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Abstract. Let {T (t); t ≥ 0} be a uniformly bounded (C0)-semigroup of
operators on a Banach space X with generator A such that all orbits are
relatively weakly compact. Let {φα} and {ψα} be two nets of continuous
linear functionals on the space Cb[0,∞) of all bounded continuous functions
on [0,∞). {φα} and {ψα} determine two nets {Aα}, {Bα} of operators
satisfying 〈Aαx, x

∗〉 = φα(〈T (·)x, x∗〉) and 〈Bαx, x
∗〉 = ψα(〈T (·)x, x∗〉)

for all x ∈ X and x∗ ∈ X∗. Under suitable conditions on {φα} and {ψα},
this paper discusses: 1) the convergence of {Aα} and {Bα} in operator norm;
2) rates of convergence of {Aαx} and {Aαy} for each x ∈ X and y ∈ R(A).

1. INTRODUCTION

Throughout this paper we assume that X is a real Banach space with norm ‖ · ‖,
and denote by X∗ its dual space and by B(X) the Banach algebra of all bounded
linear operators on X . A semigroup S is called a semitopological semigroup if S
is a Hausdorff space and for every a ∈ S, the mappings s → sa and s → as of S
into itself are continuous. Let Cb(S) (resp. Cub(S)) denote the Banach space of all
continuous (resp. uniformly continuous) bounded real-valued functions on S with
the supremum norm. A linear functional µ ∈ Cb(S)∗ on Cb(S) is called a mean or
normalized state on Cb(S) if µ(1S) = ‖µ‖ = 1. It is known that µ ∈ Cb(S)∗ is a
mean on Cb(S) if and only if infs∈S f(s) ≤ µ(f) ≤ sups∈S f(s) for all f ∈ Cb(S)
(cf. [11, Theorem 1.4.1]). For a ∈ S let la and ra denote the contractions on
Cb(S) defined by (laf)(s) := f(as) and (raf)(s) := f(sa), respectively. Then
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l∗a, r∗a ∈ B(Cb(S)∗) and l∗aφ, r∗aφ ∈ Cb(S)∗ for φ ∈ Cb(S)∗. Moreover, if µ is a
mean on Cb(S), then l∗aµ, r∗aµ are also means on Cb(S).

Let S be a semitopological semigroup with the identity e and let S := {T (s); s ∈
S} ⊂ B(X) be a uniformly bounded semigroup of operators satisfying the following
conditions:

(S1) T (s)T (t) = T (st) for all s, t ∈ S and T (e) = I (the identity operator);
(S2) for every x ∈ X and x∗ ∈ X∗, the function s→ 〈T (s)x, x∗〉 is continuous;
(S3) for every x ∈ X , the orbit Sx := {T (s)x; s ∈ S} is relatively weakly compact

in X .

In particular, condition (S3) always holds for uniformly bounded semigroups on
reflexive spaces.

It is known [2, 3] that for a mean µ on Cb(S) there exists a unique operator
Aµ ∈ B(X) such that 〈Aµx, x∗〉 = µ(〈T (·)x, x∗〉) for all x ∈ X and x∗ ∈ X∗. In
[3, Theorem 2], Kido and Takahashi prove the following mean ergodic theorem for
a net {Aµα} of operators defined by a net {µα} of means.

Theorem 1.1. If S is a uniformly bounded semigroup satisfying (S1)-(S3),
and if {µα} is a net of means on Cb(S) such that w∗-lim

α
(l∗tµα − µα) = 0 and

lim
α

‖r∗tµα − µα‖ = 0 in Cb(S)∗ for all t ∈ S, then the net {Aα} (Aα := Aµα)

converges strongly to a linear projection P on X with range R(P ) = F (S) :=⋂
s∈S N (T (s)− I), null space N (P ) =

∑
s∈S R(T (s)− I), and domain D(P ) =

X = F (S) ⊕
∑

s∈S R(T (s)− I).
It will be seen that under the above conditions on {φα} in Theorem 1.1, the net

{Aα} becomes an A-ergodic net for A = {T − I; T ∈ S}. We first recall two
definitions concerning A-ergodic net.

Definition 1.2. Given a family A of closed linear operators in X , a net {Aα}
in B(X) is called an A-ergodic net if the following conditions are satisfied:

(a) There is an M > 0 such that ‖Aα‖ ≤M for all α;
(b) ‖(Aα − I)x‖ → 0 for all x ∈

⋂
A∈AN (A), and R(Aα − I) ⊂

∑
A∈AR(A)

eventually;
(c) for every A ∈ A, R(Aα) ⊂ D(A) and w-limαAAαx = 0 for all x ∈ X , and

limα ‖AαAx‖ = 0 for all x ∈ D(A).

When A = {T − I ; T ∈ S} for some semigroup S ⊂ B(X), {Aα} becomes
a right, weakly left S-ergodic net as defined in [4, p. 75], which was first studied
by Eberlein [1]. The special case that A consists of a single closed operator A
and with additional conditions has been studied in [7, 8, 9, 10] to establish general
strong ergodic theorem, uniform ergodic theorem, and ergodic theorems with rates.
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Definition 1.3. Let A : D(A) ⊂ X → X be a closed linear operator, and let
{Aα} and {Bα} be two nets in B(X) satisfying:

(C1) ‖Aα‖ ≤M for all α;

(C2) R(Bα) ⊂ D(A) and BαA ⊂ ABα = I −Aα for all α;

(C3) R(Aα) ⊂ D(A) and AαA ⊂ AAα for all α, and ‖AAα‖ = O(e(α));

(C4) B∗
αx

∗ = ϕ(α)x∗ for all x∗ ∈ R(A)⊥, and |ϕ(α)| → ∞;

(C5) ‖Aαx‖=O(f(α)) (resp. o(f(α))) implies ‖Bαx‖=O( f(α)
e(α) ) (resp. o(

f(α)
e(α) )).

Here e and f are positive functions satisfying 0 < e(α) ≤ f(α) → 0. They
are used as estimators of convergence rates.

Then we call {Aα} a uniform A-ergodic net and {Bα} its companion net.

The purpose of this paper is to apply our earlier results on A-ergodic nets
to deduce a generalization of Theorem 1.1 for a net {φα} ⊂ Cb(S)∗ (Theorem
3.1), and, under suitable stronger conditions on {φα}, to deduce a convergence
theorem (Theorem 3.6) for approximate solutions of Ax = y, a uniform ergodic
theorem (Theorem 3.7), and a strong ergodic theorem (Theorem 3.8) with rates for
C0-semigroups.

The main results will be given in Section 3. Before that, some related definitions
and notations as well as abstract mean ergodic theorems for A-ergodic nets which
we need will be recalled in Section 2. Finally, applications to some examples of
nets of means will be given in Section 4 for illustration.

2. PRELIMINARIES

We need the following lemma.

Lemma 2.1. Let f : S → X be a bounded continuous function such that f(S)
is relatively weakly compact in X .

(i) For any mean µ on Cb(S), there exists a unique zf,µ ∈ X such that zf,µ ∈
cof(S), 〈zf,µ, x∗〉 = µ(〈f(·), x∗〉) for all x∗ ∈ X∗, and ‖zf,µ‖ ≤ ||f ||∞.

(ii) For any φ ∈ Cb(S)∗, there exists a unique zf,φ ∈ X such that zf,φ ∈
‖φ‖co(f(S) ∪ (−f(S))), 〈zf,φ, x∗〉 = φ(〈f(·), x∗〉) for all x∗ ∈ X∗, and
‖zf,φ‖ ≤ ‖φ‖||f ||∞.

Proof.
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(i) Can be found in [3]. For convenience and completeness, we give a proof here.
The linear functional zf,µ defined on X∗ by zf,µ(x∗) := µ(〈f(·), x∗〉), x∗ ∈
X∗, is continuous, i.e., zf,µ ∈ X∗∗, and

‖zf,µ‖ ≤ ‖µ‖ sup{‖f(s)‖; s ∈ S} = sup{‖f(s)‖; s ∈ S} = ‖f‖∞.

We show that zf,µ ∈ X . Since f(S) is relatively weakly compact, the
strongly and weakly closed set co{w-clf(S)} is a weakly compact sub-
set of X , and so the strongly and weakly closed subset cof(S) is also a
weakly compact subset of X . This subset of X can also be written as
σ(X∗∗, X∗)-cl (cof(S)) when considered as a subset of X∗∗. It remains
to show that zf,µ ∈ σ(X∗∗, X∗)-cl (cof(S)). If it is not, then by the Hahn-
Banach separation theorem and the property of a mean, there would exist an
x∗ ∈ X∗ such that

zf,µ(x∗) < inf{〈x∗∗, x∗〉; x∗∗ ∈ σ(X∗∗, X∗)-cl (cof(S))}

≤ inf{〈f(s), x∗〉; s ∈ S}
≤ µ(〈f(·), x∗〉) = zf,µ(x∗).

This is a contradiction. Thus such zf,µ belongs to X . Since 〈zf,µ, x∗〉 =
µ(〈f(·), x∗〉) for all x∗ ∈ X∗, clearly zf,µ is uniquely determined by µ and
f .

(ii) By part (i), we see that the map µ → zf,µ is linear. Let φ ∈ Cb(S)∗ be
arbitrary. If φ = 0, the result is obvious. So, we assume φ �= 0. If φ
is positive, then ||φ|| = φ(1), so µ := φ

φ(1) is a mean on S and zf,φ =

φ(1)zf,µ ∈ ||φ||co(f(S)).

Now, if φ is arbitrary, then φ = φ+ − φ−, where φ+ and φ− are the positive
part and negative part of φ, respectively. Since ||φ|| = ||φ+||+ ||φ−||, we have

zf,φ = zf,φ+ − zf,φ− ∈ ||φ+||co(f(S))− ||φ−||co(f(S))

= (||φ+||+ ||φ−||)[αco(f(S)) + βco(−f(S))]

⊂ ||φ||co(co(f(S))
⋃
co(−f(S))))

= ||φ||co(f(S)
⋃

(−f(S))),

where α := ||φ+||
||φ|| and β := ||φ−||

||φ|| . This also implies ‖zf,φ‖ ≤ ‖φ‖||f ||∞.

Corollary 2.2. Let S := {T (s); s ∈ S} ⊂ B(X) be a uniformly bounded
semigroup satisfying (S1)-(S3).
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(i) For any mean µ on Cb(S), there exists a unique operator Aµ ∈ B(X) such
that Aµx ∈ co(Sx), 〈Aµx, x∗〉 = µ(〈T (·)x, x∗〉) for all x ∈ X and x∗ ∈ X∗,
and ‖Aµ‖ ≤ sup{‖T (s)‖; s ∈ S}.

(ii) For any φ ∈ Cb(S)∗, there exists a unique operator Aφ ∈ B(X) such that
Aφx ∈ ‖φ‖co((Sx) ∪ (−Sx)), 〈Aφx, x∗〉 = φ(〈T (·)x, x∗〉) for all x ∈ X

and x∗ ∈ X∗, and ‖Aφ‖ ≤ ‖φ‖ sup{‖T (s)‖; s ∈ S}.
(iii) If S is a commutative semigroup, then, for any two linear functionals φ, ψ ∈

Cb(S)∗, AφT (·) = T (·)Aφ, and AφAψ = AψAφ. Further, when S is a
(C0)-semigroup with generator A, one has AφAx = AAφx for x ∈ D(A).

Proof. Set Aφx := zT (·)x,φ for all x ∈ X . Then (i) and (ii) follow immediately
from Lemma 2.1.

(iii) Let φ, ψ ∈ Cb[0,∞)∗, x ∈ X , x∗ ∈ X∗, and t > 0. Then we have

〈AφT (t)x, x∗〉 = φ(〈T (·)T (t)x, x∗〉) = φ(〈T (t)T (·)x, x∗〉)
= φ(〈T (·)x, (T (t))∗x∗〉) = 〈Aφx, (T (t))∗x∗〉

= 〈T (t)Aφx, x∗〉

and so T (t) and Aφ commute. Therefore

〈AφAψx, x∗〉 = φ(〈T (·)Aψx, x∗〉) = φ(〈AψT (·)x, x∗〉)

= φ(〈T (·)x, (Aψ)∗x∗〉) = 〈Aφx, (Aψ)∗x∗〉
= 〈AψAφx, x∗〉.

This proves that Aφ and Aψ commute.

Remark 2.3. Since every mean on Cub(S) can be extended to a mean on Cb(S),
Lemma 2.1 and Corollary 2.2 still hold if f is bounded and uniformly continuous
on S and Cb(S) is replaced by Cub(S).

The following mean ergodic theorem is proved in [5, Theorem 1].

Theorem 2.4. Let {Aα} be an A-ergodic net. Then the operator P , defined
by {

D(P ) := {x ∈ X ; s− limαAαx exists},

Px = s- limαAαx, x ∈ D(P ),

is a linear projection with norm ‖P‖ ≤M , rangeR(P ) =
⋂
A∈AN (A), null space

N (P ) =
∑

A∈AR(A), and domain

D(P ) =
⋂
A∈A

N (A)⊕
∑
A∈A

R(A) = {x ∈ X ; {Aαx} has a weak cluster point}.
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Here
∑

A∈AR(A) denotes the linear space spanned by the spaces R(A), A ∈ A.

Let P and B1 be the operators defined respectively by D(P ) := {x ∈ X ; lim
α
Aαx exists};

Px := lim
α
Aαx for x ∈ D(P ),

 D(B1) := {y ∈ X ; lim
α
Bαy exists};

B1x := lim
α
Bαy for y ∈ D(B1).

{Aα} is said to be strongly (resp. uniformly) ergodic if D(P ) = X and Aαx→ Px
for all x ∈ X (resp. ‖Aα − P‖ → 0).

In [7, Theorem 1.1, Corollary 1.4 and Remark 1.7] we proved the following
theorem.

Theorem 2.5. (Strong Ergodic Theorem). Under conditions (C1) - (C4) the
following are true.

(i) P is a bounded linear projection with range R(P ) = N (A), null space
N (P ) = R(A), and domainD(P ) = N (A)⊕R(A) = {x ∈ X ; {Aα x} has
a weak cluster point}.

(ii) B1 is the inverse operator A−1
1 of the restriction A1 := A|R(A) of A to

R(A); it has range R(B1) = D(A1) = D(A)∩R(A) and domain D(B1) =
R(A1) = A(D(A) ∩ R(A)). Moreover, for each y ∈ D(B1), B1y is the
unique solution of the functional equation Ax = y in R(A).

Theorem 2.6. (Uniform Ergodic Theorem [8]). Under conditions (C1) - (C3),
we have: D(P ) = X and ‖Aα−P‖ → 0 if and only if ‖Bα|R(A)‖ = O(1), if and
only if B1 is bounded and ‖Bα|R(A)−B1‖ → 0, if and only if R(A) (or R(A1)) is
closed, if and only ifR(A2) (or R(A2

1)) is closed, if and only ifX = N (A)⊕R(A).

LetX be a Banach space with norm ‖·‖X , and Y a submanifold with seminorm
‖ · ‖Y . The K-functional is defined by

K(t, x) := K(t, x, X, Y, ‖ · ‖Y ) = inf
y∈Y

{‖x− y‖X + t‖y‖Y }.

If Y is a Banach space with norm ‖ · ‖Y , the completion of Y relative to X is
defined as

Y X̃ := {x ∈ X : ∃{xm}⊂Y such that lim
m→∞ ‖xm−x‖X =0 and sup ‖xm‖Y <∞}.

K(t, x) is a bounded, continuous, monotone increasing and subadditive function of
t for each x ∈ X , andK(t, x, X, Y, ‖·‖Y ) = O(t) (t→ 0+) if and only if x ∈ Y X̃ .
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Let X1 := R(A) and X0 := D(P ) = N (A) ⊕ X1. Since the operator B1 :
D(B1) ⊂ X1 → X1 is closed, its domain D(B1) (= R(A1)) is a Banach space
with respect to the norm ‖x‖B1 := ‖x‖ + ‖B1x‖.

Let B0 : D(B0) ⊂ X0 → X0 be the operator B0 := 0⊕ B1. Then its domain

D(B0) (= N (A)⊕D(B1) = N (A)⊕ A(D(A) ∩R(A)))

is a Banach space with norm ‖x‖B0 := ‖x‖ + ‖B0x‖, and [D(B0)]̃X0 = N (A)⊕
[D(B1)]̃X1.

The following theorem from [9, 10] is concerned with optimal convergence and
non-optimal convergence rates of ergodic limits and approximate solutions.

Theorem 2.7. Under conditions (C1) - (C5) the following statements hold.

(i) For x ∈ X0 = N (A)⊕R(A), one has:

‖Aαx− Px‖ = O(f(α)) ⇔ K(e(α), x, X0, D(B0), ‖ · ‖B0) = O(f(α))

⇔ x ∈ [D(B0)]̃X0 (in case f = e).

(ii) For y ∈ D(B1) = R(A1) one has:

‖Bαy −B1y‖ = O(f(α)) ⇔ K(e(α), B1y, X1, D(B1), ‖ · ‖B1)=O(f(α))

⇔∈ A(D(A) ∩ [D(B1)]̃X1) (in case f = e).

3. MAIN RESULTS

We first deduce from Theorem 2.4 the following generalized version of the Kido-
Takahashi ergodic theorem, in which a more general net {φα} of linear functionals
has replaced the net {µα} of means in Theorem 1.1.

Theorem 3.1. If S is a uniformly bounded semigroup satisfying (S1)-(S3), and
if {φα} is a bounded net in Cb(S)∗ or Cub(S)∗ satisfying φα(1) = 1 for all α, w∗-
lim
α

(l∗tφα−φα) = 0 and lim
α

‖r∗tφα−φα‖ = 0 in Cb(S)∗ for all t ∈ S, then the net
{Aα} (Aα := Aφα) converges strongly to a linear projection P on X with range
R(P ) = F (S) :=

⋂
s∈SN (T (s)−I), null space N (P ) =

∑
s∈S R(T (s) − I), and

domain D(P ) = X = F (S) ⊕
∑

s∈S R(T (s)− I).

Proof. (a) We prove the case that {φα} ⊂ Cb(S)∗; the proof for the case
{φα} ⊂ Cub(S)∗ is similar. Suppose ‖T (s)‖ ≤ M for all s ∈ S. Take A =
{T (s) − I ; s ∈ S}. Then ‖Aα‖ ≤ M supα ‖φα‖ for all α, by Corollary 2.2(ii).
Under the assumptions of the theorem we verify conditions (b) and (c) of Definition
1.2.
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(b) If x ∈
⋂
A∈AN (A) = F (S), then T (s)x = x for all s ∈ S, so thatAαx = x

for all α. On the other hand, clearly we have

(Aα−I)x ∈ co[{(T (s)−I)x; s ∈ S}∪{−(T (s)−I)x; s ∈ S}] ⊂
∑
s∈S

R(T (s)− I)

for all x ∈ X and α. Hence R(Aα − I) ⊂
∑

s∈S R(T (s)− I) for all α.
(c) The assumption that w∗-lim

α
(l∗tφα−φα) = 0 in Cb(S)∗ for all t ∈ S implies

that

〈(T (t)− I)Aαx, x∗〉 = 〈Aαx, (T (t)− I)∗x∗〉 = φα(〈T (·)x, (T (t)− I)∗x∗〉)

= φα(〈(T (t·)− T (·))x, x∗〉) = φα((lt − I)〈T (·)x, x∗〉)
= (l∗tφα − φα)(〈T (·)x, x∗〉) → 0

for all x ∈ X , x∗ ∈ X∗, and t ∈ S. Hence w-limα(T (t) − I)Aαx = 0 for all
x ∈ X and t ∈ S.

On the other hand, the assumption that lim
α

‖r∗tφα − φα‖ = 0 in Cb(S)∗ for all
t ∈ S implies

|〈Aα(T (t)− I)x, x∗〉| = |φα(〈T (·)(T (t)− I)x, x∗〉)|
= |φα((rt− I)〈T (·)x, x∗〉)| = |(r∗tφα − φα)(〈T (·)x, x∗〉)|
≤ ‖r∗tφα − φα‖M‖x‖‖x∗‖

for all x ∈ X , x∗ ∈ X∗, and t ∈ S. Hence ‖Aα(T (t)−I)‖ ≤ ‖r∗tφα−φα‖M → 0
for all t ∈ S.

Thus {Aα} is an A-ergodic net, and it follows from Theorem 2.4 that {Aα}
converges strongly to a linear projection P on X with range R(P ) = F (S), null
space N (P ) =

∑
s∈S R(T (s) − I), and domain

D(P ) = F (S) ⊕
∑
s∈S

R(T (s) − I) = {x ∈ X ; {Aαx} has a weak cluster point}.

Since Aαx ∈ co(Sx), condition (S3) implies that {Aαx} has a weak cluster point
for every x ∈ X . Thus D(P ) = X . This proves Theorem 3.1.

In particular, if S = [0,∞), then a semigroup S = {T (s); s ≥ 0} satisfying
(S1)-(S3) has to be strongly continuous, i.e., it is a (C0)-semigroup. Since this
semigroup S is commutative, the assumption in Theorem 2.1 on the net {φα}
becomes

(∗0) lim
α

‖r∗t φα − φα‖ = 0 in Cb[0,∞)∗ for all t ≥ 0. In this case, {φα} is said
to be strongly regular (cf. [3]).
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Let A be the infinitesimal generator of T (·). Using the facts that x ∈ N (A) if and
only if T (s)x = x for all s ≥ 0, Ax = limt→0+ t−1(T (t) − I)x for x ∈ D(A),
and (T (t) − I)x = A

∫ t
0 T (s)xds for all x ∈ X , we can formulate the following

corollary.

Corollary 3.2. Let {T (s); s ≥ 0} be a uniformly bounded (C0)-semigroup
with generator A such that all orbits are relatively weakly compact in X , and
let {φα} be a bounded strongly regular net in C b[0,∞)∗ or Cub(S)∗ such that
φα(1) = 1 for all α. Then the net {Aα} converges strongly to a linear projection
P on X with range R(P ) = N (A), null space N (P ) = R(A), and domain
D(P ) = X = N (A)⊕R(A).

Note that Cub[0,∞) is invariant under rt, and the restrictions of rt, t ≥ 0, to
Cub[0,∞) form a (C0)-semigroup of operators on Cub[0,∞); its infinitesimal gen-
erator is the differentiation operator D, defined by Df(t) = f ′(t) for differentiable
f in Cub[0,∞). Our uniform ergodic theorem and strong ergodic theorem with
rates for C0-semigroups will be formulated under the following assumptions on a
net {φα} in Cub[0,∞)∗:

(∗1) lim sup
t→0+

t−1‖r∗t φα − φα‖ < ∞ for all α and e(α) := lim sup
t→0+

t−1‖r∗t φα −

φα‖ → 0;
(∗2) There exists a companion net {ψα} ⊂ Cub [0,∞)∗ such that ψα ◦ D = δ−φα,

where δ is the mean on Cub[0,∞) defined by (δf) := f(0) for all f ∈
Cub[0,∞).

Note that condition (*1) is stronger than condition (*0) and under condition (*1)
we actually have lim

t→0+
t−1‖r∗tφα − φα‖ = e(α) (see Proposition 3.4(iii)).

For convenience of application, we give a condition which is equivalent to (*1)
and implies condition (C3) of Definition 1.3. We need the following lemma which
was essentially proved in [6, Theorem 3.2.1].

Lemma 3.3. For x∗ ∈ X∗, the following assertions are equivalent:

(a) x∗ ∈ D(A∗);
(b) lim sup

t→0+

t−1‖T ∗(t)x∗ − x∗‖ <∞;

(c) lim inf
t→0+

t−1‖T ∗(t)x∗ − x∗‖ <∞.

Moreover, we have

‖A∗x∗‖ ≤ lim inf
t→0+

t−1‖T ∗(t)x∗ − x∗‖ ≤ lim sup
t→0+

t−1‖T ∗(t)x∗ − x∗‖

≤ lim sup
t→0+

‖T (t)‖‖A∗x∗‖.
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Proof. (b) ⇒ (c) is obvious.
(a) ⇒ (b). If x∗ ∈ D(A∗), then we have for every x ∈ X and t > 0

t−1|〈x, T ∗(t)x∗ − x∗〉| = t−1|〈(T (t)− I)x, x∗〉| = t−1|〈A(1 ∗ T (t))x, x∗〉|

≤ t−1‖A∗x∗‖‖1 ∗ T (t)‖‖x‖
≤ sup{‖T (s)‖; 0 < s ≤ t}‖A∗x∗‖‖x‖.

Hence
lim sup
t→0+

t−1‖T ∗(t)x∗ − x∗‖ ≤ lim sup
t→0+

‖T (t)‖‖A∗x∗‖.

(c)⇒ (a). Suppose lim inf
t→0+

t−1‖T ∗(t)x∗−x∗‖ <∞. Since t−1(1∗T (t))(t) → I

strongly as t ↓ 0, we have for every x ∈ D(A)

|〈Ax, x∗〉| = lim
t→0+

t−1|〈(1 ∗ T (t))Ax, x∗〉| = lim
t→0+

t−1|〈T (t)x− x, x∗〉|

= lim
t→0+

t−1|〈x, T ∗(t)x∗ − x∗〉| ≤ lim inf
t→0+

t−1‖T ∗(t)x∗ − x∗‖‖x‖.

Therefore x∗ ∈ D(A∗) and ‖A∗x∗‖ ≤ lim inf
t→0+

t−1‖T ∗(t)x∗ − x∗‖.

Proposition 3.4.

(i) For a linear functional φ ∈ Cub[0,∞)∗, lim sup
t→0+

t−1‖r∗tφ − φ‖ < ∞ if and

only if lim inf
t→0+

t−1‖r∗t φ − φ‖ < ∞, if and only if φ ◦ D ∈ Cub[0,∞)∗ (i.e.,

φ ∈ D(D∗)). In this case, lim sup
t→0+

t−1‖r∗tφ − φ‖ = lim inf
t→0+

t−1‖r∗tφ − φ‖ =

‖φ ◦ D‖.
(ii) A net {φα} ⊂ Cub[0,∞)∗ satisfies the condition (*1) if and only if φ α ◦ D ∈

Cub[0,∞)∗ eventually and ‖φα ◦ D‖ = e(α).
(iii) If {φα} satisfies the condition (*1), then it satisfies condition (*0) and the

net {Aα} satisfies condition (C3) of Definition 1.3.

Proof. Since {rt; t ≥ 0} is a contraction C0-semigroup on Cub[0,∞)∗,

(i) follows from Lemma 3.3.
(ii) follows from (i).
(iii) Since {rt; t ≥ 0} is a (C0)-semigroup on Cub[0,∞), by (ii) we have for all

f ∈ Cub [0,∞)
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‖(r∗tφα − φα)f‖∞ = ‖φα((rt − I)f)‖∞ = ‖φα(D
∫ t

0
rsfds)‖∞

≤ ‖φα ◦ D‖‖
∫ t

0
rsfds)‖∞ = e(α)‖

∫ t

0
rsds‖‖f‖∞.

Hence
‖r∗tφα − φα‖ ≤ e(α)‖

∫ t

0

rsds‖ → 0 for all t ≥ 0.

To verify condition (C3) we see that

|〈Aαt−1(T (t)− I)x, x∗〉| = |t−1φα(〈T (·)(T (t)− I)x, x∗〉)|

= |t−1φα((rt− I)〈T (·)x, x∗〉)| = t−1|(r∗tφα − φα)(〈T (·)x, x∗〉)|

≤ t−1‖r∗tφα − φα‖M‖x‖‖x∗‖

for all x ∈ X , x∗ ∈ X∗, and t > 0. Hence ‖Aαt−1(T (t) − I)x‖ ≤ t−1‖r∗tφα −
φα‖M‖x‖ for all x ∈ X and t > 0. If x ∈ D(A), then

‖AαAx‖ ≤
∥∥Aα (

t−1(T (t)− I)x−Ax
)∥∥ + ‖Aαt−1(T (t)− I)x‖

≤M
∥∥t−1(T (t)− I)x− Ax

∥∥ + t−1‖r∗tφα − φα‖M‖x‖.

This being true for all t > 0 and all x ∈ D(A), it follows that AαA has a bounded
closure AαA on X with norm ‖AαA‖ ≤ lim sup

t→0+

t−1‖r∗tφα − φα‖M .

By Corollary 2.2(iii), we see that, for x ∈ D(A),

lim
t→0+

t−1(T (t)− I)Aαx = Aα

(
lim
t→0+

t−1(T (t) − I)x
)

= AαAx.

Hence Aαx ∈ D(A) and AAαx = AαAx for all x ∈ D(A). Since D(A) is dense
in X , for any x ∈ X there is a sequence {xn} in D(A) such that xn → x. Since
Aαxn → Aαx and AAαxn = AαAxn → AαAx as n → ∞, it follows from the
closedness of A that Aαx ∈ D(A) and AAαx = AαAx. We have shown that
R(Aα) ⊂ D(A) and AαA ⊂ AAα = AαA. The assumption (*1) implies that
‖AAα‖ = O(e(α)). This verifies (C3).

Next, we observe consequence of condition (*2). For this we need the next
proposition.

Proposition 3.5. Let T (·) be a uniformly bounded (C0)-semigroup on a Banach
space with infinitesimal generator A. Then

(i) For every x ∈ X and x ∈ X ∗ 〈T (s)x, x∗〉 is bounded and uniformly contin-
uous on s ≥ 0, i.e., 〈T (·)x, x∗〉 ∈ Cub [0,∞).
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(ii) 〈T (·)x, x∗〉 ∈ D(D) and D〈T (·)x, x∗〉 = 〈T (·)Ax, x∗〉 for all x ∈ D(A)
and x∗ ∈ X∗.

(iii) Let φ, ψ ∈ Cub[0,∞)∗ be such that ψ ◦ D = δ − φ. Then R(Aψ) ⊂ D(A)
and AψA ⊂ AAψ = I −Aφ.

Proof.

(i) Let x ∈ X and x ∈ X ∗ be arbitrary. It is clear that |〈T (s)x, x∗〉| ≤
sup
s≥0

||T (s)|| · ||x|| · ||x∗|| <∞ for all s ≥ 0. For every t, s ≥ 0, we have

|〈T (t)x, x∗〉 − 〈T (s)x, x∗〉| = |〈T (t)x− T (s)x, x∗〉|
≤ sup

r≥0
||T (r)|| · ||T (|t− s|)x|| · ||x∗|| → 0 as |t− s| → 0.

This proves 〈T (s)x, x∗〉 is uniformly continuous on s ≥ 0 and so (i) holds.
(ii) holds because for x ∈ D(A) and x∗ ∈ X∗

|t−1(rt − I)〈T (·)x, x∗〉 − 〈T (·)Ax, x∗〉|

= |t−1(〈T (·+ t)x, x∗〉 − 〈T (·)x, x∗〉) − 〈T (·)Ax, x∗〉|

= |〈T (·)[t−1(T (t)x− x)− Ax], x∗〉|

≤ sup
s≥0

||T (s)|| · ||t−1(T (t)x− x) −Ax|| · ||x∗|| → 0 as t ↓ 0.

(iii) Let x ∈ D(A). By (ii) and Corollary 2.2(ii), we have 〈T (·)x, x∗〉 ∈ D(D)
and

ψ(D〈T (·)x, x∗〉) = ψ(〈T (·)Ax, x∗〉) = 〈AψAx, x∗〉

for every x∗ ∈ X∗. On the other hand, the assumption implies

ψD(〈T (·)x, x∗〉) = (δ − φ)(〈T (·)x, x∗〉) = 〈x−Aφx, x
∗〉.

Therefore we have AψAx = (I −Aφ)x for all x ∈ D(A). Clearly, it follows
from Corollary 2.2(iii) and the closedness of A that AψAx = AAψx for all
x ∈ D(A). Hence AAψx = AψAx = (I − Aφ)x for all x ∈ D(A). Again
by the closedness of A and the fact that D(A) is dense in X we obtain that
R(Aφ) ⊂ D(A) and AψA ⊂ AAψ = I −Aφ.

It follows from (iii) of Proposition 3.5 that (*2) implies R(Bα) ⊂ D(A) and
BαA ⊂ ABα = I − Aα. We have shown that conditions (*1) and (*2) yield
conditions (C3) and (C2), respectively. Therefore we can immediately deduce the
following Theorems 3.6, 3.7, and 3.8 from Theorems 2.6(ii), 2.7, and 2.8, respec-
tively.
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Let Aα := Aφα and Bα := Aψα . The following theorem is concerned with the
convergence of approximate solutions Bαy of Ax = y.

Theorem 3.6. Let {T (s); s ≥ 0} be a uniformly bounded (C0)-semigroup
with generator A such that all orbits are relatively weakly compact in X . Let
{φα} be a bounded net in Cub[0,∞)∗ which satisfies conditions (*1) and (*2).
Further, suppose B∗

αx
∗ = ϕ(α)x∗ for all x∗ ∈ R(A)⊥, with |ϕ(α)| → ∞, and that

‖Aαx‖ = O(f(α)) (resp. o(f(α))) implies ‖Bαx‖ = O( f(α)
e(α) ) (resp. o(f(α)

e(α) )).
Then the operatorB1, defined byB1y := limα Bαy with the natural domainD(B1),
is the inverse operator A−1

1 of the restriction A1 := A|R(A) of A to R(A); it has
range R(B1) = D(A1) = D(A) and domain D(B1) = R(A1) = R(A). Thus, for
each y ∈ R(A), B1y is the unique solution of the functional equation Ax = y in
R(A).

The following is a uniform ergodic theorem.

Theorem 3.7. Let {T (s); s ≥ 0} be a uniformly bounded (C0)-semigroup with
generator A such that all orbits are relatively weakly compact in X . Let {φ α}
be a bounded net in Cub[0,∞)∗ which satisfies conditions (*1) and (*2). Then
‖Aα−P‖ → 0 if and only if B1 is bounded and ‖Bα|R(A) −B1‖ → 0, if and only
if R(A) is closed. The following theorem is about the convergence rates of Aαx

and Bαy.

Theorem 3.8. Let {T (s); s ≥ 0} be a uniformly bounded (C0)-semigroup
with generator A such that all orbits are relatively weakly compact in X . Let
{µα} be a bounded net in Cub[0,∞)∗ which satisfies conditions (*1) and (*2).
Further, suppose B∗

αx
∗ = ϕ(α)x∗ for all x∗ ∈ R(A)⊥, with |ϕ(α)| → ∞, and that

‖Aαx‖ = O(f(α)) (resp. o(f(α))) implies ‖Bαx‖ = O( f(α)
e(α) ) (resp. o(f(α)

e(α) )).
Then the following statements hold.

(i) For x ∈ X ,

‖Aαx− Px‖ = O(f(α)) ⇔ K(e(α), x, X0, D(B0), ‖ · ‖B0) = O(f(α))

⇔ x ∈ [D(B0)]̃X0 (in case f = e).

(ii) For y ∈ D(B1) = R(A),

‖Bαy−B1y‖ =O(f(α)) ⇔ K(e(α), B1y, X1, D(B1), ‖ · ‖B1)= O(f(α))

⇔ y ∈ A(D(A) ∩ [D(B1)]̃X1) (in case f = e).
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4. EXAMPLES

Example 1. Let S = [0,∞), and for a fixed β > 0 and each t > 0 let
µt ∈ Cb[0,∞)∗ be a mean defined by µt(f) := (jβ ∗ f)(t)/jβ+1(t), and let ψt ∈
Cb[0,∞)∗ be a linear functional defined by ψt(f) = −(jβ+1 ∗ f)(t)/jβ+1(t), f ∈
Cb[0,∞), where jβ(t) = tβ/Γ(β + 1). We consider the net {µt}t→∞. Since

|(µt ◦ D)f | = |µt(f ′)| =
|(jβ ∗ f ′)(t)|
jβ+1(t)

=
|(jβ−1 ∗ (f − f(0))(t)|

jβ+1(t)

≤ 2‖f‖∞
jβ(t)
jβ+1(t)

= 2‖f‖∞
β + 1
t

for all differentiable f ∈ Cub[0,∞), we have ‖µt ◦ D‖ = O(t−1) (t → ∞) and
hence it follows from Proposition 3.4 that the net {µt}t→∞ satisfies condition (*1)
with e(t) = t−1. Also (*2) is satisfied:

(ψt ◦ D)f = −(jβ+1 ∗ f ′)(t)
jβ+1(t)

= −(jβ ∗ (f − f(0))(t)
jβ+1(t)

= f(0)− µtf = (δ − µt)f.

Since

(jβ ∗ 〈T (·)x, x∗〉)(t)/jβ+1(t) =
〈

(jβ ∗ T (·)x)(t)
jβ+1(t)

, x∗
〉

and
(jβ+1 ∗ 〈T (·)x, x∗〉)(t)/jβ+1(t) =

〈
(jβ+1 ∗ T (·)x)(t)

jβ+1(t)
, x∗

〉
for all x∗ ∈ X∗. Thus the operator At corresponding to the mean µt is the Cesàro
mean Cβ+1

t of order β + 1 as defined by

Cβ+1
t x =

(jβ ∗ T (·)x)(t)
jβ+1(t)

=
β + 1
tβ+1

∫ t

0
(t− s)βT (s)xds, x ∈ X,

and Bt = −(jβ+1(t))−1(jβ+1 ∗ T (·))(t) = − t
β+2C

β+1
t .

If x∗ ∈ R(A)⊥, then for all x ∈ X and t ≥ 0 we have

〈x, T ∗(t)x∗ − x∗〉 = 〈T (t)x− x, x∗〉 = 〈A(j0 ∗ T (·))(t)x, x∗〉 = 0

so that

〈x, B∗
t x

∗〉 =
〈
(jβ+1(t))−1(jβ+1 ∗ T (·))(t)x, x∗

〉
= (jβ+1(t))−1(jβ+1 ∗ 〈x, T ∗(·))x∗〉)(t)

=
〈
x, (jβ+1(t))−1(jβ+1 ∗ 1)(t)x∗

〉
=

〈
x,

t

β + 2
x∗

〉
.



Convergence Rates for Ergodic Theorems of Kido-Takahashi Type 1557

Hence B∗
t x

∗ = t
β+2x

∗ for all x∗ ∈ R(A)⊥ with t
β+2 → ∞ as t → ∞. It can

also been shown that if ‖Cβ+1
t x‖ = O(t−θ) (resp. o(t−θ)) with 0 ≤ θ ≤ 1, then

‖Btx‖ = O(t−θ/t−1) (resp. o(t−θ/t−1)) (cf. [9, 10]). Hence conditions (C4) and
(C5) are satisfied.

Example 2. Let µλ(f) := λLλ(f) := λ
∫∞
0 e−λtf(t)dt and ψλ(f) :=

−Lλ(f) = −
∫ ∞
0 e−λtf(t)dt for f ∈ Cb[0,∞) and λ > 0. Since

|(µλ ◦ D)f | = |µλ(f ′)| =
∣∣∣∣λ ∫ ∞

0

e−λtf ′(t)dt
∣∣∣∣

=
∣∣∣∣−λf(0) + λ2

∫ ∞

0

e−λtf(t)dt
∣∣∣∣ ≤ 2λ‖f‖∞

for all differentiable f ∈ Cub[0,∞), it follows from Proposition 3.4 that the net
{µλ}λ→0+ satisfies condition (*1) with e(λ) = λ. Also (*2) is satisfied:

(ψλ ◦ D)f = −Lλf ′ = f(0) − λLλf = (I − µλ)f.

It is easy to see that the operator Aλ corresponding to the mean µλ is Aλ =
λLλ(T (·)) = λ(λ − A)−1 and the operator Bλ corresponding to ψλ is Bλ =
−(λ − A)−1. We also know that conditions (C4) and (C5) are satisfied (cf. [9,
10]).

As applications of Corollary 3.2, and Theorems 3.6 - 3.8 to the above two
examples of nets of means, the following known theorems cf. [8, 9, 10]) can be
formulated.

Theorem 4.1. Let {T (s); s ≥ 0} be a uniformly bounded (C0)-semigroup with
generator A such that all orbits are relatively weakly compact in X .

(i) lim
t→∞Cβt x = lim

λ→0+
λ(λ− A)−1x = Px for all x ∈ X = D(P ) = N (A) ⊕

R(A) and for all 0 ≤ θ ≤ 1

‖Cβt x− Px‖ = O(t−θ) (t→ ∞)

⇔ ‖λ(λ− A)−1x− Px‖ = O(λθ) (λ→ 0+)

⇔ K(t−1, x, X0, D(B0), ‖ · ‖B0) = O(t−θ) (t→ ∞)

⇔ x ∈ [D(B0)]̃X0 (in case θ = 1);

(ii) For y ∈ D(B1) = R(A1) = A(D(A) ∩R(A)), we have

− lim
t→∞

t

β + 2
Cβ+1
t y = − lim

λ→0+
(λ−A)−1y = B1y
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and for all 0 ≤ θ ≤ 1

‖ t

β + 2
Cβ+1
t y + B1y‖ = O(t−θ) (t→ ∞)

⇔ ‖(λ−A)−1y +B1y‖ = O(λθ) (λ→ 0+)

⇔ K(t−1, B1y, X1, D(B1), ‖ · ‖B1) = O(t−θ) (t→ ∞)

⇔ y ∈ A(D(A) ∩ [D(B1)]̃X1) (in case θ = 1).

(iii) ‖Cβt −P‖ → 0 as t→ ∞ if and only if ‖λ(λ−A)−1 −P‖ → 0 as λ→ 0+,
if and only if R(A) is closed.
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