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Abstract. Let {T'(¢t);t > 0} be a uniformly bounded (Cp)-semigroup of
operators on a Banach space X with generator A such that all orbits are
relatively weakly compact. Let {¢,} and {1} be two nets of continuous
linear functionals on the space Cj[0, 00) of all bounded continuous functions
n [0,00). {¢} and {t,} determine two nets {A,}, {B.} of operators
satisfying (Ao, 2*) = ¢ ((T()x,2*)) and (Bax,2*) = o ((T(-)z, 2*))
for all z € X and z* € X*. Under suitable conditions on {¢,} and {14},
this paper discusses: 1) the convergence of { A, } and { B, } in operator norm;
2) rates of convergence of { A,z } and {A,y} for each x € X and y € R(A).

1. INTRODUCTION

Throughout this paper we assume that X is a real Banach space with norm || - ||,
and denote by X* its dual space and by B(X) the Banach algebra of all bounded
linear operators on X. A semigroup S is called a semitopological semigroup if .S
is a Hausdorff space and for every a € S, the mappings s — sa and s — as of S
into itself are continuous. Let Cy(S) (resp. Cyp(S)) denote the Banach space of all
continuous (resp. uniformly continuous) bounded real-valued functions on S with
the supremum norm. A linear functional u € Cy(S)* on Cy(.5) is called a mean or
normalized state on Cy(S) if u(lg) = ||p|| = 1. It is known that u € Cy(S5)* is a
mean on Cy,(.5) if and only if infseg f(s) < p(f) < sup,eg f(s) for all f e Cy(S5)
(cf. [11, Theorem 1.4.1]). For a € S let I, and r, denote the contractions on
Cy(S) defined by (I.f)(s) := f(as) and (rof)(s) := f(sa), respectively. Then
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I, r% € B(Cy(S)*) and X, rigp € Cp(S)* for ¢ € Cp(S)*. Moreover, if p is a

a’’ a
mean on Cy(S), then i, 7} are also means on Cp(.S).

Let S be a semitopological semigroup with the identity e and let S := {T'(s); s €
S} C B(X) be a uniformly bounded semigroup of operators satisfying the following

conditions:

(S1) T'(s)T'(t) = T'(st) for all s,t € S and T'(e) = I (the identity operator);

(S2) for every x € X and z* € X*, the function s — (T'(s)xz, x*) is continuous;

(S3) forevery x € X, the orbit Sz := {T'(s)z; s € S} is relatively weakly compact
in X.

In particular, condition (S3) always holds for uniformly bounded semigroups on

reflexive spaces.

It is known [2, 3] that for a mean pu on C3(S) there exists a unique operator
A, € B(X) such that (A,z,2*) = p((T(-)x,z*)) for all z € X and 2* € X*. In
[3, Theorem 2], Kido and Takahashi prove the following mean ergodic theorem for
anet {A,,} of operators defined by a net {1, } of means.

Theorem 1.1. If' S is a uniformly bounded semigroup satisfying (S1)-(S3),

and if {pa} is a net of means on Cy(S) such that w*-im(l} o — po) = 0 and
[e%

lHm ||7fpa — pall = 0 in Cp(S)* for all t € S, then the net {A,} (Aq = Au)
[e%
converges strongly to a linear projection P on X with range R(P) = F(S) :=
Nses N(T(s) — 1), null space N(P) =} .o R(T(s) —I), and domain D(P) =
X = F(S) 0,05 RIT(s) — D).

It will be seen that under the above conditions on {¢,} in Theorem 1.1, the net
{A,} becomes an A-ergodic net for A = {7 — ;7 € S}. We first recall two
definitions concerning A-ergodic net.

Definition 1.2. Given a family A of closed linear operators in X, a net {A,}
in B(X) is called an A-ergodic net if the following conditions are satisfied:

(a) There is an M > 0 such that ||A,|| < M for all a;

(b) |(Aq — I)x|| — 0 for all z € (4. 4 N(A), and R(Aq — 1) C D> 4c4 R(A)
eventually;

(c) forevery A € A, R(A,) C D(A) and w-lim, AA,z = 0 for all x € X, and
lim, ||AaAz| = 0 for all x € D(A).

When A = {T — ;T € S} for some semigroup S C B(X), {A,} becomes
a right, weakly left S-ergodic net as defined in [4, p. 75], which was first studied
by Eberlein [1]. The special case that A consists of a single closed operator A
and with additional conditions has been studied in [7, 8, 9, 10] to establish general
strong ergodic theorem, uniform ergodic theorem, and ergodic theorems with rates.
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Definition 1.3. Let A: D(A) C X — X be a closed linear operator, and let
{A,} and {B,} be two nets in B(X) satisfying:

(C1) ||Anll < M forall oy

(C2) R(By) C D(A) and B,A C AB, =1 — A, for all o
(C3) R(Ay) C D(A) and A, A C AA, for all o, and ||AA,|| = O(e(w));
(C4) Bra* = p(a)x* for all z* € R(A)L, and |¢(a)| — oc;

(C5)

| Aoz =0(f(@)) (resp. o( () implies | Boz|| =O (L) (resp. o(L37)-

)

Oé

Here e and f are positive functions satisfying 0 < e(a) < f(a) — 0. They
are used as estimators of convergence rates.

(o)

C5

Then we call {A,} a uniform A-ergodic net and {B,} its companion net.

The purpose of this paper is to apply our earlier results on A-ergodic nets
to deduce a generalization of Theorem 1.1 for a net {¢o} C Cp(S)* (Theorem
3.1), and, under suitable stronger conditions on {¢,}, to deduce a convergence
theorem (Theorem 3.6) for approximate solutions of Az = y, a uniform ergodic
theorem (Theorem 3.7), and a strong ergodic theorem (Theorem 3.8) with rates for
Cy-semigroups.

The main results will be given in Section 3. Before that, some related definitions
and notations as well as abstract mean ergodic theorems for .4-ergodic nets which
we need will be recalled in Section 2. Finally, applications to some examples of
nets of means will be given in Section 4 for illustration.

2. PRELIMINARIES
We need the following lemma.

Lemma 2.1. Let f : S — X be a bounded continuous function such that f(.5)
is relatively weakly compact in X.

(i) For any mean v on Cy(S), there exists a unique zy, € X such that z¢, €
Cof(5), (2w %) = u((f (), 2%)) for all x* € X*, and |[zf,ul| <[ f]co-
(if) For any ¢ € Cy(S)*, there exists a unique z§4 € X such that zf4 €

[ol[co(f(S) U (=f(5))). (zpe:2") = ¢((f(-),2%)) for all z* € X*, and
1216l < 10l f]loo-

Proof.
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(i)

Sen-Yen Shaw and Yuan-Chuan Li

Can be found in [3]. For convenience and completeness, we give a proof here.
The linear functional z¢ ,, defined on X* by z¢ ,(z*) := pn((f(-), z%)),z* €
X7, is continuous, i.e., zr, € X**, and

12full < [l sup{[[f(s)ll;s € S} = sup{[[f(s)[l; s € S} = || f]lco-

We show that z¢, € X. Since f(S) is relatively weakly compact, the
strongly and weakly closed set co{w-clf(S)} is a weakly compact sub-
set of X, and so the strongly and weakly closed subset cof(S) is also a
weakly compact subset of X. This subset of X can also be written as
o(X**, X*)-cl(cof(S)) when considered as a subset of X**. It remains
to show that z7, € o(X**, X*)-cl(cof(S)). If it is not, then by the Hahn-
Banach separation theorem and the property of a mean, there would exist an
z* € X* such that

zfp(x*) <inf{(z™, z%); 2™ € o(X™, X)-cl(cof(95))}
<inf{(f(s),z*);s € S}
< p({f(),27)) = zf,u(2”).

This is a contradiction. Thus such z;, belongs to X. Since (zy,,z") =
p((f(-),x*)) for all z* € X*, clearly z¢, is uniquely determined by x and
/.

By part (i), we see that the map p — 2y, is linear. Let ¢ € Cp(S5)* be

arbitrary. If ¢ = 0, the result is obvious. So, we assume ¢ # 0. If ¢
is positive, then ||¢|| = ¢(1), so p := —2— is a mean on S and zf, =

o(1)
P(Dzgu € ||ol[co(f(S))-

Now, if ¢ is arbitrary, then ¢ = ¢ — ¢~, where ¢ and ¢~ are the positive
part and negative part of ¢, respectively. Since ||¢|| = ||¢T|| + ||¢ ||, we have

2o = zp6+ — 21,6~ € |07 1[E0(f(S)) — [l67|[co(f(S))
= (161l + [lo7[D)eca(f(S)) + Beo(—£(S))]
C l[¢l[ea(ca(f(S)) Uea(=£(5))))

= [|gl[ea(f(5) [ J(=F (),

where o := I(IﬁIIH and (3 := % This also implies ||zf 4| < [|®|||] f]|oo-

Corollary 2.2. Let S := {T(s);s € S} C B(X) be a uniformly bounded
semigroup satisfying (S1)-(S3).
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(i) For any mean p on Cy(S), there exists a unique operator A,, € B(X) such
that A,z € co(Sx), (Aux,z*) = p((T(-)z, x*)) for all x € X and z* € X",
and [|[A,|| < sup{||T(s)]; s € S}.

(if) For any ¢ € Cy(S)*, there exists a unique operator Ay € B(X) such that
Agr € [[ol[co((Sz) U (=8)), (Agz,2") = o((T()x, %)) for all v € X
and z* € X*, and || Ag|| < ||o|| sup{||T(s)||;s € S}.

(i) If' S is a commutative semigroup, then, for any two linear functionals ¢, €
Co(S)*, AT () = T(-)Ay, and AyAy = AyAy. Further, when S is a
(Co)-semigroup with generator A, one has AyAx = AAyx for x € D(A).

Proof. Set Apx := zp(.y,4 for all z € X. Then (i) and (ii) follow immediately

from Lemma 2.1.
(iii) Let ¢, ¢ € Cp[0,00)*, z € X, z* € X*, and t > 0. Then we have

(AT (t)z,2%) = o((T()T (D)2, 27)) = (T )T ("), 27))
o((T()z, (T(1)"")) = (Agz, (T(t))"")
= (T(H) Az, z7)

and so T'(t) and A, commute. Therefore
(ApAy,a) = (T () Ay, 2)) = S({AST (), )
= (T (), (Ay)"a")) = (Aga, (A,)"")
= (AypAgpz, z").
This proves that Ay, and A, commute.

Remark 2.3. Since every mean on C,;,(.S) can be extended to a mean on Cjy(.S),
Lemma 2.1 and Corollary 2.2 still hold if f is bounded and uniformly continuous
on S and Cy(S) is replaced by Cp(.S).

The following mean ergodic theorem is proved in [5, Theorem 1].

Theorem 2.4. Let {A,} be an A-ergodic net. Then the operator P, defined

by
{ D(P) :={z € X;s—lim, Ay exists},

Pz = s-lim, Ayz, © € D(P),
is a linear projection with norm || P|| < M, range R(P) = (4 4 N(A), null space
N(P) =" 4ca R(A), and domain

D(P) = ﬂ N(A) @ Z R(A) = {z € X;{Ayz} has a weak cluster point}.
AeA AeA
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Here ), ,. 4 R(A) denotes the linear space spanned by the spaces R(A), A € A.

Let P and B; be the operators defined respectively by

D(P) :={z € X;limA,x exists}; [ D(B;):={y € X;lim B,y exists};
e} e}
Pz :=lim A,z for x € D(P), Byz :=lim B,y for y € D(By).
e} e}

{A,} is said to be strongly (resp. uniformly) ergodic if D(P) = X and A,z — Pz
for all z € X (resp. ||Aq — PJ| — 0).

In [7, Theorem 1.1, Corollary 1.4 and Remark 1.7] we proved the following
theorem.

Theorem 2.5. (Strong Ergodic Theorem). Under conditions (C1) - (C4) the
following are true.

(i) P is a bounded linear projection with range R(P) = N(A), null space
N(P) = R(A), and domain D(P) = N(A)®R(A) ={z € X;{A,z} has
a weak cluster point}.

(ii) By is the inverse operator AT of the restriction Ay := A|R(A) of A to
R(A), it has range R(B1) = D(A1) = D(A)NR(A) and domain D(B;) =
R(Ay) = A(D(A) N R(A)). Moreover, for each y € D(B1), Byy is the

unique solution of the functional equation Ax =y in R(A).

Theorem 2.6. (Uniform Ergodic Theorem [8]). Under conditions (C1) - (C3),
we have: D(P) = X and ||Ay — P|| — 0 if and only if || Bo|ra)ll = O(1), if and
only if By is bounded and || Bo|pay — Bill — 0, if and only if R(A) (or R(A1)) is
closed, if and only if R(A?) (or R(A?)) is closed, if and only if X = N(A)®R(A).

Let X be a Banach space with norm || - || x, and Y a submanifold with seminorm
| - ly. The K-functional is defined by

K(t,z) = K(t, 2, X, Y, [ lly) = mf {{le —yllx +tlylv}.

If Y is a Banach space with norm || - ||y, the completion of Y relative to X is
defined as

Yx :={z € X:Hx,}CYsuch that lim ||z,,—z|x =0and sup ||z,,|y < oo}
m—00

K(t,z) is a bounded, continuous, monotone increasing and subadditive function of
tforeachz € X, and K (t,z, X,Y,||-|ly) = O(t) (t — 0T) ifand only if z € Y.
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Let X; := R(A) and X := D(P) = N(A) @ X;. Since the operator B; :
D(By) € X; — X is closed, its domain D(Bj) (= R(A;)) is a Banach space
with respect to the norm ||z|| g, := ||z| + || Biz||.

Let By : D(By) C Xo — Xy be the operator By := 0 @ Bj. Then its domain

D(By) (= N(A) @ D(B1) = N(A) @ A(D(A) N R(A)))
is a Banach space with norm ||z|| g, := ||z|| + || Boz||, and [D(Boy)[x, = N(A4) @
[D(B1)] X, -
The following theorem from [9, 10] is concerned with optimal convergence and
non-optimal convergence rates of ergodic limits and approximate solutions.

Theorem 2.7. Under conditions (C1) - (C5) the following statements hold.

(i) Forx € Xo = N(A) @ R(A), one has:

[ Aoz — Pz|| = O(f(a)) & K(e(a), z, Xo, D(Bo), || - |5,) = O(f(a))
<z € [D(Bo)[x, (in case f = e).
(ii) Fory € D(By) = R(A1) one has:

1Bay — Bry|| = O(f(e)) & K(e(a), Biy, X1, D(B1), || - [ 8,) =O(f(a))
<€ A(D(A) N [D(B1)]x,) (in case f = e).

3. MAIN RESULTS

We first deduce from Theorem 2.4 the following generalized version of the Kido-
Takahashi ergodic theorem, in which a more general net {¢, } of linear functionals
has replaced the net {4, } of means in Theorem 1.1.

Theorem 3.1. If'S is a uniformly bounded semigroup satisfying (S1)-(S3), and
if {da} is a bounded net in C,(S)* or Cyp(S)* satisfying ¢o(1) = 1 for all o, w*-
Um(lfpo — ¢a) = 0 and lim ||r} po, — po || = 0 in Cy(S)* for all t € S, then the net
{?4&} (Aq == Ag,) conveoléfges strongly to a linear projection P on X with range
R(P) = F(S) :=Nyeg N(T'(s) — 1), null space N(P) = > .4 R(T(s) — I), and
domain D(P) = X = F(S)® > ,.¢ R(T(s) —I).

Proof.  (a) We prove the case that {¢,} C Cy(S)*; the proof for the case
{pa} C Cup(S)* is similar. Suppose [|T(s)|| < M for all s € S. Take A =
{T'(s) — I;s € S}. Then ||A,|| < M sup, ||¢«] for all «, by Corollary 2.2(ii).
Under the assumptions of the theorem we verify conditions (b) and (c) of Definition
1.2.
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b)Ifz € (N ey N(A) = F(S), thenT'(s)x = z forall s € S, so that A,z =
for all a. On the other hand, clearly we have

(Ao —I)z e O{(T(s)—I)z;s€ SYU{—(T(s)—I)z;s€ S} C ZR(T(S) -1
ses

for all » € X and a. Hence R(Ay — 1) C Y g R(T(s) — I) for all a.
(c) The assumption that w*-lim (I} ¢, — @) = 0 in Cy(S)* for all ¢ € S implies
[e%
that

(T(t) = DAz, 27) = (Aaz, (T(t) = I)*2") = ¢a((T(-)z, (T(t) = I)"z7))
Pa(((T(t) = T ()2, 27)) = da((ls = I){T(-)z, 27))
= (li¢a = ¢a) (T (), 2%)) = 0

forall x € X, z* € X* and t € S. Hence w-lim, (7 (t) — I)Aqxz = 0 for all

reXandteS.
On the other hand, the assumption that lim ||r} ¢o — ¢o|| = 0 in Cy(.S)* for all
[e%

t € S implies

[(Aa(T(t) = Dz, 27)| = |¢a((T()(T(t) = D)z, 27))]
= |¢a((re = (T )z, 27)] = |(r{¢a = ¢a) (T()z, 27))]
< |[ri¢a = dallM |27
forallz € X, 2* € X*,andt € S. Hence ||Ao(T(t) —1)| < ||[7fda — Pal|M — O
forallt € S.
Thus {A,} is an A-ergodic net, and it follows from Theorem 2.4 that {A,}

converges strongly to a linear projection P on X with range R(P) = F(S), null
space N(P)=>". o R(T(s) —I), and domain

seS

D(P)=F(S)® Z R(T(s) —I)={x € X;{A,z} has a weak cluster point}.
s€S

Since A,z € co(Sz), condition (S3) implies that { A,z } has a weak cluster point
for every x € X. Thus D(P) = X. This proves Theorem 3.1.

In particular, if S = [0, 00), then a semigroup S = {T'(s); s > 0} satisfying
(S1)-(S3) has to be strongly continuous, i.e., it is a (Cp)-semigroup. Since this
semigroup S is commutative, the assumption in Theorem 2.1 on the net {¢,}
becomes

(%0) Um ||r} ¢o — Pall = 0 in Cp[0,00)* for all ¢ > 0. In this case, {P,} is said
e}
to be strongly regular (ctf. [3]).
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Let A be the infinitesimal generator of 7'(-). Using the facts that z € N(A) if and
only if T(s)x = x for all s > 0, Az = lim,_o+ t~H(T(t) — I)x for x € D(A),
and (T'(t) — Iz = A fot T(s)xds for all x € X, we can formulate the following
corollary.

Corollary 3.2. Let {T(s);s > 0} be a uniformly bounded (C\)-semigroup
with generator A such that all orbits are relatively weakly compact in X, and
let {¢a} be a bounded strongly regular net in C[0,00)* or Cyu,(S)* such that
(1) =1 for all . Then the net {A,} converges strongly to a linear projection
P on X with range R(P) = N(A), null space N(P) = R(A), and domain

D(P) = X = N(A) @ R(A)

Note that C3[0, 00) is invariant under 7, and the restrictions of r;, ¢ > 0, to
Cup[0, 00) form a (Cy)-semigroup of operators on Cy;[0, 00); its infinitesimal gen-
erator is the differentiation operator D, defined by Df(t) = f'(t) for differentiable
f in Cyp[0,00). Our uniform ergodic theorem and strong ergodic theorem with
rates for Cp-semigroups will be formulated under the following assumptions on a
net {¢q} in Cyp[0, 00)*:

(1) limsupt™!||rf o — ¢u| < oo for all a and e(a) := limsupt=!||r}f o —
t—0+ t—0+
¢o¢” — 05

(%2) There exists a companion net {1} C Cy3[0, 00)* such that 1), 0 D = 0 — P,
where ¢ is the mean on C[0,00) defined by (6f) := f(0) for all f €
Cup[0, 00).

Note that condition (*1) is stronger than condition (*0) and under condition (*1)
we actually have linr}r t= |7 po — ball = e(a) (see Proposition 3.4(iii)).
t—0
For convenience of application, we give a condition which is equivalent to (*1)
and implies condition (C3) of Definition 1.3. We need the following lemma which
was essentially proved in [6, Theorem 3.2.1].

Lemma 3.3. For x* € X*, the following assertions are equivalent:
(a) z* € D(A*),

(b) limsupt=!|T*(t)z* — 2*|| < oo;
t—0t

c¢) liminft=1|T*(t)z* — 2*|| < oo

(€) Timint =4[ (0)a" — |

Moreover, we have
|A*z*|| < limigft_lllT*(t)x* — ¥ < limsupt | T*(t)z* — =
t—0 +

t—0

< limsup [|T'(¢)[[[| A*z"|.
t—0t
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Proof. (b) = (c) is obvious.
(a) = (b). If 2* € D(A*), then we have for every x € X and ¢ > 0

(2, T () — a*)| =t [(T(t) = D, a)| = £ (AL« T(t))z, 27)]
<t A% |1 T ()|l
< sup{|[T(s)[;0 < s < t}[| A" ||[|[].

Hence

lim sup ¢ | T*(t)z* — 2*[| < limsup || T ()| A*z*].
t—0t t—0t

(c) = (a). Suppose lim ifft_lHT*(t)x*—x*H < oo. Since t H(1xT(t))(t) — I
t—0
strongly as ¢ | 0, we have for every € D(A)

[(Az, z*)| = lim t (1% T(t)) Az, z*)| = lim t ' {(T(t)x — z, )|
t—0t t—0t

= lim ¢ Y(z, T*(t)z* — 2*)| < liminft | T*(t)a* — z*|||z|.
t—0+ t—0+
Therefore z* € D(A*) and ||A*z*|| < limiJrrlft_lHT*(t)x* —z*.
t—0

Proposition 3.4.

(i) For a linear functional ¢ € Cp[0,00)*% limsupt—t|ri¢ — ¢|| < oo if and
t—0t

only iflimigrlft_lHr,’f¢ — ¢|| < oo, if and only if po D € Cypl0,0)* (ie.,
t—0
¢ € D(D*)). In this case, limsupt~!||rf¢ — ¢| = limiJrrlft_lﬂr,’w — ¢l =
t—0+ t—0
|¢ o DI.

(ii) A net {¢o} C Cyup|0, 00)* satisfies the condition (*1) if and only if ¢ o, 0 D €
Cup[0, 00)* eventually and ||¢o, o D|| = e(a).

(iii) If {¢a} satisfies the condition (*1), then it satisfies condition (*0) and the
net { A} satisfies condition (C3) of Definition 1.3.

Proof. Since {ry;t > 0} is a contraction Cp-semigroup on Cy3[0, 00)*,
(i) follows from Lemma 3.3.
(ii) follows from (i).

(iii) Since {ry;t > 0} is a (Cp)-semigroup on Cyp[0, 00), by (ii) we have for all
feCy [0, OO)
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t
176 — da) flloo = I6a((rt — ) F)llso = $a(D / rofds)]|oc
t t
< 6w o D|l| /0 rofds)]loo = e(a)] /0 rod||1 1.

Hence ,
|77 Pa — 0|l < e(a)]] / rsds| — 0 for all ¢ > 0.
0

To verify condition (C3) we see that
(At N (T (t) = Da,2*)| = [t ¢a((T()T () = D, z))]
= [t Ga((re — (T ()z, 2"))| = 17 (r{¢a — da) (T ()z, 2"))]
<t |rf Ga — Gl M|zl
for all x € X, 2* € X*, and t > 0. Hence ||Aot~ (T (t) — Daz| < t7Y|r} o —
¢ol|M|z| forall z € X and ¢t > 0. If x € D(A), then
[ Aada]l < [|Aq (FHTE) - D - Az)|| + [ Aat™ (T (1) ~ Da
< M (T(0) ~ D = Ax| + 760 — dall M o).

This being true for all ¢ > 0 and all z € D(A), it follows that A, A has a bounded
closure A, A on X with norm || A, Al < limsupt™!||r}f¢a — ¢al|M.
+

t—0

By Corollary 2.2(iii), we see that, for x € D(A),

Jim, t7HT(t) — D Agx = A, (tl_igh tH(T(t) - I)x) = A, Az,
Hence A,z € D(A) and AA,x = A, Ax for all x € D(A). Since D(A) is dense
in X, for any « € X there is a sequence {x,,} in D(A) such that z,, — x. Since
Agxy — Agx and AA x, = AjAx, — A Ax as n — oo, it follows from the
closedness of A that A,z € D(A) and AA,xz = A,Ax. We have shown that
R(A,) C D(A) and A,A C AA, = A,A. The assumption (*1) implies that
|AA.|| = O(e(a)). This verifies (C3).

Next, we observe consequence of condition (*2). For this we need the next
proposition.

Proposition 3.5. Let T'(-) be a uniformly bounded (C\y)-semigroup on a Banach
space with infinitesimal generator A. Then

(i) Forevery x € X and x € X* (T(s)x,x*) is bounded and uniformly contin-
uous on s > 0, ie, (T(-)x,z*) € Cyp0, 00).
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(ii) (T()x,z*) € D(D) and D(T(-)x,z*) = (T(-)Ax,z*) for all x € D(A)
and z* € X*.

(iii) Let ¢, € Cyp[0,00)* be such that oD = § — ¢. Then R(Ay) C D(A)
and A¢A C AA¢ =1- A¢.

Proof.

(i) Let z € X and # € X* be arbitrary. It is clear that |(T(s)z,2*)| <
sup ||T(s)|| - ||=|] - ||z*|| < oo for all s > 0. For every ¢, s > 0, we have
s>0

(T@)x,z%) = (T(s)z,2")| = (T()z = T(s)z, 2")]

< sglg)HT(r)H Tt = s)al] - [[27]| — O as |t — s] — 0.
rZ

This proves (T'(s)z, z*) is uniformly continuous on s > 0 and so (i) holds.
(ii) holds because for x € D(A) and z* € X*

[t (re = D(T (), %) — (T(-) Az, 27))|
= [t (T + Dz, 2") = (T()z, %) — ({T(-) Az, 27))|
= [(TOF Ttz — 2) - Az], ")
< sup [T (s)l] - 17T (t)x — ) — Az|| - ||l2*|| — O as ¢ | 0.

(iii) Let z € D(A). By (ii) and Corollary 2.2(ii), we have (T'(-)z,2*) € D(D)
and

YD (), 27)) = p((T() Az, 27)) = (Ayp Az, 27)

for every x* € X*. On the other hand, the assumption implies

YD(T (), 27) = (0 = 9)((T (), 27)) = (x — Aga, 7).

Therefore we have Ay Az = (I — Ay)x for all z € D(A). Clearly, it follows
from Corollary 2.2(iii) and the closedness of A that Ay Az = AAyx for all
x € D(A). Hence AAyx = AyAx = (I — Ag)x for all z € D(A). Again
by the closedness of A and the fact that D(A) is dense in X we obtain that
R(A¢) C D(A) and A¢A C AA¢ =1- A¢.

It follows from (iii) of Proposition 3.5 that (*2) implies R(B,) C D(A) and
B,A C AB, = I — A,. We have shown that conditions (*1) and (*2) yield
conditions (C3) and (C2), respectively. Therefore we can immediately deduce the
following Theorems 3.6, 3.7, and 3.8 from Theorems 2.6(ii), 2.7, and 2.8, respec-
tively.
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Let A, := Ay, and B, := Ay, . The following theorem is concerned with the
convergence of approximate solutions B,y of Az = y.

Theorem 3.6. Let {T'(s);s > 0} be a uniformly bounded (C\)-semigroup
with generator A such that all orbits are relatively weakly compact in X. Let
{ba} be a bounded net in C[0,00)* which satisfies conditions (*1) and (*2).
Further, suppose Blx* = p(a)x* for all v* € R(A)*, with |p(a)| — oo, and that
|Aazll = O(f(a)) (resp. o(f(a))) implies | Basll = O(L) resp. o L))
Then the operator B, defined by By := lim,, Byy with the natural domain D(B1),
is the inverse operator AT" of the restriction Ay := A|R(A) of A to R(A); it has
range R(B1) = D(A;1) = D(A) and domain D(B1) = R(A1) = R(A). Thus, for
each y € R(A), Biy is the unique solution of the functional equation Az = y in
R(A).

The following is a uniform ergodic theorem.

Theorem 3.7. Let {T'(s); s > 0} be a uniformly bounded (C\)-semigroup with
generator A such that all orbits are relatively weakly compact in X. Let {¢ o}
be a bounded net in C\[0,00)* which satisfies conditions (*1) and (*2). Then
|Aa — P|| — 0 if and only if By is bounded and || Ba|r(ay — B1l| — O, if and only
if R(A) is closed. The following theorem is about the convergence rates of A,z

and B,y.

Theorem 3.8. Let {T(s);s > 0} be a uniformly bounded (C)-semigroup
with generator A such that all orbits are relatively weakly compact in X. Let
{1a} be a bounded net in Cy[0,00)* which satisfies conditions (*1) and (*2).
Further, suppose Bix* = p(a)x* for all v* € R(A)*, with |p(a)| — oo, and that
[4azl| = O(f(a)) (resp. o(f(@))) implies | Baz|| = O(L%) (resp. o(L)).
Then the following statements hold.

(i) Forz € X,

[Aaz — Pz|| = O(f(a)) < K(e(a), z, Xo, D(Bo), || - |5,) = O(f(e))
<z € [D(Bo)[x, (in case f =e).
(ii) Fory € D(B1) = R(A),

|1Bay—Biyll =O(f(e)) < K(e(a), Biy, X1, D(B1), || - [ 8,)= O(f(a))
<y e A(D(A)N[D(B1)]x,) (in case f = e).
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4. EXAMPLES

Example 1. Let S = [0,00), and for a fixed 5 > 0 and each ¢ > 0 let
e € Cpl0,00)* be a mean defined by 1 (f) := (jg * f)(t)/js+1(t), and let ¥, €
Cp[0, 00)* be a linear functional defined by ¥:(f) = —(jg4+1 * f)(t)/ds+1(), f €
Cy[0, 00), where jig(t) = t%/T(3 + 1). We consider the net {y; };—.00. Since

(o D)1 — ] B PO _ G+ (= 5O)0)

Jjp+1(t) ) jﬂﬁtlr(tl)
I\t pr2
< 2”f”°°jﬂ+1(t) 2/|flloe =

for all differentiable f € C,[0,00), we have | o D|| = O(t™!) (t — o) and
hence it follows from Proposition 3.4 that the net {/; }+—o satisfies condition (*1)
with e(t) = t~1. Also (*2) is satisfied:

Uprx @) Gex (f = £0)@)

(YroD)f = - jﬂ+1(t) == jﬂ+1(t) = f(0) —pf = (6 — pue) -

Since

(g * (T()z, 7)) (8) s (t) = <Mx>

Jp+(t)

and

(s » (T a0 igiate) = (LTI o)

for all x* € X*. Thus the operator A; corresponding to the mean p; is the Cesaro
mean Ctﬂ 1 of order 3+ 1 as defined by

Ctﬁﬂx = Us * T()2)(t) _pt! /t(t — 5)PT(s)xds, = € X,
0

Jp+1(t) th+1

. 1. 1
and By = —(jg41(8) " (o * T())(1) = — 557
If 2% € R(A)*, then for all 2 € X and ¢ > 0 we have

(2, T*()" —27) = (T()x —,27) = (A(jo * T (")) (D), ") = 0
so that
(@, Bfz*) = ((jg+1(0) " (g1 * T()) (B, 27)
= (Ja+1(0) " (g1 * {2, T*())2") (t)

= (oGm0 G+ DE27) = ()
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Hence Bfz* = ﬁx* for all 2* € R(A)* with ﬂ+2 — 00 as t — oo. It can

also been shown that if HC,?HxH = O(t7%) (resp. o(t™?)) with 0 < 6 < 1, then
| Bez|| = O(t=9/t=1) (resp. o(t=?/t71)) (cf. [9, 10]). Hence conditions (C4) and
(C5) are satisfied.

Example 2. Let pu\(f) := ALA(f) = A [, e Mf(t)dt and ¥y(f) :=
—L)(f)=— [, e M f(t)dt for f € G0, ) and A > 0. Since

(o D)f| = \—‘/ e F(t)
‘&ﬂ 32 [T e at] < 200

for all differentiable f € C[0, 00), it follows from Proposition 3.4 that the net
{1x}r_o+ satisfies condition (*1) with e(A) = A. Also (*2) is satisfied:

(YaoD)f = —Laf" = f(0) = ALxf = (I — ) f-

It is easy to see that the operator Ay, corresponding to the mean uy is Ay =
ALX(T(-)) = A\ — A)~! and the operator By corresponding to v is By =
—(A — A)~!. We also know that conditions (C4) and (C5) are satisfied (cf. [9,
10]).

As applications of Corollary 3.2, and Theorems 3.6 - 3.8 to the above two
examples of nets of means, the following known theorems cf. [8, 9, 10]) can be
formulated.

Theorem 4.1. Let {T'(s); s > 0} be a uniformly bounded (C\)-semigroup with
generator A such that all orbits are relatively weakly compact in X.

(i) lim Clz = Jim Q- A)'e = Pz forall z € X = D(P) = N(A) @
—00 —0
R(A) and for all 0 <0 <1

|Gz — Pz| = O(t™*) (t — o0)
& AN =A) "tz — Pzl =0\ (A —07)
& Kt~ x, Xo, D(Bo), | - ,) = O(t™7) (t — o0)
<z € [D(Bo)[x, (in case 6 = 1);

(ii) Fory e D(B;) = R(A1) = A(D(A) N R(A)), we have

ti)rgloﬁ+20ﬁ+ly—— lim ()\ A~y =By
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(iii)

10.

11.

Sen-Yen Shaw and Yuan-Chuan Li

and for all 0 <0 <1

550+ Byl = 0() (¢ = )
& (0= 4y + Byl = 004 (A — 07)
& K(', By, X0, DB | ) = O™") (¢ = )
s ye A(D(A)N[D(B1)]x,) (in case 0 = 1).

HC,?—PH — 0ast— oo ifand only if [ A\(A\—A) ™1 —P|| = 0as A\ — 0F,
if and only if R(A) is closed.
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