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Abstract. In this paper, we introduce a new iterative scheme based on the
hybrid method and the extragradient method for finding a common element
of the set of solutions of a generalized mixed equilibrium problem and the
set of fixed points of a nonexpansive mapping and the set of the variational
inequality for a monotone, Lipschitz-continuous mapping. We obtain a strong
convergence theorem for the sequences generated by these processes in Hilbert
spaces. Based on this result, we also get some new and interesting results.
The results in this paper generalize, extend and unify some well-known strong
convergence theorems in the literature.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈., .〉 and induced norm ‖.‖
and let C be a nonempty closed convex subset of H . let B : C → H be a nonlinear
mapping and let ϕ : C → R be a function and F be a bifunction from C ×C to R,
where R is the set of real numbers. Then, we consider the following generalized
mixed equilibrium problem: Finding x ∈ C such that

(1.1) F (x, y) + ϕ(y)− ϕ(x) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C.
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The set of solutions of (1.1) is denoted by GMEP (F, ϕ, B).
If B = 0, then the generalized mixed equilibrium problem (1.1) becomes the

following mixed equilibrium problem :

(1.2) Finding x ∈ C such that F (x, y) + ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C.

Problem (1.2) was studied by Ceng and Yao [1]. The set of solutions of (1.2) is
denoted by MEP (F, ϕ).

If ϕ = 0, then the generalized mixed equilibrium problem (1.1) becomes the
following generalized equilibrium problem:

(1.3) Finding x ∈ C such that F (x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C.

Problem (1.2) was studied by Takahashi and Takahashi [2]. The set of solutions of
(1.3) is denoted by GEP (F, B).

If ϕ = 0 and B = 0, then the generalized mixed equilibrium problem (1.1)
becomes the following equilibrium problem:

(1.4) Finding x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C.

The set of solutions of (1.4) is denoted by EP (F ).
If F (x, y) = 0 for all x, y ∈ C, the generalized mixed equilibrium problem

(1.1) becomes the following generalized variational inequality problem:

(1.5) Finding x ∈ C such that ϕ(y)− ϕ(x) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C.

The set of solutions of (1.5) is denoted by GV I(C, B, ϕ).
If ϕ = 0 and F (x, y) = 0 for all x, y ∈ C, the generalized mixed equilibrium

problem (1.1) becomes the following variational inequality problem:

(1.6) Finding x ∈ C such that 〈Bx, y − x〉 ≥ 0, ∀y ∈ C.

The set of solutions of (1.6) is denoted by V I(C, B).
If B = 0 and F (x, y) = 0 for all x, y ∈ C, the generalized mixed equilibrium

problem (1.1) becomes the following minimize problem:

(1.7) Finding x ∈ C such that ϕ(y)− ϕ(x) ≥ 0, ∀y ∈ C.

The set of solutions of (1.7) is denoted by Argmin(ϕ).
The problem (1.1) is very general in the sense that it includes, as special cases,

optimization problems, variational inequalities, minimax problems, Nash equilib-
rium problem in noncooperative games and others; see for instance, [1-4].

Recall that a mapping S of a closed convex subset C of H is nonexpansive [5]
if there holds that

‖Sx − Sy‖ ≤ ‖x − y‖ for all x, y ∈ C.
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We denote the set of fixed points of S by Fix(S). Ceng and Yao [1] introduced
an iterative scheme for finding a common element of the set of solution of problem
(1.2) and the set of common fixed points of a family of infinitely nonexpansive
mappings in a Hilbert space and obtained a strong convergence theorem. Takahashi
and Takahashi [2] introduced an iterative scheme for finding a common element of
the set of solution of problem (1.3) and the set of fixed points of a nonexpansive
mapping in a Hilbert space and proved a strong convergence theorem.

Some methods have been proposed to solve the problem (1.4); see, for instance,
[3, 4, 6-9, 26 and the references therein]. Recently, Combettes and Hirstoaga [6]
introduced an iterative scheme of finding the best approximation to the initial data
when EP (F ) is nonempty and proved a strong convergence theorem. Takahashi
and Takahashi [7] introduced an iterative scheme by the viscosity approximation
method for finding a common element of the set of solutions of problem (1.4) and
the set of fixed points of a nonexpansive mapping in a Hilbert space proved a strong
convergence theorem. Su, Shang and Qin [8] introduced the following iterative
scheme by the viscosity approximation method for finding a common element of
the set of solutions of problem (1.4) and the set of fixed points of a nonexpansive
mapping and the set of solutions of the variational inequality problem for an α-
inverse strongly monotone mapping in a Hilbert space. Starting with an arbitrary
x1 ∈ H , define sequences {xn} and {un} by

(1.8)




F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnf(xn) + (1 − αn)SPC(un − λnAun), ∀n ∈ N.

They proved that under certain appropriate conditions imposed on {αn}, {rn} and
{λn} , the sequences {xn} and {un} generated by (1.8) converge strongly to z ∈
Fix(S) ∩ EP (F ) ∩V I(C, A), where z = PFix(S)∩EP (F )∩V I(C,A)f(z). Tada and
Takahashi [9] introduced the following iterative scheme by the hybrid method for
finding a common element of the set of solutions of problem (1.4) and the set of
fixed points of a nonexpansive mapping in a Hilbert space. Starting with an arbitrary
x1 ∈ H , define sequences {xn} and {un} by

(1.9)




un ∈ C, F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

wn = (1 − αn)xn + αnSun,

Cn = {z ∈ H : ‖wn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x
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They proved that under certain appropriate conditions imposed on{αn}and{rn},
the sequences {xn}and{un}generated by (1.9) converge strongly to PFix(S)∩EP (F )x.
Generally speaking, the algorithm suggested by Tada and Takahashi is based on the
well-known type of method, namely, on the so-called hybrid or ”outer-approximation”
for solving fixed point problem. The idea of ”hybrid” or ”outer-approximation” types
of methods was originally introduced by Haugazeau in 1968 and was successfully
generalized and extended in recent papers of Bauschke and Combettes [10], [11],
Burachik, Lopes and Svaiter [12], Combettes [13], Nakajo and Takahashi [14], and
Solodov and Svaiter [15], Kikkawa and Takahashi [16], Iiduka and Takahashi [17].

On the other hand, for solving the variational inequality problem in the finite-
dimensional Euclidean Rn, Korpelevich [18] introduced the following so-called
extragradient method:

(1.10)




x1 = x ∈ C

yn = PC(xn − λAxn),

xn+1 = PC(xn − λAyn),

for every n = 0, 1, 2, ..., where λ ∈ (0, 1
k ). He showed that if V I(C, A) is nonempty,

then the sequences {xn} and {yn}, generated by (1.10), converge to the same
point z ∈ V I(C, A). The idea of the extragradient iterative process introduced by
Korpelevich was successfully generalized and extended not only in Euclidean but
also in Hilbert and Banach spaces; see, e. g., the recent papers of He, Yang and
Yuan [19], Gárciga Otero and Iuzem [20], Solodov and Svaiter [21], Solodov [22].
Moreover, Zeng and Yao [23] and Nadezhkina and Takahashi [24] introduced an
iterative process based on the extragradient method for finding the common element
of the set of fixed points of nonexpansive mappings and the set of solutions of
variational inequality problem for a monotone, Lipschitz-continuous mapping. Yao
and Yao [25] introduced an iterative process based on the extragradient method for
finding the common element of the set of fixed points of nonexpansive mappings
and the set of solutions of variational inequality problem for an α-inverse strongly
monotone mapping. Plubtieng and Punpaeng [26] introduced an iterative process
based on the extragradient method for finding the common element of the set of
fixed points of nonexpansive mappings, the set of an equilibrium problem and the
set of solutions of variational inequality problem for α-inverse strongly monotone
mappings.

Very recently, by combine a hybrid methodwith an extragradient method, Nadezhk-
ina and Takahashi [27] introduced an iterative process as follows:
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(1.11)




x1 = x ∈ C,

yn = PC(xn − λnAxn),

zn = βnxn + (1 − βn)SPC(xn − λnAyn),
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... They proved that under certain appropriate conditions im-
posed on {βn} and {λn} , the sequences {xn} , {yn} and {zn} generated by (1.11)
converge strongly to z ∈ Fix(S) ∩ V I(C, A). Ceng, Hadjisavvas and Yao [28] in-
troduced the following iterative process by combining hybrid -extragradient method
for finding a common element of the set of fixed points of a nonexpansive map-
ping and the set of solutions of the variational inequality problem for a monotone,
Lipschitz-continuous mapping.

(1.12)




x1 = x ∈ C,

yn = (1 − γn)xn + γnPC(xn − λnAxn),

zn = (1 − αn − βn)xn + αnyn + βnSPC(xn − λnAyn),

Cn = {z∈C : ‖zn−z‖2 ≤ ‖xn−z‖2 + (3−3γn + αn)b2‖Axn‖2},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... They proved that under certain appropriate conditions im-
posed on {αn}, {βn}, {γn} and {λn} , the sequences {xn} , {yn} and {zn}
generated by (1.12) converge strongly to z ∈ Fix(S) ∩ V I(C, A). If γn = 1 and
αn = 0 for every n = 1, 2, ..., then (1.12) becomes (1.11). Ceng, Hadjisavvas and
Yao pointed up taking more general sequences {αn}, {βn} and {γn} might improve
the rate of convergence to a solution.

In the present paper, by using the well-known KKM technique we derive an
important lemma which is a foundation for studying the generalized mixed equi-
librium problem. Then, we introduce a new iterative scheme based on the extra-
gradient method and the hybrid method for finding a common element of the set
of solutions of a generalized mixed equilibrium problem, the set of fixed points of
a nonexpansive mapping and the set of the variational inequality for a monotone,
Lipschitz-continuous mapping. We obtain a strong convergence theorem for the
sequences generated by these processes. Based on this result, we also get some new
and interesting results. The results in this paper generalize, extend and unify some
well-known strong convergence theorems in the literature.
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2. PRELIMINARIES

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be
a nonempty closed convex subset of H . Let symbols → and ⇀ denote strong and
weak convergence, respectively. In a real Hilbert space H , it is well known that

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ [0, 1].
For any x ∈ H , there exists a unique nearest point in C, denoted by PC(x),

such that ‖x − PC(x)‖ ≤ ‖x − y‖ for all y ∈ C. The mapping PC is called the
metric projection of H onto C. We know that PC is a nonexpansive mapping from
H onto C. It is also known that PCx ∈ C and

(2.1) 〈x − PC(x), PC(x)− y〉 ≥ 0

for all x ∈ H and y ∈ C.
It is easy to see that (2.1) is equivalent to

(2.2) ‖x− y‖2 ≥ ‖x − PC(x)‖2 + ‖y − PC(x)‖2

for all x ∈ H and y ∈ C.
A mapping A of C into H is called monotone if

〈Ax − Ay, x− y〉 ≥ 0

for all x, y ∈ C. A mapping A of C into H is called α-inverse-strongly monotone
if there exists a positive real number α such that

〈x − y, Ax − Ay〉 ≥ α‖Ax − Ay‖2

for all x, y ∈ C. A mapping A : C → H is called k-Lipschitz-continuous if there
exists a positive real number k such that

‖Ax − Ay‖ ≤ k‖x − y‖
for all x, y ∈ C. It is easy to see that if A is an α-inverse-strongly-monotone
mapping, then A is monotone and Lipschitz-continuous. The converse is not true in
general. The class of α-inverse-strongly-monotone mappings does not contain some
important classes of mappings even in a finite-dimensional case. For example,
if the matrix in the corresponding linear complementarity problem is positively
semidefinite, but not positively definite, then the mapping A will be monotone and
Lipschitz-continuous, but not α-inverse-strongly-monotone (see [27]).

Let A be a monotone mapping of C into H . In the context of the variational
inequality problem the characterization of projection (2.1) implies the following:

u ∈ V I(C, A) ⇒ u = PC(u− λAu), λ > 0,



New Hybrid-extragradient Method for Generalized Mixed Equilibrium Problems 1407

and
u = PC(u − λAu) for some λ > 0 ⇒ u ∈ V I(C, A).

It is also known thatH satisfies the Opial’s condition [29], i.e., for any sequence
{xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖
holds for every y ∈ H with x �= y.

A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H ,
f ∈ Tx and g ∈ Ty imply 〈x− y, f − g〉 ≥ 0. A monotone mapping T : H → 2H

is maximal if its graph G(T ) of T is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping T is maximal if and only
if for (x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx.
Let A be a monotone, k-Lipschitz-continuous mapping of C into H and let NCv
be normal cone to C at v ∈ C, i.e, NCv = {w ∈ H : 〈v − u, w〉 ≥ 0, ∀u ∈ C}.
Define

Tv =

{
Av + NCv if v ∈ C,

∅ if v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C, A) (see [30]).
For each B ⊆ H , we denote by conv(B) the convex hull of B. A multival-

ued mapping G : B → 2H is said to be a KKM map if, for every finite subset
{x1, x2, ..., xn} ⊆ B,

conv(x1, x2, ..., xn) ⊆
∞⋃

n=1

G(xi).

We shall use the following results in the sequel.

Lemma 2.1. ([31]). Let B be a nonempty subset of a Hausdorff topological
vector space X and let G : B → 2X be a KKM map. If G(x) is closed for all
x ∈ B and is compact for at least one x ∈ B, then

⋂
x∈B G(x) �= ∅.

Lemma 2.2. (see Proposition 5.3 in [32]). Let C be a nonempty closed convex
subset of a strictly convex Banach space X and S : C → C a nonexpansive
mapping with Fix(S) �= ∅. Then Fix(S) is closed and convex.

For solving the generalized mixed equilibrium problem and the mixed equilib-
rium problem, let us give the following assumptions for the bifunction F , ϕ and the
set C:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C;
(A3) for each y ∈ C, x �→ F (x, y) is weakly upper semicontinuous;
(A4) for each x ∈ C, y �→ F (x, y) is convex;
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(A5) for each x ∈ C, y �→ F (x, y) is lower semicontinuous;
(B1) For each x ∈ H and r > 0, there exist a bounded subsetDx ⊆ C and yx ∈ C

such that for any z ∈ C \ Dx,

F (z, yx) + ϕ(yx) − ϕ(z) +
1
r
〈yx − z, z − x〉 < 0;

(B2) C is a bounded set;
(B3) For each x ∈ H and r > 0, there exist a bounded subsetDx ⊆ C and yx ∈ C

such that for any z ∈ C \ Dx,

ϕ(yx) − ϕ(z) +
1
r
〈yx − z, z − x〉 < 0;

(B4) For each x ∈ H and r > 0, there exist a bounded subsetDx ⊆ C and yx ∈ C
such that for any z ∈ C \ Dx,

F (z, yx) +
1
r
〈yx − z, z − x〉 < 0.

Lemma 2.3. Let C be a nonempty closed convex subset of H . Let F be a
bifunction from C × C to R satisfying (A1) − (A4) and let ϕ : C → R be a
proper lower semicontinuous and convex function. For r > 0 and x ∈ H, define a
mapping Tr : H → C as follows.

Tr(x) = {z ∈ C : F (z, y) + ϕ(y)− ϕ(z) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all x ∈ H . Assume that either (B1) or (B2) holds. Then, the following results
hold:

(1) For each x ∈ H , Tr(x) �= ∅;
(2) Tr is single-valued;
(3) Tr is firmly nonexpansive, i.e, for any x, y ∈ H,

‖Tr(x)− Tr(y)‖2 ≤ 〈Tr(x)− Tr(y), x− y〉;
(4) Fix(Tr) = MEF (F, ϕ);
(5) MEF (F, ϕ) is closed and convex.

Proof. Let x0 be any given point in H . For each y ∈ C, we define

G(y) = {z ∈ C : F (z, y) + ϕ(y)− ϕ(z) +
1
r
〈y − z, z − x0〉 ≥ 0}.

Note that for each y ∈ C, G(y) is nonempty since y ∈ G(y). We shall prove that
G is a KKM map. Suppose that there exist a finite subset {y1, y2, ..., yn} of C and
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µi ≥ 0 for all i = 1, 2, ..., n with
∑n

i=1 µi = 1 such that ẑ =
∑n

i=1 µiyi /∈ G(yi)
for each i = 1, 2, ..., n. Then we have

F (ẑ, yi) + ϕ(yi) − ϕ(ẑ) +
1
r
〈yi − ẑ, ẑ − x0〉 < 0

for each i = 1, 2, ..., n. By (A4) and the convexity of ϕ, we have

0 = F (ẑ, ẑ) + ϕ(ẑ) − ϕ(ẑ) +
1
r
〈ẑ − ẑ, ẑ − x0〉

≤
n∑

i=1

µi[F (ẑ, yi) + ϕ(yi) − ϕ(ẑ)] +
1
r
[

n∑
i=1

µi〈yi − ẑ, ẑ − x0〉] < 0

which is a contradiction. Hence, G is a KKM map. Note that G(y)
w
(the weak

closure of G(y)) is a weakly closed subset of C for each y ∈ C. Moreover, if (B2)
holds, then G(y)

w
is also weakly compact for each y ∈ C. If (B1) holds, then for

x0 ∈ H , there exist a bounded subset Dx0 ⊆ C and yx0 ∈ C such that for any
y ∈ C \ Dx0,

F (z, yx0) + ϕ(yx0) − ϕ(z) +
1
r
〈yx0 − z, z − x0〉 < 0.

This shows that

G(yx0) = {z ∈ C : F (z, yx0) + ϕ(yx0) − ϕ(z) +
1
r
〈yx0 − z, z − x0〉 ≥ 0} ⊆ Dx0.

And hence G(yx0)
w
is weakly compact. Thus, in both cases, we can use Lemma

2.1 and have ∩y∈CG(y)
w �= ∅.

Next we shall prove that G(y)
w

= G(y) for each y ∈ C; i.e., G(y) is weakly
closed. Let z ∈ G(y)

w
and zm be a sequence in G(y) such that zm ⇀ z. Then,

F (zm, y) + ϕ(y)− ϕ(zm) +
1
r
〈y − zm, zm − x0〉 ≥ 0

Since ‖ · ‖2 is weakly lower semicontinuous, we have

lim sup
m→∞

〈y − zm, zm − x0〉

= lim sup
m→∞

[〈y − zm,−x0〉 + 〈y, zm〉 − ‖zm‖2]

= lim
m→∞〈zm − y, x0〉 + lim

m→∞〈y, zm〉 − lim infm→∞‖zm‖2

≤ 〈z − y, x0〉+ 〈y, z〉 − ‖z‖2

= 〈z − y, x0 − z〉.
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It follows from (A3) and the weak lower semicontinuity of ϕ that

0 ≤ lim sup
m→∞

[F (zm, y) + ϕ(y)− ϕ(zm) +
1
r
〈y − zm, zm − x0〉]

≤ lim sup
m→∞

[F (zm, y) + ϕ(y)]− lim inf
m→∞ ϕ(zm) +

1
r

lim sup
m→∞

〈y − zm, zm − x0〉

≤ F (z, y) + ϕ(y)− ϕ(z) +
1
r
〈z − y, x0 − z〉.

This implies that z ∈ G(y). Hence, G(y) is weakly closed. Hence, Tr(x0) =
∩y∈CG(y) = ∩y∈CG(y)

w �= ∅. Hence, from the arbitrariness of x0, we know that
Tr(x) �= ∅ , ∀x ∈ H . We claim that Tr is single-valued. Indeed, for x ∈ H and
r > 0, let z1, z2 ∈ Tr(x). Then,

F (z1, z2) + ϕ(z2) − ϕ(z1) +
1
r
〈z2 − z1, z1 − x〉 ≥ 0

and
F (z2, z1) + ϕ(z1) − ϕ(z2) +

1
r
〈z1 − z2, z2 − x〉 ≥ 0.

Adding the two inequalities, we have

F (z1, z2) + F (z2, z1) +
1
r
〈z2 − z1, z1 − z2〉 ≥ 0.

From (A2) and r > 0, we have

〈z2 − z1, z1 − z2〉 ≥ 0.

So, we have z1 = z2.
Now we claim that Tr is a firmly nonexpansive-type map. Indeed, for x, y ∈ H ,

we have

F (Tr(x), Tr(y)) + ϕ(Tr(y))− ϕ(Tr(x)) +
1
r
〈Tr(y)− Tr(x), Tr(x) − x〉 ≥ 0

and

F (Tr(y), Tr(x)) + ϕ(Tr(x))− ϕ(Tr(y)) +
1
r
〈Tr(x)− Tr(y), Tr(y)− y〉 ≥ 0.

Adding the two inequalities, we have

F (Tr(x), Tr(y))+F (Tr(y), Tr(x))+
1
r
〈Tr(y)−Tr(x), Tr(x)−Tr(y)−x+y〉 ≥ 0.

From (A2) and r > 0, we have

〈Tr(y)− Tr(x), Tr(x) − Tr(y)− (x− y)〉 ≥ 0.
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Therefore, we have

‖Tr(x) − Tr(y)‖2 ≤ 〈Tr(x) − Tr(y), x− y〉.
Next we claim that Fix(Tr) = MEF (F, ϕ). Indeed, we have the following:

u ∈ Fix(Tr) ⇔ u = Tr(u)

⇔ F (u, y) + ϕ(y)− ϕ(u) +
1
r
〈y − u, u − u〉 ≥ 0, ∀y ∈ C

⇔ F (u, y) ≥ 0, ∀y ∈ C

⇔ u ∈ MEF (F, ϕ).

At last, we claim thatMEF (F, ϕ) is closed convex. Indeed, Since Tr is firmly non-
expansive, Tr is also nonexpansive. By Lemma 2.2, we know that MEF (F, ϕ) =
Fix(Tr) is closed and convex.

Remark 2.1.

(i) Lemma 2.3 generalizes and extends Corollary 5 in [4] and Lemma 2.12 in
[6], Lemma 2.1 and 2.2 in [7] which are the foundations for the algorithms of
equilibrium problems. And hence Lemma 2.3 plays a key role in the research
of algorithms for problems (1.1) and (1.2).

(ii) We observed that in Lemma 3.1 in [1], the condition of the sequentially
continuity from the weak topology to the strong topology for the derivativeK

′

of the function K : C → R is a very strong condition. Even if K(x) = ‖x‖2

2

and η(x, y) = x− y, then K
′
(x) = x is not sequentially continuous from the

weak topology to the strong topology.

3. STRONG CONVERGENCE THEOREMS

In this section, we show a strong convergence of an iterative algorithm based
on extragradient method and hybrid method which solves the problem of finding a
common element of the set of solutions of a generalized mixed equilibrium problem,
the set of fixed points of a nonexpansive mapping and the set of the variational
inequality for a monotone, Lipschitz-continuous mapping in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1) − (A5) and
ϕ : C → R be a lower semicontinuous and convex function. Let A be a monotone
and k-Lipschitz-continuous mapping of C into H and B be an α-inverse-strongly
monotone mapping of C into H . Let S be a nonexpansive mapping of C into H
such that Ω = Fix(S) ∩ V I(C, A) ∩ GMEP (F, ϕ, B) �= ∅. Assume that either
(B1) or (B2) holds. Let {xn}, {un}, {yn} and {zn} be sequences generated by
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x1 = x ∈ C,

F (un, y)+ϕ(y)−ϕ(un)+〈Bxn, y−un〉+ 1
rn

〈y−un, un−xn〉≥0, ∀y∈C,

yn = (1− γn)un + γnPC(un − λnAun),

zn = (1− αn − βn)xn + αnyn + βnSPC(un − λnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3− 3γn + αn)b2‖Aun‖2},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0}, xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4k ), {rn} ⊂

[d, e] for some d, e ∈ (0, 2α), and {αn}, {βn}, {γn} are three sequences in [0, 1]
satisfying the conditions:

(i) αn + βn ≤ 1 for all n ∈ N ;

(ii) lim
n→∞αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iii) lim
n→∞ γn = 1 and γn > 3

4 for all n ∈ N ;

Then, {xn}, {un}, {yn} and {zn} converge strongly to w = PΩ(x).

Proof. It is obvious that Cn is closed and Qn is closed and convex for every
n = 1, 2, .... Since

Cn = {z ∈ H : ‖zn − xn‖2 + 2〈zn − xn, xn − z〉 ≤ (3− 3γn + αn)b2‖Aun‖2},

we also have that Cn is convex for every n = 1, 2, .... It is easy to see that
〈xn − z, x − xn〉 ≥ 0 for all z ∈ Qn and by (2.1), xn = PQnx. Put tn =
PC(un − λnAyn) for every n = 1, 2, .... Let u ∈ Ω and let {Trn} be a sequence of
mappings defined as in Lemma 2.3. Then u = PC(u − λnAu) = Trn(u − rnBu).
From un = Trn(xn − rnBxn) ∈ C and the α-inverse-strongly monotonicity of B,
we have

(3.1)

‖un − u‖2 = ‖Trn(xn − rnBxn)− Trn(u− rnBu)‖2

≤ ‖xn − rnBxn − (u− rnBu)‖2

≤ ‖xn − u‖2 − 2rn〈xn − u, Bxn − Bu〉 + r2
n‖Bxn − Bu‖2

≤ ‖xn − u‖2 − 2rnα‖Bxn − Bu‖2 + r2
n‖Bxn − Bu‖2

= ‖xn − u‖2 + rn(rn − 2α)‖Bxn − Bu‖2

≤ ‖xn − u‖.



New Hybrid-extragradient Method for Generalized Mixed Equilibrium Problems 1413

From (2.2), the monotonicity of A, and u ∈ V I(C, A), we have

‖tn − u‖2 ≤ ‖un − λnAyn − u‖2 − ‖un − λnAyn − tn‖2

= ‖un − u‖2 − ‖un − tn‖2 + 2λn〈Ayn, u− tn〉
= ‖un − u‖2 − ‖un − tn‖2 + 2λn(〈Ayn − Au, u − yn〉

+〈Au, u − yn〉 + 〈Ayn, yn − tn〉)
≤ ‖un − u‖2 − ‖un − tn‖2 + 2λn〈Ayn, yn − tn〉
≤ ‖un − u‖2 − ‖un − yn‖2 − 2〈un − yn, yn − tn〉

−‖yn − tn‖2 + 2λn〈Ayn, yn − tn〉
= ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + 2〈un − λnAyn − yn, tn − yn〉.

Further, Since yn = (1 − γn)un + γnPC(un − λnAun) and A is k-Lipschitz-
continuous, we have

〈un − λnAyn − yn, tn − yn〉
= 〈un − λnAun − yn, tn − yn〉 + 〈λnAun − λnAyn, tn − yn〉
≤ 〈un − λnAun − (1− γn)un − γnPC(un − λnAun), tn − yn〉

+λn‖Aun − Ayn‖‖tn − yn‖
≤ γn〈un − λnAun − PC(un − λnAun), tn − yn〉

−(1 − γn)λn〈Aun, tn − yn〉 + λnk‖un − yn‖‖tn − yn‖.

In addition, from the definition of PC , we have

〈un − λnAun − PC(un − λnAun), tn − yn〉
= 〈un − λnAun − PC(un − λnAun), tn − (1− γn)un − γnPC(un − λnAun)〉
= (1 − γn)〈un − λnAun − PC(un − λnAun), tn − un〉

+γn〈un − λnAun − PC(un − λnAun), tn − PC(un − λnAun)〉
≤ (1 − γn)‖un − λnAun − PC(un − λnAun)‖‖tn − un‖
≤ (1 − γn)λn‖un − Aun − un‖(‖tn − yn‖ + ‖yn − un‖)
≤ (1 − γn)λn‖Aun‖(‖tn − yn‖+ ‖yn − un‖).

So, from the assumptions b < 1
4k , γn > 3

4 and (3.1), we have
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(3.2)

‖tn − u‖2 ≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2

+2γn(1− γn)b‖Aun‖(‖tn − yn‖ + ‖yn − un‖)
+2(1− γn)b‖Aun‖‖tn − yn‖ + 2bk‖un − yn‖‖tn − yn‖

≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + (1− γn)(2b2‖Aun‖2

+‖tn − yn‖2 + ‖yn − un‖2) + (1 − γn)(b2‖Aun‖2

+‖tn − yn‖2) + bk(‖un − yn‖2 + ‖tn − yn‖2)

= ‖un − u‖2 − (γn − bk)‖un − yn‖2

+(1 − 2γn + bk)‖tn − yn‖2 + 3(1− γn)b2‖Aun‖2

≤ ‖un − u‖2 + 3(1− γn)b2‖Aun‖2

≤ ‖xn − u‖2 + 3(1− γn)b2‖Aun‖2.

In addition, from u ∈ V I(C, A) and (3.1), we have

(3.3)

‖yn − u‖2 = ‖(1− γn)(un − u) + γn(PC(un − λnAun) − u)‖2

≤ (1− γn)‖un − u‖2 + γn‖PC(un − λnAun) − PC(u)‖2

≤ (1− γn)‖un − u‖2 + γn‖un − λnAun − u‖2

≤ (1−γn)‖un−u‖2+γn[‖un−u‖2 −2λn〈Aun, un−u〉+λ2
n‖Aun‖2]

≤ ‖un − u‖2 + b2‖Aun‖2

≤ ‖xn − u‖2 + b2‖Aun‖2.

Therefore from (3.1)- (3.3), zn = (1 − αn − βn)xn + αnyn + βnStn and u = Su,
we have

(3.4)

‖zn − u‖2 = ‖(1− αn − βn)xn + αnyn + βnStn − u‖2

≤ (1− αn − βn)‖xn − u‖2 + αn‖yn − u‖2 + βn‖Stn − u‖2

≤ (1− αn − βn)‖xn − u‖2 + αn‖yn − u‖2 + βn‖tn − u‖2

≤ (1− αn − βn)‖xn − u‖2 + αn[‖un − u‖2 + b2‖Aun‖2]

+βn[‖un − u‖2 + 3(1− γn)b2‖Aun‖2]

≤ ‖xn − u‖2 + (3 − 3γn + αn)b2‖Aun‖2],

for every n = 1, 2, ... and hence u ∈ Cn. So, Ω ⊂ Cn for every n = 1, 2, .... Next,
let us show by mathematical induction that {xn} is well defined and Ω ⊂ Cn ∩Qn

for every n = 1, 2, .... For n = 1 we have x1 = x ∈ C and Q1 = C. Hence
we obtain Ω ⊂ C1 ∩ Q1. Suppose that xk is given and Ω ⊂ Ck ∩ Qk for some
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k ∈ N . Since Ω is nonempty, Ck ∩ Qk is a nonempty closed convex subset of H .
So, there exists a unique element xk+1 ∈ Ck ∩ Qk such that xk+1 = PCk∩Qk

x. It
is also obvious that there holds 〈xk+1 − z, x− xk+1〉 ≥ 0 for every z ∈ Ck ∩ Qk.
Since Ω ⊂ Ck ∩Qk, we have 〈xk+1 − z, x−xk+1〉 ≥ 0 for every z ∈ Ω and hence
Ω ⊂ Qk+1. Therefore, we obtain Ω ⊂ Ck+1 ∩ Qk+1.

Let l0 = PΩx. From xn+1 = PCn∩Qnx and l0 ∈ Ω ⊂ Cn ∩ Qn, we have

(3.5) ‖xn+1 − x‖ ≤ ‖l0 − x‖

for every n = 1, 2, .... Therefore, {xn} is bounded. From (3.1)-(3.4) and the
lipschitz continuity of A, we also obtain that {un}, {Aun}, {tn} and {zn} are
bounded. Since xn+1 ∈ Cn ∩ Qn ⊂ Cn and xn = PQnx, we have

‖xn − x‖ ≤ ‖xn+1 − x‖

for every n = 1, 2, .... It follows from (3.5) that limn→∞ ‖xn − x‖ exists.
Since xn = PQnx and xn+1 ∈ Qn, using (2.2), we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2

for every n = 1, 2, .... This implies that

lim
n→∞ ‖xn+1 − xn‖ = 0.

Since xn+1 ∈ Cn, we have ‖zn−xn+1‖2 ≤ ‖xn−xn+1‖2+(3−3γn+αn)b2‖Aun‖2

and hence it follows from limn→∞ γn = 1 and limn→∞ αn = 0 that limn→∞ ‖zn−
xn+1‖ = 0. Since

‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖

for every n = 1, 2, ..., we have ‖xn − zn‖ → 0.
For u ∈ Ω, from (3.4) we obtain

‖zn − u‖2 − ‖xn − u‖2

≤ (−αn − βn)‖xn − u‖2 + αn‖yn − u‖2 + βn‖Stn − u‖2

≤ (3− 3γn + αn)b2‖Aun‖2.

Since limn→∞ γn = 1 and limn→∞ αn = 0, {un}, {Aun} and {zn} are bounded,
we have

lim
n→∞βn(‖Stn − u‖2 − ‖xn − u‖2) = 0.

By lim infn→∞ βn > 0, we get

lim
n→∞ ‖Stn − u‖2 − ‖xn − u‖2 = 0.
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From (3.2) and u = Su, we have

lim
n→∞ ‖Stn − u‖2 − ‖xn − u‖2 ≤ lim

n→∞ ‖tn − u‖2 − ‖xn − u‖2

≤ lim
n→∞ 3(1− γn)b2‖Aun‖2 = 0.

Thus, limn→∞ ‖tn − u‖2 − ‖xn − u‖2 = 0.
From (3.2) and (3.1), we have

(γn − bk)‖un − yn‖2 + (2γn − 1 − bk)‖tn − yn‖2

≤ ‖xn − u‖2 − ‖tn − u‖2 + 3(1− γn)b2‖Aun‖2.

It follows that

lim
n→∞(γn − bk)‖un − yn‖2 + (2γn − 1 − bk)‖tn − yn‖2 = 0.

The assumptions on γn and λn imply that γn − bk > 1
2 and 2γn − 1− bk > 1

4 .
Consequently, limn→∞ ‖un − yn‖ = limn→∞ ‖tn − yn‖ = 0. Since A is Lipschitz
continuous, we have limn→∞ ‖Atn − Ayn‖ = 0. It follows from ‖un − tn‖ ≤
‖un − yn‖+ ‖tn − yn‖ that limn→∞ ‖un − tn‖ = 0.

We rewrite the definition of zn as

zn − xn = αn(yn − xn) + βn(Stn − xn).

From limn→∞ ‖zn − xn‖ = 0, limn→∞ αn = 0, the boundedness of {xn}, {yn}
and lim infn→∞ βn > 0 we infer that limn→∞ ‖Stn − xn‖ = 0.

By (3.4) and (3.1), we have

(3.6)

‖zn − u‖2 ≤ (1− αn − βn)‖xn − u‖2 + αn[‖un − u‖2

+b2‖Aun‖2] + βn[‖un − u‖2 + 3(1− γn)b2‖Aun‖2]

≤ (1 − αn − βn)‖xn − u‖2 + αn[‖xn − u‖2

+rn(rn − 2α)‖Bxn − Bu‖2 + b2‖Aun‖2]

+βn[‖xn − u‖2 + rn(rn − 2α)‖Bxn − Bu‖2 + 3(1− γn)b2‖Aun‖2]

≤ ‖xn − u‖2 + (αn + βn)rn(rn − 2α)‖Bxn − Bu‖2

+(3− 3γn + αn)b2‖Aun‖2].

Hence, we have

(αn + βn)d(2α− e)‖Bxn − Bu‖2

≤ (αn + βn)rn(2α− rn)‖Bxn − Bu‖2

≤ ‖xn − u‖2 − ‖zn − u‖2 + (3− 3γn + αn)b2‖Aun‖2

≤ (‖xn − u‖ + ‖zn − u‖)‖xn − zn‖ + (3− 3γn + αn)b2‖Aun‖2.
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Since limn→∞ αn = 0, lim infn→∞ βn > 0, limn→∞ γn = 1, ‖xn − zn‖ → 0
and the sequences {xn} and {zn} are bounded, we obtain ‖Bxn − Bu‖ → 0.

For u ∈ Ω, we have, from Lemma 2.3,

‖un − u‖2 = ‖Trn(xn − rnBxn) − Trn(u − rnBu)‖2

≤ 〈Trn(xn − rnBxn) − Trn(u − rnBu), xn − rnBxn − (u − rnBu)〉

=
1
2
{‖un − u‖2 + ‖xn − rnBxn − (u − rnBu)‖2

−‖xn − rnBxn − (u − rnBu) − (un − u)‖2}

≤ 1
2
{‖un − u‖2 + ‖xn − u‖2 − ‖xn − rnBxn − (u − rnBu) − (un − u)‖2}

=
1
2
{‖un − u‖2 + ‖xn − u‖2 − ‖xn − un‖2

+2rn〈Bxn − Bu, xn − un〉 − r2
n‖Bxn − Bu‖2.

Hence,

‖un − u‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2 + 2rn〈Bxn − Bu, xn − un〉
−r2

n‖Bxn − Bu‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2 + 2rn〈Bxn − Bu, xn − un〉.
Then, by (3.4), we have

‖zn − u‖2 ≤ (1 − αn − βn)‖xn − u‖2 + αn[‖un − u‖2 + b2‖Aun‖2]

+βn[‖un − u‖2 + 3(1 − γn)b2‖Aun‖2]

≤ (1 − αn − βn)‖xn − u‖2 + αn[(‖xn − u‖2 − ‖xn − un‖2

+2rn〈Bxn − Bu, xn − un〉) + b2‖Aun‖2] + βn[(‖xn − u‖2

−‖xn − un‖2 + 2rn〈Bxn − Bu, xn − un〉) + 3(1− γn)b2‖Aun‖2]

≤ ‖xn − u‖2 + (−αn − βn)‖xn − un‖2 + 2rn‖Bxn − Bu‖‖xn − un‖
+(3− 3γn + αn)b2‖Aun‖2

Hence,

(αn + βn)‖xn − un‖2 ≤ ‖xn − u‖2 − ‖zn − u‖2

+2rn‖Bxn − Bu‖‖xn − un‖ + (3 − 3γn + αn)b2‖Aun‖2

≤ (‖xn − u‖ + ‖zn − u‖)‖xn − zn‖
+2rn‖Bxn − Bu‖‖xn − un‖ + (3 − 3γn + αn)b2‖Aun‖2.

Since limn→∞ αn = 0, lim infn→∞ βn > 0, limn→∞ γn = 1, ‖xn − zn‖ → 0,
‖Bxn − Bu‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain
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‖xn − un‖ → 0. From ‖zn − tn‖ ≤ ‖zn − xn‖ + ‖xn − un‖ + ‖un − tn‖ we
have ‖zn − tn‖ → 0. From ‖tn − xn‖ ≤ ‖tn − un‖ + ‖xn − un‖ we also have
‖tn − xn‖ → 0.

Since zn = (1 − αn − βn)xn + αnyn + βnStn, we have βn(Stn − tn) =
(1 − αn − βn)(tn − xn) + αn(tn − yn) + (zn − tn). Then

βn‖Stn − tn‖ ≤ (1− αn − βn)‖tn − xn‖ + αn‖tn − yn‖ + ‖zn − tn‖

and hence ‖Stn − tn‖ → 0.
As {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀

w. From ‖xn − un‖ → 0, we obtain that uni ⇀ w. From ‖un − tn‖ → 0, we
also obtain that tni ⇀ w. Since {uni} ⊂ C and C is closed and convex, we obtain
w ∈ C.

First, we show w ∈ GMEP (F, ϕ, B). By un = Trn(xn − rnBxn), we know
that

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉+
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

It follows from (A2) that

ϕ(y)− ϕ(un) + 〈Bxn, y − un〉+
1
rn

〈y − un, un − xn〉 ≥ F (y, un), ∀y ∈ C.

Hence,

(3.7) ϕ(y)−ϕ(uni)+〈Bxni , y−uni〉+〈y−uni ,
uni − xni

rni

〉 ≥ F (y, uni), ∀y ∈ C.

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)w. Since y ∈ C and
w ∈ C, we obtain yt ∈ C. So, from (3.7) we have

〈yt − uni , Byt〉 ≥ 〈yt − uni , Byt〉 − ϕ(yt) + ϕ(uni)− 〈yt − uni , Bxni〉

−〈yt − uni ,
uni − xni

rni

〉 + F (yt, uni)

= 〈yt−uni , Byt−Buni〉+〈yt−uni , Buni−Bxni〉−ϕ(yt)+ϕ(uni)

−〈yt − uni ,
uni − xni

rni

〉 + F (yt, uni).

Since ‖uni − xni‖ → 0, we have ‖Buni − Bxni‖ → 0. Further, from the
inverse-strongly monotonicity of B, we have 〈yt −uni , Byt −Buni 〉 ≥ 0. So, from
(A4), (A5), and the weakly lower semicontinuity of ϕ, uni−xni

rni
→ 0 and uni ⇀ w,

we have

(3.8) 〈yt − w, Byt〉 ≥ −ϕ(yt) + ϕ(w) + F (yt, w),
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as i → ∞. From (A1), (A4) and (3.8), we also have

0 = F (yt, yt) + ϕ(yt) − ϕ(yt)

≤ tF (yt, y) + (1− t)F (yt, w) + tϕ(y) + (1 − t)ϕ(w)− ϕ(yt)

= t[F (yt, y) + ϕ(y)− ϕ(yt)] + (1− t)[F (yt, w) + ϕ(w)− ϕ(yt)]

≤ t[F (yt, y) + ϕ(y)− ϕ(yt)] + (1− t)〈yt − w, Byt〉
= t[F (yt, y) + ϕ(y)− ϕ(yt)] + (1− t)t〈y − w, Byt〉

and hence
0 ≤ F (yt, y) + ϕ(y)− ϕ(yt) + (1 − t)〈y − w, Byt〉.

Letting t → 0, we have, for each y ∈ C,

F (w, y) + ϕ(y)− ϕ(w) + 〈y − w, Bw〉 ≥ 0.

This implies that w ∈ GMEP (F, ϕ, B).
We next show that w ∈ Fix(S). Assume w /∈ Fix(S). Since tni ⇀ w and

w �= Sw, from the Opial theorem [29] we have

lim inf
i→∞

‖tni − w‖ < lim inf
i→∞

‖tni − Sw‖
≤ lim inf

i→∞
{‖tni − Stni‖ + ‖Stni − Sw‖}

≤ lim inf
i→∞

‖tni − w‖

This is a contradiction. So, we get w ∈ Fix(S).
Finally we show w ∈ V I(C, A). Let

Tv =

{
Av + NCv if v ∈ C,

∅ if v /∈ C.

whereNCv is the normal cone to C at v ∈ C. We have already mentioned that in this
case the mapping T is maximal monotone, and 0 ∈ Tv if and only if v ∈ V I(C, A).
Let (v, g) ∈ G(T ). Then Tv = Av + NCv and hence g−Av ∈ NCv. So, we have
〈v − t, g− Av〉 ≥ 0 for all t ∈ C. On the other hand, from tn = PC(un − λnAyn)
and v ∈ C we have

〈un − λnAyn − tn, tn − v〉 ≥ 0

and hence

〈v − tn,
tn − un

λn
+ Ayn〉 ≥ 0.
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Therefore, we have

〈v − tni , g〉 ≥ 〈v−tni , Av〉
≥ 〈v−tni , Av〉 − 〈v − tni ,

tni − uni

λni

+ Ayni〉

= 〈v−tni , Av − Ayni −
tni − uni

λni

〉

= 〈v−tni , Av − Atni + Atni − Ayni −
tni − uni

λni

〉

= 〈v−tni , Av − Atni〉 + 〈v − tni , Atni − Ayni〉−〈v − tni ,
tni−uni

λni

〉

≥ 〈v − tni , Atni − Ayni〉 − 〈v − tni ,
tni − uni

λni

〉

Hence we obtain 〈v −w, g〉 ≥ 0 as i → ∞. Since T is maximal monotone, we
have w ∈ T−10 and hence w ∈ V I(C, A). This implies w ∈ Ω.

From l0 = PΩx, w ∈ Ω and (3.5), we have

‖l0 − x‖ ≤ ‖w − x‖ ≤ lim inf
i→∞

‖xni − x‖ ≤ lim sup
i→∞

‖xni − x‖ ≤ ‖l0 − x‖.

So, we obtain
lim
i→∞

‖xni − x‖ = ‖w − x‖.

From xni − x ⇀ w − x we have xni − x → w − x and hence xni → w. Since
xn = PQnx and l0 ∈ Ω ⊂ Cn ∩ Qn ⊂ Qn, we have

−‖l0 − xni‖2 = 〈l0 − xni , xni − x〉 + 〈l0 − xni , x− l0〉 ≥ 〈l0 − xni , x− l0〉.

As i → ∞, we obtain −‖l0 −w‖2 ≥ 〈l0−w, x− l0〉 ≥ 0 by l0 = PΩx and w ∈ Ω.
Hence we have w = l0. This implies that xn → l0. It is easy to see un → l0,
yn → l0 and zn → l0. The proof is now complete.

By Theorem 3.1, we can obtain some new and interesting strong convergence
theorems for some algorithms of finding the solution of generalized mixed equilib-
rium problem as follows.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let F be a bifunction from C ×C to R satisfying (A1)− (A5) and ϕ : C → R
be a lower semicontinuous and convex function. Let B be an α-inverse-strongly
monotone mapping of C into H . Let S be a nonexpansive mapping of C into H
such that Fix(S)∩GMEP (F, ϕ, B) �= ∅. Assume that either (B1) or (B2) holds.
Let {xn}, {un} and {zn} be sequences generated by
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x1 = x ∈ C,

F (un, y)+ϕ(y)−ϕ(un)+〈Bxn, y−un〉+ 1
rn
〈y−un, un−xn〉≥0, ∀y∈C,

zn = (1− αn − βn)xn + αnun + βnSun,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {rn} ⊂ [d, e] for some d, e ∈ (0, 2α), and {αn}, {βn}
are two sequences in [0, 1] satisfying the conditions:

(i) αn + βn ≤ 1 for all n ∈ N ;
(ii) lim

n→∞ αn = 0;

(iii) lim inf
n→∞ βn > 0.

Then, {xn}, {un} and {zn} converge strongly to w = PFix(S)∩GMEP (F,ϕ,B)(x).

Proof. Putting A = 0, by Theorem 3.1 we obtain the desired result.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ : C → R
be a lower semicontinuous and convex function. Let B be an α-inverse-strongly
monotone mapping of C into H . Let S be a nonexpansive mapping of C into H
such that Fix(S) ∩ GMEP (F, ϕ, B) �= ∅. Assume that either (B1) or (B2) holds.
Let {xn}, {un} and {zn} be sequences generated by



x1 = x ∈ C,

F (un, y)+ϕ(y)− ϕ(un)+〈Bxn, y−un〉+ 1
rn
〈y−un, un−xn〉≥0, ∀y∈C,

zn = (1− βn)xn + βnSun,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {rn} ⊂ [d, e] for some d, e ∈ (0, 2α), and {βn} is a
sequence in [0, 1] satisfying the condition lim inf

n→∞ βn > 0. Then, {xn}, {un} and
{zn} converge strongly to w = PFix(S)∩GMEP (F,ϕ,B)(x).

Proof. Putting A = 0 and αn = 0 for every n = 1, 2, ..., by Theorem 3.1 we
obtain the desired result.
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A mapping T of a closed convex subset C into itself is pseudocontractive if
there holds that

〈Tx − Ty, x− y〉 ≤ ‖x − y‖2

for all x, y ∈ C; see [33]. Obviously, the class of pseudocontractive mappings
is more general than the class of nonexpansive mappings. Now we prove a strong
convergence theorem of a new iterative process for finding a common element of the
set of solutions of a generalized mixed equilibrium problem, the set of fixed points of
a nonexpansive mapping and the set of fixed points of a Lipschitz pseudocontractive
mapping.

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let F be a bifunction from C ×C to R satisfying (A1)− (A5) and ϕ : C → R
be a lower semicontinuous and convex function. Let T be a pseudocontrative and
m-Lipschitz-continuous mapping of C into itself and B be an α-inverse-strongly
monotone mapping of C into H . Let S be a nonexpansive mapping of C into H
such that Fix(S) ∩ ∩Fix(T ) ∩ GMEP (F, ϕ, B) �= ∅. Assume that either (B1)
or (B2) holds. Let {xn}, {un}, {yn} and {zn} be sequences generated by


x1 = x ∈ C,

F (un, y)+ϕ(y)−ϕ(un)+〈Bxn, y−un〉+ 1
rn
〈y−un, un−xn〉≥0, ∀y∈C,

yn = (1 − γn)un + γn[un − λn(un − Tun)],

zn = (1− αn − βn)xn + αnyn + βnSPC(un − λn(yn − Tyn)),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3 − 3γn + αn)b2‖un − Tun‖2},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4(m+1)), {rn} ⊂

[d, e] for some d, e ∈ (0, 2α), and {αn}, {βn}, {γn} are three sequences in [0, 1]
satisfying the conditions:

(i) αn + βn ≤ 1 for all n ∈ N ;
(ii) lim

n→∞αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iv) lim
n→∞ γn = 1 and γn > 3

4 for all n ∈ N ;

Then, {xn}, {un}, {yn} and {zn} converge strongly to
w = PFix(S)∩∩Fix(T )∩GMEP (F,ϕ,B)(x).

Proof. LetA = I−T . From the proof of Theorem 4.5 in [27], we know that the
mappingA is monotone and (m+1)-Lipschitz-continuous and Fix(T ) = V I(C, A).
By Theorem 3.1 we obtain the desired result.
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Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let F be a bifunction from C×C to R satisfying (A1)− (A5) and ϕ : C→ R
be a lower semicontinuous and convex function. Let B be an α-inverse-strongly
monotone mapping of C into H and A be a monotone and k-Lipschitz-continuous
mapping of C into H . Let S be a nonexpansive mapping of C into H such that
Ω=Fix(S)∩V I(C, A)∩GMEP (F, ϕ, B) �=∅. Assume that either (B1) or (B2)
holds. Let {xn}, {un}, {yn} and {zn} be sequences generated by



x1 = x ∈ C,

F (un, y)+ϕ(y)−ϕ(un)+〈Bxn, y−un〉+ 1
rn
〈y−un, un−xn〉≥0, ∀y∈C,

yn = PC(un − λnAun),

zn = (1 − βn)xn + βnSPC(un − λnAyn),
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4k ), {rn} ⊂ [d, e]

for some d, e ∈ (0, 2α), and {βn} is a sequence in [0, 1] satisfying lim inf
n→∞ βn > 0.

Then, {xn}, {un}, {yn} and {zn} converge strongly to w = PΩ(x).

Proof. Puttingγn =1 and αn =0, by Theorem 3.1 we obtain the desired result.

It is easy to see that Theorem 3.1-3.5 generalize and extend Theorem 3.1 in [9].

Theorem 3.6. Let C be a nonempty closed convex subset of a real Hilbert space
H . Let F be a bifunction from C ×C to R satisfying (A1)− (A5) and ϕ : C → R
be a lower semicontinuous and convex function. Let B be an α-inverse-strongly
monotone mapping of C into H and A be a monotone and k-Lipschitz-continuous
mapping of C into H . Let S be a nonexpansive mapping of C into H such that
Ω = Fix(S) ∩ V I(C, A) ∩ GMEP (F, ϕ, B) �= ∅. Assume that either (B1) or
(B2) holds. Let {xn}, {un}, {yn} and {zn} be sequences generated by


x1 = x ∈ C,

F (un, y)+ϕ(y)−ϕ(un)+〈Bxn, y−un〉+ 1
rn
〈y−un, un−xn〉≥0, ∀y∈C,

yn = PC(un − λnAun),
zn = PC(un − λnAyn),
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x
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for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4k ), {rn} ⊂ [d, e]

for some d, e ∈ (0, 2α). Then, {xn}, {un}, {yn} and {zn} converge strongly to
w = PΩ(x).

Proof. Putting Putting S = I , γn = βn = 1 and αn = 0 for every n = 1, 2, ...,
by Theorem 3.1 we obtain the desired result.

Theorem 3.7 Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R be a lower semicontinuous and convex function. Let A be a monotone
and k-Lipschitz-continuous mapping of C into H and B be an α-inverse-strongly
monotone mapping of C into H . Let S be a nonexpansive mapping of C into H
such that Ω = Fix(S) ∩ V I(C, A) ∩ GMEP (F, ϕ, B) �= ∅. Assume that either
(B1) or (B2) holds. Let {xn}, {un}, {yn} and {zn} be sequences generated by


x1 = x ∈ C,

F (un, y)+ϕ(y)− ϕ(un)+〈Bxn, y−un〉+ 1
rn
〈y−un, un−xn〉≥0, ∀y∈C,

yn = (1− γn)un + γnPC(un − λnAun),

zn = PC(un − λnAyn),
Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3− 3γn + αn)b2‖Aun‖2},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4k), {rn} ⊂ [d, e]

for some d, e ∈ (0, 2α), and {γn} is a sequence in [0, 1] such that lim
n→∞ γn = 1

and γn > 3
4 for all n ∈ N . Then, {xn}, {un}, {yn} and {zn} converge strongly to

w = PΩ(x).

Proof. Putting S = I , αn = 0 and βn = 1 for every n = 1, 2, ..., by Theorem
3.1 we obtain the desired result.

4. APPLICATIONS

By the above results, we can obtain many new and interesting strong convergence
theorems for some algorithms of finding the solution of the problems (1.2)-(1.7).
Now we give some examples as follows:

Let B = 0, by Theorem 3.1 and 3.5, we obtain the following two strong
convergence theorems for the algorithms of finding solutions of problem (1.2):

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1) − (A5) and
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ϕ : C → R be a lower semicontinuous and convex function. Let A be a monotone
and k-Lipschitz-continuous mapping of C intoH . Let S be a nonexpansive mapping
of C into H such that Fix(S)∩ V I(C, A)∩MEP (F, ϕ) �= ∅. Assume that either
(B1) or (B2) holds. Let {xn}, {un}, {yn} and {zn} be sequences generated by



x1 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = (1− γn)un + γnPC(un − λnAun),

zn = (1− αn − βn)xn + αnyn + βnSPC(un − λnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3 − 3γn + αn)b2‖Aun‖2},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4k), {rn} ⊂

[d, +∞) for some d > 0, and {αn}, {βn}, {γn} are three sequences in [0, 1] satis-
fying the conditions:

(i) αn + βn ≤ 1 for all n ∈ N ;
(ii) lim

n→∞ αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iv) lim
n→∞ γn = 1 and γn > 3

4 for all n ∈ N ;

Then, {xn}, {un}, {yn} and {zn} converge strongly to
w = PFix(S)∩V I(C,A)∩MEP (F,ϕ)(x).

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1) − (A5) and
ϕ : C → R be a lower semicontinuous and convex function. Let A be a monotone
and k-Lipschitz-continuous mapping of C intoH . Let S be a nonexpansive mapping
of C into H such that Fix(S)∩ V I(C, A)∩MEP (F, ϕ) �= ∅. Assume that either
(B1) or (B2) holds. Let {xn}, {un}, {yn} and {zn} be sequences generated by



x1 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

zn = (1 − βn)xn + βnSPC(un − λnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x
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for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4k ), {rn} ⊂

[d, +∞) for some d > 0, and {βn} is a sequence in [0, 1] satisfying lim inf
n→∞ βn > 0.

Then, {xn}, {un}, {yn} and {zn} converge strongly to
w = PFix(S)∩V I(C,A)∩MEP (F,ϕ)(x).

Let ϕ = 0, by Theorem 3.1 and 3.5, we obtain the following two strong con-
vergence theorems for the algorithms of finding solutions of problem (1.3):

Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1) − (A5). Let A
be a monotone and k-Lipschitz-continuous mapping of C into H and B be an α-
inverse-strongly monotone mapping of C intoH . Let S be a nonexpansive mapping
of C into H such that Fix(S)∩ V I(C, A)∩GEP (F, B) �= ∅. Assume that either
(B4) or (B2) holds. Let {xn}, {un}, {yn} and {zn} be sequences generated by



x1 = x ∈ C,

F (un, y) + 〈Bxn, y − un〉+ 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = (1− γn)un + γnPC(un − λnAun),

zn = (1− αn − βn)xn + αnyn + βnSPC(un − λnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3− 3γn + αn)b2‖Aun‖2},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4k ), {rn} ⊂

[d, e] for some d, e ∈ (0, 2α), and {αn}, {βn}, {γn} are three sequences in [0, 1]
satisfying the conditions:

(i) αn + βn ≤ 1 for all n ∈ N ;
(ii) lim

n→∞αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iii) lim
n→∞ γn = 1 and γn > 3

4 for all n ∈ N ;

Then, {xn}, {un}, {yn} and {zn} converge strongly to
w = PFix(S)∩V I(C,A)∩GEP (F,B)(x).

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1) − (A5). Let A
be a monotone and k-Lipschitz-continuous mapping of C into H and B be an α-
inverse-strongly monotone mapping of C intoH . Let S be a nonexpansive mapping
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of C into H such that Fix(S)∩ V I(C, A)∩GEP (F, B) �= ∅. Assume that either
(B4) or (B2) holds. Let {xn}, {un}, {yn} and {zn} be sequences generated by



x1 = x ∈ C,

F (un, y) + 〈Bxn, y − un〉 + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

zn = (1− βn)xn + βnSPC(un − λnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4k ), {rn} ⊂ [d, e]

for some d, e ∈ (0, 2α), and {βn} is a sequence in [0, 1] satisfying lim inf
n→∞ βn > 0.

Then, {xn}, {un}, {yn} and {zn} converge strongly to
w = PFix(S)∩V I(C,A)∩GEP (F,B)(x).

Let F (x, y) = 0 for x, y ∈ C, by Theorem 3.1 we obtain the following strong
convergence theorem for an algorithm of finding solutions of problem (1.5):

Theorem 4.5. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let ϕ : C → R be a lower semicontinuous and convex function. Let A
be a monotone and k-Lipschitz-continuous mapping of C into H and B be an α-
inverse-strongly monotone mapping of C intoH . Let S be a nonexpansive mapping
of C into H such that Fix(S) ∩ V I(C, A) ∩ GV I(C, ϕ, B) �= ∅. Assume that
either (B3) or (B2) holds. Let {xn}, {un}, {yn} and {zn} be sequences generated
by



x1 = x ∈ C,

ϕ(y)− ϕ(un) + 〈Bxn, y − un〉 + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = (1− γn)un + γnPC(un − λnAun),
zn = (1 − αn − βn)xn + αnyn + βnSPC(un − λnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3− 3γn + αn)b2‖Aun‖2},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4k), {rn} ⊂

[d, e] for some d, e ∈ (0, 2α), and {αn}, {βn}, {γn} are three sequences in [0, 1]
satisfying the conditions:

(i) αn + βn ≤ 1 for all n ∈ N ;
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(ii) lim
n→∞αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iv) lim
n→∞ γn = 1 and γn > 3

4 for all n ∈ N ;

Then, {xn}, {un}, {yn} and {zn} converge strongly to
w = PFix(S)∩V I(C,A)∩GV I(C,ϕ,B)(x).

Let B = 0 and F (x, y) = 0 for x, y ∈ C, by Theorem 3.1 we obtain the fol-
lowing strong convergence theorem for an algorithm of finding solutions of problem
(1.7):

Theorem 4.6. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let ϕ : C → R be a lower semicontinuous and convex function. Let
A be a monotone and k-Lipschitz-continuous mapping of C into H . Let S be a
nonexpansive mapping of C intoH such that Fix(S)∩V I(C, A)∩Argmin(ϕ) �= ∅.
Assume that either (B3) or (B2) holds. Let {xn}, {un}, {yn} and {zn} be sequences
generated by



x1 = x ∈ C,

ϕ(y) − ϕ(un) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = (1− γn)un + γnPC(un − λnAun),

zn = (1− αn − βn)xn + αnyn + βnSPC(un − λnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3− 3γn + αn)b2‖Aun‖2},
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4k ), {rn} ⊂

[d, +∞) for some d > 0, and {αn}, {βn}, {γn} are three sequences in [0, 1] satis-
fying the conditions:

(i) αn + βn ≤ 1 for all n ∈ N ;
(ii) lim

n→∞αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iv) lim
n→∞ γn = 1 and γn > 3

4 for all n ∈ N ;

Then, {xn}, {un}, {yn} and {zn} converge strongly to
w = PFix(S)∩V I(C,A)∩Argmin(ϕ)(x).

Let B = 0 and ϕ = 0, by Theorem 3.1, we obtain the following strong conver-
gence theorem for an algorithm of finding solutions of problem (1.4):
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Theorem 4.7. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1) − (A5). Let
A be a monotone and k-Lipschitz-continuous mapping of C into H . Let S be a
nonexpansive mapping of C into H such that Fix(S)∩V I(C, A)∩MEP (F, ϕ) �=
∅. Assume that either (B4) or (B2) holds. Let {xn}, {un}, {yn} and {zn} be
sequences generated by




x1 = x ∈ C,

F (un, y) + 1
rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = (1− γn)un + γnPC(un − λnAun),

zn = (1− αn − βn)xn + αnyn + βnSPC(un − λnAyn),

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 + (3 − 3γn + αn)b2‖Aun‖2},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qn

x

for every n = 1, 2, .... where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1
4k), {rn} ⊂

[d, +∞) for some d > 0, and {αn}, {βn}, {γn} are three sequences in [0, 1] satis-
fying the conditions:

(i) αn + βn ≤ 1 for all n ∈ N ;
(ii) lim

n→∞ αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iv) lim
n→∞ γn = 1 and γn > 3

4 for all n ∈ N ;

Then, {xn}, {un}, {yn} and {zn} converge strongly to
w = PFix(S)∩V I(C,A)∩EP (F )(x).

Theorem 4.8. (see Theorem 5 in [28]). Let C be a nonempty closed convex
subset of a real Hilbert space H . Let A be a monotone and k-Lipschitz-continuous
mapping of C into H . Let S be a nonexpansive mapping of C into H such that
Fix(S) ∩ V I(C, A) �= ∅. Let {xn}, {yn} and {zn} be sequences generated by
(1.12), where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1

4k ) and {αn}, {βn}, {γn} are
three sequences in [0, 1] satisfying the conditions:

(i) αn + βn ≤ 1 for all n ∈ N ;
(ii) lim

n→∞ αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iv) lim
n→∞ γn = 1 and γn > 3

4 for all n ∈ N ;
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Then, {xn}, {yn} and {zn} converge strongly to w = PFix(S)∩V I(C,A)(x).

Proof. Putting ϕ = 0, B = 0 and F (x, y) = 0 for x, y ∈ C in Theorem
3.1, then un = PCxn = xn for every n = 1, 2, .... By Theorem 3.1 we obtain the
desired result.

Theorem 4.9. (see Theorem 3.1 in [27]). Let C be a nonempty closed convex
subset of a real Hilbert space H . Let A be a monotone and k-Lipschitz-continuous
mapping of C into H . Let S be a nonexpansive mapping of C into H such that
Fix(S) ∩ V I(C, A) �= ∅. Let {xn}, {yn} and {zn} be sequences generated by
(1.11), where {λn} ⊂ [a, b] for some [a, b] ⊂ (0, 1

4k ) and {βn} is a sequence in
[0, 1] satisfying lim inf

n→∞ βn > 0. Then, {xn}, {yn} and {zn} converge strongly to
w = PFix(S)∩V I(C,A)(x).

Proof. Putting ϕ = 0, B = 0 and F (x, y) = 0 for x, y ∈ C, αn = 0 and
γn = 1 for every n = 1, 2, ... in Theorem 3.1, then un = PCxn = xn for every
n = 1, 2, .... By Theorem 3.1 we obtain the desired result.

Theorem 4.8 and 4.9 generalize and extend Theorem 3.4 in [14].
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