot + t)x, x^* \rangle - \langle T(\cdot)x, x^* \rangle) - \langle T(\cdot)Ax, x^* \rangle| \\ &= |\langle T(\cdot)[t^{-1}(T(t)x - x) - Ax], x^* \rangle| \\ &\leq \sup_{s \ge 0} ||T(s)|| \cdot ||t^{-1}(T(t)x - x) - Ax|| \cdot ||x^*|| \to 0 \text{ as } t \downarrow 0. \end{aligned}$$

(iii) Let $x \in D(A)$. By (ii) and Corollary 2.2(ii), we have $\langle T(\cdot)x, x^* \rangle \in D(\mathcal{D})$ and

$$\psi(\mathcal{D}\langle T(\cdot)x, x^*\rangle) = \psi(\langle T(\cdot)Ax, x^*\rangle) = \langle A_{\psi}Ax, x^*\rangle$$

for every $x^* \in X^*$. On the other hand, the assumption implies

$$\psi \mathcal{D}(\langle T(\cdot)x, x^* \rangle) = (\delta - \phi)(\langle T(\cdot)x, x^* \rangle) = \langle x - A_{\phi}x, x^* \rangle.$$

Therefore we have $A_{\psi}Ax = (I - A_{\phi})x$ for all $x \in D(A)$. Clearly, it follows from Corollary 2.2(iii) and the closedness of A that $A_{\psi}Ax = AA_{\psi}x$ for all $x \in D(A)$. Hence $AA_{\psi}x = A_{\psi}Ax = (I - A_{\phi})x$ for all $x \in D(A)$. Again by the closedness of A and the fact that D(A) is dense in X we obtain that $R(A_{\phi}) \subset D(A)$ and $A_{\psi}A \subset AA_{\psi} = I - A_{\phi}$.

It follows from (iii) of Proposition 3.5 that (*2) implies $R(B_{\alpha}) \subset D(A)$ and $B_{\alpha}A \subset AB_{\alpha} = I - A_{\alpha}$. We have shown that conditions (*1) and (*2) yield conditions (C3) and (C2), respectively. Therefore we can immediately deduce the following Theorems 3.6, 3.7, and 3.8 from Theorems 2.6(ii), 2.7, and 2.8, respectively.

Let $A_{\alpha} := A_{\phi_{\alpha}}$ and $B_{\alpha} := A_{\psi_{\alpha}}$. The following theorem is concerned with the convergence of approximate solutions $B_{\alpha}y$ of Ax = y.

Theorem 3.6. Let $\{T(s); s \ge 0\}$ be a uniformly bounded (C_0) -semigroup with generator A such that all orbits are relatively weakly compact in X. Let $\{\phi_{\alpha}\}$ be a bounded net in $C_{ub}[0,\infty)^*$ which satisfies conditions (*1) and (*2). Further, suppose $B_{\alpha}^*x^* = \varphi(\alpha)x^*$ for all $x^* \in R(A)^{\perp}$, with $|\varphi(\alpha)| \to \infty$, and that $||A_{\alpha}x|| = O(f(\alpha))$ (resp. $o(f(\alpha))$) implies $||B_{\alpha}x|| = O(\frac{f(\alpha)}{e(\alpha)})$ (resp. $o(\frac{f(\alpha)}{e(\alpha)})$). Then the operator B_1 , defined by $B_1y := \lim_{\alpha} B_{\alpha}y$ with the natural domain $D(B_1)$, is the inverse operator A_1^{-1} of the restriction $A_1 := A|\overline{R(A)}$ of A to $\overline{R(A)}$; it has range $R(B_1) = D(A_1) = D(A)$ and domain $D(B_1) = R(A_1) = R(A)$. Thus, for each $y \in R(A)$, B_1y is the unique solution of the functional equation Ax = y in $\overline{R(A)}$.

The following is a uniform ergodic theorem.

Theorem 3.7. Let $\{T(s); s \ge 0\}$ be a uniformly bounded (C_0) -semigroup with generator A such that all orbits are relatively weakly compact in X. Let $\{\phi_{\alpha}\}$ be a bounded net in $C_{ub}[0,\infty)^*$ which satisfies conditions (*1) and (*2). Then $||A_{\alpha} - P|| \to 0$ if and only if B_1 is bounded and $||B_{\alpha}|_{R(A)} - B_1|| \to 0$, if and only if R(A) is closed. The following theorem is about the convergence rates of $A_{\alpha}x$

and $B_{\alpha}y$.

Theorem 3.8. Let $\{T(s); s \ge 0\}$ be a uniformly bounded (C_0) -semigroup with generator A such that all orbits are relatively weakly compact in X. Let $\{\mu_{\alpha}\}$ be a bounded net in $C_{ub}[0,\infty)^*$ which satisfies conditions (*1) and (*2). Further, suppose $B_{\alpha}^*x^* = \varphi(\alpha)x^*$ for all $x^* \in R(A)^{\perp}$, with $|\varphi(\alpha)| \to \infty$, and that $||A_{\alpha}x|| = O(f(\alpha))$ (resp. $o(f(\alpha))$) implies $||B_{\alpha}x|| = O(\frac{f(\alpha)}{e(\alpha)})$ (resp. $o(\frac{f(\alpha)}{e(\alpha)})$). Then the following statements hold.

(i) For $x \in X$,

$$\|A_{\alpha}x - Px\| = O(f(\alpha)) \Leftrightarrow K(e(\alpha), x, X_0, D(B_0), \|\cdot\|_{B_0}) = O(f(\alpha))$$
$$\Leftrightarrow x \in [D(B_0)]_{X_0} \text{ (in case } f = e).$$

(*ii*) For $y \in D(B_1) = R(A)$,

$$||B_{\alpha}y - B_{1}y|| = O(f(\alpha)) \Leftrightarrow K(e(\alpha), B_{1}y, X_{1}, D(B_{1}), || \cdot ||_{B_{1}}) = O(f(\alpha))$$
$$\Leftrightarrow y \in A(D(A) \cap [D(B_{1})]_{X_{1}}) \text{ (in case } f = e).$$

4. EXAMPLES

Example 1. Let $S = [0, \infty)$, and for a fixed $\beta > 0$ and each t > 0 let $\mu_t \in C_b[0,\infty)^*$ be a mean defined by $\mu_t(f) := (j_\beta * f)(t)/j_{\beta+1}(t)$, and let $\psi_t \in C_b[0,\infty)^*$ be a linear functional defined by $\psi_t(f) = -(j_{\beta+1} * f)(t)/j_{\beta+1}(t)$, $f \in C_b[0,\infty)$, where $j_\beta(t) = t^\beta/\Gamma(\beta+1)$. We consider the net $\{\mu_t\}_{t\to\infty}$. Since

$$\begin{aligned} |(\mu_t \circ \mathcal{D})f| &= |\mu_t(f')| = \frac{|(j_\beta * f')(t)|}{j_{\beta+1}(t)} = \frac{|(j_{\beta-1} * (f - f(0))(t)|}{j_{\beta+1}(t)} \\ &\leq 2||f||_{\infty} \frac{j_{\beta}(t)}{j_{\beta+1}(t)} = 2||f||_{\infty} \frac{\beta+1}{t} \end{aligned}$$

for all differentiable $f \in C_{ub}[0,\infty)$, we have $\|\mu_t \circ \mathcal{D}\| = O(t^{-1})$ $(t \to \infty)$ and hence it follows from Proposition 3.4 that the net $\{\mu_t\}_{t\to\infty}$ satisfies condition (*1) with $e(t) = t^{-1}$. Also (*2) is satisfied:

$$(\psi_t \circ \mathcal{D})f = -\frac{(j_{\beta+1} * f')(t)}{j_{\beta+1}(t)} = -\frac{(j_\beta * (f - f(0))(t)}{j_{\beta+1}(t)} = f(0) - \mu_t f = (\delta - \mu_t)f.$$

Since

$$(j_{\beta} * \langle T(\cdot)x, x^* \rangle)(t) / j_{\beta+1}(t) = \left\langle \frac{(j_{\beta} * T(\cdot)x)(t)}{j_{\beta+1}(t)}, x^* \right\rangle$$

and

$$(j_{\beta+1} * \langle T(\cdot)x, x^* \rangle)(t) / j_{\beta+1}(t) = \left\langle \frac{(j_{\beta+1} * T(\cdot)x)(t)}{j_{\beta+1}(t)}, x^* \right\rangle$$

for all $x^* \in X^*$. Thus the operator A_t corresponding to the mean μ_t is the Cesàro mean $C_t^{\beta+1}$ of order $\beta + 1$ as defined by

$$C_t^{\beta+1}x = \frac{(j_\beta * T(\cdot)x)(t)}{j_{\beta+1}(t)} = \frac{\beta+1}{t^{\beta+1}} \int_0^t (t-s)^\beta T(s)xds, \ x \in X,$$

and $B_t = -(j_{\beta+1}(t))^{-1}(j_{\beta+1} * T(\cdot))(t) = -\frac{t}{\beta+2}C_t^{\beta+1}$. If $x^* \in R(A)^{\perp}$, then for all $x \in X$ and $t \ge 0$ we have

$$\langle x, T^*(t)x^* - x^* \rangle = \langle T(t)x - x, x^* \rangle = \langle A(j_0 * T(\cdot))(t)x, x^* \rangle = 0$$

so that

$$\begin{aligned} \langle x, B_t^* x^* \rangle &= \left\langle (j_{\beta+1}(t))^{-1} (j_{\beta+1} * T(\cdot))(t) x, x^* \right\rangle \\ &= (j_{\beta+1}(t))^{-1} (j_{\beta+1} * \langle x, T^*(\cdot)) x^* \rangle)(t) \\ &= \left\langle x, (j_{\beta+1}(t))^{-1} (j_{\beta+1} * 1)(t) x^* \right\rangle = \left\langle x, \frac{t}{\beta+2} x^* \right\rangle. \end{aligned}$$

Hence $B_t^* x^* = \frac{t}{\beta+2} x^*$ for all $x^* \in R(A)^{\perp}$ with $\frac{t}{\beta+2} \to \infty$ as $t \to \infty$. It can also been shown that if $\|C_t^{\beta+1}x\| = O(t^{-\theta})$ (resp. $o(t^{-\theta})$) with $0 \le \theta \le 1$, then $\|B_t x\| = O(t^{-\theta}/t^{-1})$ (resp. $o(t^{-\theta}/t^{-1})$) (cf. [9, 10]). Hence conditions (C4) and (C5) are satisfied.

Example 2. Let $\mu_{\lambda}(f) := \lambda L_{\lambda}(f) := \lambda \int_{0}^{\infty} e^{-\lambda t} f(t) dt$ and $\psi_{\lambda}(f) := -L_{\lambda}(f) = -\int_{0}^{\infty} e^{-\lambda t} f(t) dt$ for $f \in C_{b}[0, \infty)$ and $\lambda > 0$. Since

$$\begin{aligned} |(\mu_{\lambda} \circ \mathcal{D})f| &= |\mu_{\lambda}(f')| = \left| \lambda \int_{0}^{\infty} e^{-\lambda t} f'(t) dt \right| \\ &= \left| -\lambda f(0) + \lambda^{2} \int_{0}^{\infty} e^{-\lambda t} f(t) dt \right| \le 2\lambda \|f\|_{\infty} \end{aligned}$$

for all differentiable $f \in C_{ub}[0,\infty)$, it follows from Proposition 3.4 that the net $\{\mu_{\lambda}\}_{\lambda\to 0^+}$ satisfies condition (*1) with $e(\lambda) = \lambda$. Also (*2) is satisfied:

$$(\psi_{\lambda} \circ \mathcal{D})f = -L_{\lambda}f' = f(0) - \lambda L_{\lambda}f = (I - \mu_{\lambda})f.$$

It is easy to see that the operator A_{λ} corresponding to the mean μ_{λ} is $A_{\lambda} = \lambda L_{\lambda}(T(\cdot)) = \lambda(\lambda - A)^{-1}$ and the operator B_{λ} corresponding to ψ_{λ} is $B_{\lambda} = -(\lambda - A)^{-1}$. We also know that conditions (C4) and (C5) are satisfied (cf. [9, 10]).

As applications of Corollary 3.2, and Theorems 3.6 - 3.8 to the above two examples of nets of means, the following known theorems cf. [8, 9, 10]) can be formulated.

Theorem 4.1. Let $\{T(s); s \ge 0\}$ be a uniformly bounded (C_0) -semigroup with generator A such that all orbits are relatively weakly compact in X.

(i) $\lim_{t\to\infty} C_t^{\beta} x = \lim_{\lambda\to 0^+} \lambda(\lambda - A)^{-1} x = Px$ for all $x \in X = D(P) = N(A) \oplus \overline{R(A)}$ and for all $0 \le \theta \le 1$

$$\|C_t^{\beta} x - Px\| = O(t^{-\theta}) \ (t \to \infty)$$

$$\Leftrightarrow \|\lambda(\lambda - A)^{-1} x - Px\| = O(\lambda^{\theta}) \ (\lambda \to 0^+)$$

$$\Leftrightarrow K(t^{-1}, x, X_0, D(B_0), \|\cdot\|_{B_0}) = O(t^{-\theta}) \ (t \to \infty)$$

$$\Leftrightarrow x \in [D(B_0)]_{X_0} \ (in \ case \ \theta = 1);$$

(ii) For $y \in D(B_1) = R(A_1) = A(D(A) \cap \overline{R(A)})$, we have $-\lim_{t \to \infty} \frac{t}{\beta + 2} C_t^{\beta + 1} y = -\lim_{\lambda \to 0^+} (\lambda - A)^{-1} y = B_1 y$ and for all $0 \le \theta \le 1$

$$\begin{split} \|\frac{t}{\beta+2}C_t^{\beta+1}y + B_1y\| &= O(t^{-\theta}) \ (t \to \infty) \\ \Leftrightarrow \|(\lambda - A)^{-1}y + B_1y\| &= O(\lambda^{\theta}) \ (\lambda \to 0^+) \\ \Leftrightarrow K(t^{-1}, B_1y, X_1, D(B_1), \|\cdot\|_{B_1}) &= O(t^{-\theta}) \ (t \to \infty) \\ \Leftrightarrow y \in A(D(A) \cap [D(B_1)]_{X_1}) \ (\text{in case } \theta = 1). \end{split}$$

(iii) $||C_t^\beta - P|| \to 0 \text{ as } t \to \infty \text{ if and only if } ||\lambda(\lambda - A)^{-1} - P|| \to 0 \text{ as } \lambda \to 0^+,$ if and only if R(A) is closed.

REFERENCES

- 1. W. F. Eberlein, Abstract ergodic theorems and weak almost period functions, *Trans. Amer. Math. Soc.*, **67** (1949), 217-240.
- K. Eshita and W. Takahashi, Strong convergence theorems for commutative semigroups of continuous linear operators on Banach spaces, *Taiwanese J. Math.* 9 (2005), 531-550.
- 3. K. Kido and W. Takahashi, Mean ergodic theorems for semigroups of linear operators, *J. Math. Anal. Appl.* **103** (1984), 387-394.
- 4. U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin-New York, 1985.
- 5. Y.-C. Li and S.-Y. Shaw, An abstract ergodic theorem and some inequalities for operators on Banach space, *Proc. Amer. Math. Soc.* **125** (1997), 111-119.
- J. M. A. M. van Neerven, The Adjoint of a Semigroup of Linear Operators, Lect. Notes in Math. 1529, Springe-Verlag Berlin Heidelberg, 1992.
- 7. S.-Y. Shaw, Mean ergodic theorems and functional equations, *J. Funct. Anal.*, **87** (1989), 428-441.
- S.-Y. Shaw, Uniform convergence of ergodic limits and approximate solutions, *Proc. Amer. Math. Soc.*, **114** (1992), 405-411.
- S.-Y. Shaw, Convergence rates of ergodic limits and approximate solutions, J. Approximation Theory, 75 (1993), 157-166.
- 10. S.-Y. Shaw, Non-optimal rates of ergodic limits and approximate solutions, J. Approximation Theory **94** (1998), 285-299.
- 11. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

Sen-Yen Shaw Graduate School of Engineering, Lunghwa University of Science and Technology, Gueishan, Taoyuan 333, Taiwan E-mail: shaw@math.ncu.edu.tw

Yuan-Chuan Li Department of Applied Mathematics, National Chung-Hsing University, Taichung 402, Taiwan E-mail: ycli@amath.nchu.edu.tw