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COMBINATORIAL STRUCTURES OF PSEUDOMANIFOLDS
AND MATROIDS

Chien-Hung Chen, Shyh-Nan Lee and Mau-Hsiang Shih*

Abstract. We prove a multiple combinatorial Stokes’ theorem and a multiple
Sperner’s lemma and formulate their matroid versions. The combinatorial
properties of pseudomanifolds with matroid structures are discussed.

1. INTRODUCTION

The theory of combinatorics of complexes may be traced back to 1928 [16]
when Sperner discovered a combinatorial lemma, that is globally called Sperner’s
lemma, which gave a drastic simplification of proofs of two topological theorems,
namely theorems of invariance of domain and invariance of dimension. In 1929,
Knaster, Kuratowski and Mazurkiewicz [4] used Sperner’s lemma to give a combi-
natorial proof of Brouwer’s fixed-point theorem. In 1967, Scarf [12] used Sperner’s
lemma to give a constructive proof of Brouwer’s fixed-point theorem and in 1974,
Kuhn [5] gave a constructive proof of the fundamental theorem of algebra based
on the combinatorial Stokes’ theorem. In 1973, Shapley [13] generalized Sperner’s
lemma with balancd structure, and gave a simple proof of Scarf’s theorem con-
cerning the nonemptyness of cores of NTU games. On the other hand, in 1945,
Tucker [17] proved a combinatorial lemma in the cube which gave a combinato-
rial proof of Lusternik-Schnirelmann’s topological theorem. In 1967, Ky Fan [2]
proved a combinatorial theorem which called combinatorial Stokes’ theorem, giving
a common generalization of Sperner’s lemma and Tucker’s combinatorial lemma.
In 1992, Shih and Lee [14] proved a combinatorial Lefschetz fixed-point formula,
put Sperner’s lemma into the form of “alternating sum,” and showed that Sperner’s
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lemma is the case of the Lefchetz number one for any simplical map on a triangu-
lation of a simplex. In 1989, Bapat [1] proved a multiple Sperner’s lemma which
gave a combinatorial proof of Gale’s theorem [3]. In 1993, Shih and Lee [15]
obtained a multiple balanced Sperner’s lemma which is a common generalization of
Shapley’s theorem [13] and Bapat’s theorem[1]. In 1998, Lee and Shih [6] proved
a multiple Stokes’ theorem. In 2008, Meunier [10] gave a different approach of
Lee and Shih’s result. In 1980, Lovasz [9] gave a matroid version of Sperner’s
lemma and Lee and Shih [7] gave its completion. The purpose of this paper is to
give further generalizations of Lee and Shih’s results concerning Stokes’ theorem
on pseudomanifolds [6] and matroids [7, 8].

2. DEFINITIONS AND NOTATIONS

An (abstract) complex is a finite collection K of nonempty finite sets such that
(K1) if σ is a member of K so is every nonempty subset of σ.

The members of K are its simplexes. A simplex σ of K is a d-simplex of K
if the cardinality |σ| of σ is d+ 1, and a subset τ of σ is an r-face of σ if τ
is an r-simplex of K. The union of all simplexes of K is the vertex set V (K)
of K.

A d-pseudomanifold is a complex K having the following two properties:

(M1) Every simplex of K is a face of at least one d-simplex of K.
(M2) Every (d − 1)-simplex of K is a common face of at most two distinct d-

simplexes of K.
A boundary (d − 1)-simplex of K is a (d − 1)-simplex of K that is a face of

exactly one d-simplex of K. The set of all boundary (d − 1)-simplexes of K is
denoted by ∂K.

Let σ = {v0, v1, . . . , vd} be a set of d + 1 elements. Then there are (d + 1)!
orderings of the elements of σ. Two orderings I = (vi0, vi1, . . . , vid) and J =
(vj0, vj1, . . . , vjd

) have the same orientation, denoted by I ∼ J , if
(

vi0vi1 ...vid
vj0vj1 ...vjd

)
is

an even permutation. If d > 0, then the (d+1)! orderings fall into two equivalence
classes. Each of these classes is called an orientation of σ, and if we fix one of
them arbitrarily, the other one is called the opposite orientation. The orientation of
σ determined by the ordering (vi0, vi1, . . . , vid) is denoted by (+1)[vi0, vi1, . . . , vid]
and its opposite orientation is denoted by (−1)[vi0, vi1, . . . , vid ]. If d = 0, there is
only one class [v0] and hence only one orientation of σ. We call the two symbols
(+1)[v0] and (−1)[v0] orientations on the singleton {v 0} and they are defined to
be opposite orientations on the singleton {v 0}.
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Given an orientation ω = ε[v0, v1, . . . , vd] on the set σ = {v0, v1, . . . , vd}
where ε = ±1 and d > 0. For each k = 0, 1, . . . , d, the induced orientation on
σ \ {vk} from ω is the well defined orientation (−1)kε[v0, . . . , vk−1, vk+1, . . . , vd]
on σ \ {vk}.

A d-pseudomanifold K is orientable if there is an orientation-valued map ω on
the set of all d-simplexes of K which satisfies the following two conditions:
(C1) For each d-simplex σ of K, ω(σ) is an orientation on σ.
(C2) If τ is an (d − 1)-simplex of K which is a common face of two distinct

d-simplexes σ and σ′ of K, then ω(σ) and ω(σ′) induce opposite orientations
on τ .

The pair (K, ω) is called a coherently oriented d-pseudomanifold.
Let m be a positive integer and K be a d-pseudomanifold. An m-labelling

in K is a map ϕ on V (K) such that for each vertex v of K, ϕ(v) is an m-tuple
(ϕ1(v), . . . , ϕm(v)) where ϕk(v) ∈ {0, 1, . . . , d} for k = 1, . . . , m. Given σ ∈ K
and f : σ → {1, . . . , m}, the pair (σ, f) is complete or subcomplete if the set
{ϕf(v)(v) | v ∈ σ} is {0, 1, . . . , d} or {0, 1, . . . , d − 1} respectively. When K
is oriented, there is an orientation-valued map ω on the set of all d-simplexes of
K so that (K, ω) is a coherently oriented d-pseudomanifold. Then the pair (σ, f)
is positively or negatively complete if ϕf(vk)(vk) = k for k = 0, 1, . . . , d, and
ω(σ) = (+1)[v0, v1, . . . , vd] or ω(σ) = (−1)[v0, v1, . . . , vd], respectively. Let τ
be a (d − 1)-face of a d-simplex σ of K and let g : τ → {1, . . . , m}. Then the
pair (τ, g) is positively or negatively subcomplete in σ if the induced orientation on
τ from ω(σ) is, respectively, (+1)[v0, v1, . . . , vd−1] or (−1)[v0, v1, . . . , vd−1] and
ϕg(vk)(vk) = k for k = 0, 1, . . . , d− 1. When τ ∈ ∂K such d-simplex σ is unique,
we simply call the pair (τ, g) positively or negatively subcomplete. We define

K(ϕ) = {(σ, f) | (σ, f) is complete },
∂K(ϕ) = {(τ, g) | (τ, g) is subcomplete and τ ∈ ∂K},

and, when (K, ω) is a coherently oriented d-pseudomanifold,

K+(ϕ) = {(σ, f) | (σ, f) is positively complete },
K−(ϕ) = {(σ, f) | (σ, f) is negatively complete },

∂K+(ϕ) = {(τ, g) | (τ, g) is positively subcomplete },
∂K−(ϕ) = {(τ, g) | (τ, g) is negatively subcomplete }.

We finally define K(ϕ)∗, K+(ϕ)∗ and K−(ϕ)∗ to be the sets of the pairs (σ, f) of
K(ϕ), K+(ϕ) and K−(ϕ) such that f is one-to-one and define ∂K(ϕ)∗, ∂K+(ϕ)∗
and ∂K−(ϕ)∗ to be the sets of the pairs (τ, g) of ∂K(ϕ), ∂K+(ϕ) and ∂K−(ϕ)
such that g is one-to-one, respectively.
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3. MULTIPLE COMBINATORIAL STOKES’ THEOREM

Theorem 1. Let ϕ be an m-labelling in a d-pseudomanifoldK (d > 0). Then

(3.1) |K(ϕ)| ≡ m|∂K(ϕ)| (mod 2)

and

(3.2) |K(ϕ)∗| ≡ (m− d)|∂K(ϕ)∗| (mod 2).

Suppose further, (K, ω) is a coherently oriented d-pseudomanifold, then

(3.3) (−1)d{|K+(ϕ)| − |K−(ϕ)|} = m{|∂K+(ϕ)| − |∂K−(ϕ)|}

and

(3.4) (−1)d{|K+(ϕ)∗| − |K−(ϕ)∗|} = (m− d){|∂K+(ϕ)∗| − |∂K−(ϕ)∗|}.

Proof. Let

S = {(σ, f) | σ is a d-simplex and f : σ → {1, . . . , m}}

and

T = {(τ, g) | τ is a (d− 1)-simplex and g : τ → {1, . . . , m}}.

Define an incidence relation ≺ from T to S by (τ, g) ≺ (σ, f) if and only if

(R1) (σ, f) ∈ S and (τ, g) ∈ T ,
(R2) (τ, g) is subcomplete,
(R3) τ ⊂ σ and g = f |τ (the restriction of f to τ ).
Put

S1 = {(σ, f) ∈ S | (σ, f) is complete },
S2 = {(σ, f) ∈ S | (σ, f) is subcomplete },
S3 = {(σ, f) ∈ S | (σ, f) is not complete and not subcomplete },
T1 = {(τ, g) ∈ T | (τ, g) is subcomplete and τ ∈ ∂K},
T2 = {(τ, g) ∈ T | (τ, g) is subcomplete and τ /∈ ∂K},
T3 = {(τ, g) ∈ T | (τ, g) is not subcomplete }.

Then

(3.5) {S1, S2, S3} is a partition of S
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and

(3.6) {T1, T2, T3} is a partition of T.

Let

St = {s ∈ S | t ≺ s} (t ∈ T )

and

Ts = {t ∈ T | t ≺ s} (s ∈ S).

We claim that

(3.7) |St| = m (t ∈ T1),

(3.8) |St| = 2m (t ∈ T2),

(3.9) |St| = 0 (t ∈ T3).

To see (3.7), (3.8) and (3.9), let us fix t = (τ, g) ∈ T , where

(3.10) τ = {v0, v1, . . . , vd−1}.

Case 1. t = (τ, g) ∈ T1. Then τ ∈ ∂K, so that τ is a face of exactly one
d-simplex σ of K, say

(3.11) σ = {v0, v1, . . . , vd},

and there are exactly m extensions f1, . . . , fm of g to the set σ into {1, . . . , m},
namely,

(3.12) fj(vk) =

{
g(vk) if k = 0, 1, . . . , d− 1

j if k = d

for j = 1, . . . , m, thus
St = {(σ, f1), . . . , (σ, fm)}

and (3.7) follows.

Case 2. t = (τ, g) ∈ T2. Then τ /∈ ∂K, so that τ is a face of exactly two
distinct d-simplexes σ and σ ′ of K, say

(3.13) σ = τ ∪ {vd} and σ′ = τ ∪ {v′d}.
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For each j = 1, . . . , m, let fj and f ′j be the functions on σ and σ ′ into {1, . . . , m}
defined by

(3.14) fj |τ = f ′j|τ = g and fj(vd) = f ′j(v
′
d) = j,

we have
St = {(σ, f1), . . . , (σ, fm)} ∪ {(σ′, f ′1), . . . , (σ′, f ′m)}

and (3.8) follows.

Case 3. t = (τ, g) ∈ T3. Then (τ, g) is not subcomplete, so that, by (R2), St

= ∅ and (3.9) follows.
We next claim that

(3.15) |Ts| = 1 (s ∈ S1)

(3.16) |Ts| = 2 (s ∈ S2)

(3.17) |Ts| = 0 (s ∈ S3)

To see (3.15), (3.16) and (3.17), let us fix s = (σ, f) ∈ S, where σ is given by
(3.11). Let

(3.18) τ = σ \ {vd}

and

(3.19) g = f |τ .

Then, by (K1), (3.10), (3.18) and (3.19),

(3.20) (τ, g) ∈ T.

Case 1’. s = (σ, f) ∈ S1. Then (σ, f) is complete, we may assume that

(3.21) ϕf(vk)(vk) = k for k = 0, 1, . . . , d.

It follows from (3.18), (3.19) and (3.21) that

(3.22) (τ, g) is subcomplete,

so that, by comparing (3.18), (3.19), (3.20) and (3.22) with (R1), (R2) and (R3),
we have

(3.23) Ts = {(τ, g)}
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and (3.15) follows.

Case 2’. s = (σ, f) ∈ S2. Then (σ, f) is subcomplete, so that

(3.24) {ϕf(v)(v) | v ∈ σ} = {0, 1, . . . , d− 1}.

By (3.11) and (3.24), we may assume that

(3.25) ϕf(vk)(vk) = k for k = 0, 1, . . . , d− 1

and

(3.26) ϕf(vd)(vd) = i for some i ∈ {0, 1, . . . , d− 1}.

Put

(3.27) τ ′ = σ \ {vi} and g′ = f |τ ′ .

We have

(3.28) (τ ′, g′) is subcomplete,

it follows that

(3.29) Ts = {(τ, g), (τ ′, g′)}

and (3.16) follows.

Case 3’. s = (σ, f) ∈ S3. Then (σ, f) is not complete and not subcomplete,
so that

(3.30) {0, 1, . . . , d− 1} 	⊂ {ϕf(v)(v) | v ∈ σ}

thus

(3.31) Ts = ∅

and (3.17) follows.
Define λ : T × S → {0, 1} by

λ(t, s) =

{
1, if t ≺ s

0, otherwise.
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Then, by (3.6), (3.7), (3.8) and (3.9),∑
t∈T

∑
s∈S

λ(t, s) =
∑
t∈T1

∑
s∈S

λ(t, s) +
∑
t∈T2

∑
s∈S

λ(t, s) +
∑
t∈T3

∑
s∈S

λ(t, s)

=
∑
t∈T1

|St| +
∑
t∈T2

|St| +
∑
t∈T3

|St|

= m|T1|+ 2m|T2| + 0|T3|
and, by (3.5), (3.15), (3.16) and (3.17),∑

s∈S

∑
t∈T

λ(t, s) =
∑
s∈S1

∑
t∈T

λ(t, s) +
∑
s∈S2

∑
t∈T

λ(t, s) +
∑
s∈S3

∑
t∈T

λ(t, s)

=
∑
s∈S1

|Ts|+
∑
s∈S2

|Ts| +
∑
s∈S3

|Ts|

= |S1| + 2|S2| + 0|S3|.
It follows that

(3.32) m|T1| + 2m|T2| = |S1|+ 2|S2|.
As

(3.33) S1 = K(ϕ) and T1 = ∂K(ϕ),

from (3.32) and (3.33), (3.1) is proved.
To see (3.2), let the sets, respectively, S∗, S1∗, S2∗, S3∗, T∗, T1∗, T2∗ and T3∗

be the sets of the pairs in S, S1, S2, S3, T , T1, T2 and T3 such that all the functions
f or g in the pairs (σ, f) or (τ, g) are one-to-one. As before, we have

(3.34) {S1∗, S2∗, S3∗} is a partition of S∗

and

(3.35) {T1∗, T2∗, T3∗} is a partition of T∗.
Let

St∗ = {s ∈ S∗ | t ≺ s} (t ∈ T∗)

and

Ts∗ = {t ∈ T∗ | t ≺ s} (s ∈ S∗).
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We claim that, in case m > d,

(3.36) |St∗| = m− d (t ∈ T1∗)

(3.37) |St∗| = 2(m− d) (t ∈ T2∗)

(3.38) |St∗| = 0 (t ∈ T3∗)

(3.39) |Ts∗| = 1 (s ∈ S1∗)

(3.40) |Ts∗| = 2 (s ∈ S2∗)

(3.41) |Ts∗| = 0 (s ∈ S3∗).

To see (3.36), (3.37) and (3.38), let us fix t = (τ, g) ∈ T∗. Since g is one-to-one,
the cardinality of the image of τ under g is |g(τ)| = d. If t = (τ, g) ∈ T1∗, then
there are exactly m− d injective extentions of g to σ into {1, . . . , m}, namely,

(3.42) St∗ = {(σ, fj) | j ∈ {1, . . . , m} \ g(τ)}(t ∈ T1∗)

where τ , σ and fj are the same as in (3.10), (3.11) and (3.12) respectively. Similarly,
if we define fj and f ′j as in (3.14), then we have

(3.43) St∗ = {(σ, fj) | j ∈ {1, . . . , m} \ g(τ)}
∪{(σ′, f ′j) | j ∈ {1, . . . , m} \ g(τ)} (t ∈ T2∗).

It is clear that

(3.44) St∗ = ∅(t ∈ T3∗).

This proves (3.36), (3.37) and (3.38). The same argument in the proof of (3.15),
(3.16) and (3.17) shows that (3.39), (3.40) and (3.41) are true. It follows from
(3.34) ∼ (3.41) that∑

t∈T∗

∑
s∈S∗

λ(t, s) = (m− d)|T1∗|+ 2(m− d)|T2∗|

and ∑
s∈S∗

∑
t∈T∗

λ(t, s) = |S1∗| + 2|S2∗|,
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so that

(3.45) (m− d)|T1∗| + 2(m− d)|T2∗| = |S1∗| + 2|S2∗|.

As

(3.46) S1∗ = K(ϕ)∗ and T1∗ = ∂K(ϕ)∗,

from (3.45) and (3.46), (3.2) is proved.
Suppose further, (K, ω) is a coherently oriented d-pseudomanifold. Put

S+
t = {(σ, f) ∈ St | (τ, g) is positively subcomplete in σ} (t = (τ, g) ∈ T ),

S−
t = {(σ, f) ∈ St | (τ, g) is negatively subcomplete in σ} (t = (τ, g) ∈ T ),

T+
s = {(τ, g) ∈ Ts | (τ, g) is positively subcomplete in σ} (s = (σ, f) ∈ S),

T−
s = {(τ, g) ∈ Ts | (τ, g) is negatively subcomplete in σ} (s = (σ, f) ∈ S).

Note that

(3.47) {K+(ϕ),K−(ϕ)} partitions S1

and

(3.48) {∂K+(ϕ), ∂K−(ϕ)} partitions T1.

We claim that

(3.49) |S+
t | = m and |S−

t | = 0 (t ∈ ∂K+(ϕ)),

(3.50) |S+
t | = 0 and |S−

t | = m (t ∈ ∂K−(ϕ)),

(3.51) |S+
t | = |S−

t | = m (t ∈ T2),

(3.52) |S+
t | = |S−

t | = 0 (t ∈ T3).

If t = (τ, g) ∈ ∂K+(ϕ), then (τ, g) is positively complete, so that

S+
t = {(σ, f1), . . . , (σ, fm)} and S−

t = ∅,

where τ , σ and fj are given by (3.10), (3.11) and (3.12), this proves (3.49). Sim-
ilarly, if t = (τ, g) ∈ ∂K−(ϕ) then S+

t = ∅ and S−
t = {(σ, f1), . . . , (σ, fm)} and

(3.50) follows. It follows from (M2), (C2) that if t ∈ T2 then S+
t is one of the two

sets {(σ, f1), . . . , (σ, fm)} and {(σ′, f ′1), . . . , (σ
′, f ′m)} and S−

t is the other, where
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σ, σ′, fj and f ′j are given by (3.13) and (3.14), this proves (3.51). If t = (τ, g) ∈ T3

then (τ, g) is not subcomplete, so that S+
t = S−

t = ∅ and (3.52) follows.
We next claim that

(3.53) |T+
s | =

1 + (−1)d

2
and |T−

s | =
1 − (−1)d

2
(s ∈ K+(ϕ)),

(3.54) |T+
s | =

1 − (−1)d

2
and |T−

s | =
1 + (−1)d

2
(s ∈ K−(ϕ)),

(3.55) |T+
s | = |T−

s | = 1 (s ∈ S2),

(3.56) |T+
s | = |T−

s | = 0 (s ∈ S3).

Let s = (σ, f) and ω(σ) = ε[v0, v1, . . . , vd] (ε = ±1). If s = (σ, f) ∈ K+(ϕ),
then ω(σ) = (+1)[v0, v1, . . . , vd] with the assumption (3.21), so that (3.22) holds
and ω(σ) induces (−1)d[v0, v1, . . . , vd−1] on τ , thus

T+
s = {(τ, g)} and T−

s = ∅ if d is even,

T+
s = ∅ and T−

s = {(τ, g)} if d is odd,

where τ and g are given in (3.18) and (3.19) respectively. This proves (3.53).
Similarly, if s = (σ, f) ∈ K−(ϕ), then

T+
s = ∅ and T−

s = {(τ, g)} if d is even,

T+
s = {(τ, g)} and T−

s = ∅ if d is odd,

and (3.54) follows. Next, if s = (σ, f) ∈ S2, then by (3.18) and (3.27) we have

ω(σ) induces (−1)dε[v0, v1, . . . , vd−1] on τ,

ω(σ) induces (−1)d+1ε[v0, v1, . . . , vi−1, vd, vi+1, . . . , vd−1] on τ ′,

so that by (3.25), (3.26) and (3.27), one of the two pairs (τ, g) and (τ ′, g′) is
positively subcomplete in σ and the other one is negatively subcomplete in σ, thus
(3.55) is true. Finally, if s = (σ, f) ∈ S3, then (3.17) implies that |T +

s | = |T−
s | = 0,

so that (3.56) is true.
Define Λ : T × S → {−1, 0, 1} by

Λ(t, s) =


1, if t ≺ s and (τ, g) is positively subcomplete in σ

−1, if t ≺ s and (τ, g) is negatively subcomplete in σ
0, otherwise.
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where t = (τ, g) ∈ T and s = (σ, f) ∈ S. Then by (3.48) ∼ (3.52),∑
t∈T

∑
s∈S

Λ(t, s) =
∑
t∈T

(|S+
t | − |S−

t |)

= (
∑

t∈∂K+(ϕ)

+
∑

t∈∂K−(ϕ)

+
∑
t∈T2

+
∑
t∈T3

)(|S+
t | − |S−

t |)

= |∂K+(ϕ)|(m−0)+|∂K−(ϕ)|(0−m)+|T2|(m−m)+|T3|(0−0)

= m{|∂K+(ϕ)| − |∂K−(ϕ)|}
and, by (3.47) and (3.53) ∼ (3.56),∑
s∈S

∑
t∈T

Λ(t, s) =
∑
s∈S

(|T+
s | − |T−

s |)

= (
∑

s∈K+(ϕ)

+
∑

s∈K−(ϕ)

+
∑
s∈S2

+
∑
s∈S3

)(|T+
s | − |T−

s |)

= |K+(ϕ)|{1 + (−1)d

2
− 1− (−1)d

2
}+

|K−(ϕ)|{1− (−1)d

2
− 1 + (−1)d

2
}+ |S2|(1− 1) + |S3|(0− 0)

= (−1)d{|K+(ϕ)| − |K−(ϕ)|},
thus (3.3) holds. If m > d, by a similar argument as in the proof of (3.2) and (3.3),
the equality (3.4) holds. We mention that if m ≤ d, then both sides of (3.2) and
(3.4) are zeros, thus (3.1) ∼ (3.4) hold for any positive integers m and d. This
completes the proof of Theorem 1.

4. MULTIPLE SPERNER’S LEMMA

A subset σ = {v0, v1, . . . , vd} of a Euclidean space is affinely independent if

(A1)
d∑

k=0

λkvk = 0 and
d∑

k=0

λk = 0 imply each λk = 0,

the convex hull conv σ of the affinely independent set σ is called a (geometric)
d-simplex with the vertices v0, v1, . . . , vd, sometimes we denote this simplex by
v0v1 . . . vd, thus

v0v1 . . . vd =

{
d∑

k=0

λkvk |
d∑

k=0

λk = 1, each λk ≥ 0

}
,
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for 0 ≤ r ≤ d and 0 ≤ k0 < k1 < . . . < kr ≤ d, the simplex vk0vk1 . . . vkr is
called an r-face of v0v1 . . . vd.

A finite collection T of (geometric) simplexes is called a triangulation of a
d-simplex a0a1 . . . ad if it satisfies the following three conditions:

(T1) a0a1 . . . ad =
⋃

s∈T

s.

(T2) If s ∈ T and t is a face of s then t ∈ T .
(T3) If s, t ∈ T and s ∩ t 	= ∅, then s ∩ t is a common face of s and t.
A point v ∈ a0a1 . . . ad is a vertex of T if v is a vertex of some simplex of T .
The set of all vertices of T is denoted by V (T ). The collection T̃ of all subsets
{v0, v1, . . . , vr} of V (T ) such that v0v1 . . . vr ∈ T is the vertex scheme of T
and which is a d-pseudomanifold. For each d-simplex σ = {v0, v1, . . . , vd} of T̃ ,
the canonical orientation ω(σ) on σ is (+1)[v 0, v1, . . . , vd] or (−1)[v0, v1, . . . , vd]
according as det(λij) > 0 or det(λij) < 0 respectively, where (λij) is the d + 1
square matrix satisfying

vi =
d∑

j=0

λijaj (
d∑

j=0

λij = 1) for i = 0, 1, . . . , d.

Then (T̃ , ω) becomes a coherently oriented d-pseudomanifold.
An m-labelling ϕ in T̃ is Sperner if it satisfies the following facial condition:

(F1) For each v ∈ V (T ) and each j ∈ {1, . . . , m},
v ∈ ak0ak1 . . .akr implies ϕj(v) ∈ {k0, k1, . . . , kr}

whenever 0 ≤ r ≤ d and 0 ≤ k0 < k1 < . . . < kr ≤ d.

Theorem 2. Let ϕ be an m-labelling in the vertex scheme T̃ of a triangulation
T of a given d-simplex a0a1 . . . ad. If ϕ is Sperner, then, with the canonical
orientation ω, we have

(4.1) |T̃+(ϕ)| − |T̃−(ϕ)| = md+1,

and if m > d, we have

(4.2) |T̃+(ϕ)∗| − |T̃−(ϕ)∗| = m(m− 1) . . . (m− d).

Proof. For each k = 0, 1, . . . , d, let Tk be the restricted triangulation of T to
the k-simplex a0a1 . . . ak, that is,

(4.3) Tk = {s ∈ T | s ⊂ a0a1 . . . ak}.
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Then (T̃k, ωk) is a coherently oriented k-pseudomanifold where ωk is the canonical
orientation on the set of all k-simplexes of T̃k. Precisely,

(4.4) ωk({v0, v1, . . . , vk}) = ε[v0, v1, . . . , vk] (ε = ±1)

if and only if

(4.5) det(λij)(k+1)×(k+1) = ε|det(λij)(k+1)×(k+1)|

where

(4.6) vi =
k∑

j=0

λijaj (
k∑

j=0

λij = 1) for i = 0, 1, . . . , k.

It follows from (F1) that the restriction of ϕ to V (Tk) is a Sperner m-labelling in
T̃k. We shall show that

(4.7) T̃+
0 (ϕ)| = m, |T̃−

0 (ϕ)| = 0,

(4.8) |∂T̃+
k (ϕ)| − |∂T̃−

k (ϕ)| = (−1)k{|T̃+
k−1(ϕ)| − |T̃−

k−1(ϕ)|},

(4.9) |T̃+
0 (ϕ)∗| = m, |T̃−

0 (ϕ)∗| = 0,

(4.10) |∂T̃+
k (ϕ)∗| − |∂T̃−

k (ϕ)∗| = (−1)k{|T̃+
k−1(ϕ)∗| − |T̃−

k−1(ϕ)∗|},

where 0 < k ≤ d.
Observe that Theorem 1, (4.8) and (4.10) will imply

(4.11) |T̃+
k (ϕ)| − |T̃−

k (ϕ)| = m{|T̃+
k−1(ϕ)| − |T̃−

k−1(ϕ)|}

and

(4.12) |T̃+
k (ϕ)∗| − |T̃−

k (ϕ)∗| = (m− k){|T̃+
k−1(ϕ)∗| − |T̃−

k−1(ϕ)∗|},

so that (4.1) will follow from (4.7) and (4.11) and (4.2) will follow from (4.9) and
(4.12).

By (4.3), T0 = {a0}, so that, by (F1),

(4.13) ϕ(a0) = (ϕ1(a0), . . . , ϕm(a0)) = (0, . . . , 0)

it follows from (4.4), (4.5), (4.6) and (4.13) that

(4.14) T̃+
0 (ϕ) = {({a0}, fj) | j = 1, . . . , m} and T̃−

0 (ϕ) = ∅
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where fj(a0) = j for j = 1, . . . , m, thus (4.7) is true.
As {a0} is a singleton, each fj in (4.14) is one-to-one, so that

(4.15) T̃+
0 (ϕ)∗ = T̃+

0 (ϕ) and T̃−
0 (ϕ)∗ = T̃−

0 (ϕ),

thus (4.9) is also true.
To see (4.8) and (4.10), let g : τ → {1, . . . , m} where
(4.16) τ = {v0, v1, . . . , vk−1}

and

(4.17) ϕg(vj)(vj) = j for j = 0, 1, . . . , k− 1.

Then (4.3) and (F1) imply the following (4.18) and (4.19) are equivalent:

(4.18) (τ, g) ∈ ∂T̃k(ϕ),

(4.19) (τ, g) ∈ T̃k−1(ϕ).

We claim that

(4.20) ∂T̃±
k (ϕ) = T̃±

k−1(ϕ) if k is even

(4.21) ∂T̃±
k (ϕ) = T̃∓

k−1(ϕ) if k is odd

and

(4.22) ∂T̃±
k (ϕ)∗ = T̃±

k−1(ϕ)∗ if k is even

(4.23) ∂T̃±
k (ϕ)∗ = T̃∓

k−1(ϕ)∗ if k is odd.

It is clear that (4.8) will follow from (4.20) and (4.21) and (4.10) will follow from
(4.22) and (4.23).

Now suppose (4.18) and (4.19) hold, let

(4.24) σ = {v0, v1, . . . , vk} ∈ T̃k.

Then τ is a face of σ, by (4.18), τ is a boundary (k − 1)-simplex of T̃k, so that
such a k-simplex σ is unique. By (4.3) and (4.24), we may assume that (4.6) holds,
and by (4.16), (4.19) and the affine independence of {a0, a1, . . . , ak}, we have

(4.25) λik = 0 for i = 0, 1, . . . , k− 1
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and

(4.26) λkk > 0,

so that, by (4.25),

(4.27) det(λij)(k+1)×(k+1) = λkkdet(λij)k×k.

Let

(4.28) ωk(σ) = ε[v0, v1, . . . , vk].

Then ωk(σ) induces

(4.29) (−1)kε[v0, v1, . . . , vk−1]

on τ . By (4.4), (4.5), (4.6), (4.26), (4.27) and (4.28), we have

(4.30) det(λij)k×k = ε|det(λij)k×k|,
so that, by replacing k by k − 1 in (4.4), (4.5) and (4.6), we have

(4.31) ωk−1(τ) = ε[v0, v1, . . . , vk−1].

It follows from (4.17), (4.29) and (4.31) that (4.20) ∼ (4.23) hold. This completes
the proof.

5. COMBINATORIAL FORMULAE AND MATROIDS

An ordered pair (E, I) is a matroid if E is a finite set and I is a collection of
subsets of E such that the following three conditions are satisfied:

(I1) ∅ ∈ I.
(I2) If I ∈ I and I ′ ⊂ I , then I ′ ∈ I.
(I3) If I1 ∈ I and I2 ∈ I with |I1| < |I2|, then I1 ∪ {e} ∈ I for some e ∈ I2 \ I1.
In the matroid (E, I), a subset of E is independent if it is a member of I and
dependent if it is not independent, a maximal independent subset of E is a basis, a
minimal dependent subset of E is a circuit, e ∈ E is a loop if the singleton {e} is
a circuit, the number

r(X) = max{|I | | I ⊂ X, I ∈ I}
is the rank of X , where X ⊂ E , and the closure (or span) of X is the set

cl(X) = {e ∈ E | r(X ∪ {e}) = r(X)}.



Combinatorial Structures of Pseudomanifolds and Matroids 1329

The number r(E) is called the rank of the matroid (E, I). It is well known that all
bases are equicardinal. For all necessary background materials we refer to Oxley
[11].

Let B = (b0, b1, . . . , bd) be an ordered basis of a matroid (E, I) of rank d+ 1
and

(5.1) Fj = cl({b0, b1, . . . , bj}) for j = 0, 1, . . . , d.

An ordering (e0, e1, . . . , ek) of k + 1 (0 ≤ k ≤ d) elements of E is a B-sequence
if

(5.2) e0 ∈ F0 and ej ∈ Fj \ Fj−1 for j = 1, . . . , k.

Let ψB : E → {0, 1, . . . , d} be the function defined by

(5.3) ψB(e) = 0 if e ∈ F0

(5.4) ψB(e) = j if e ∈ Fj \ Fj−1 for j = 1, . . . , d.

Then we have the following properties:

(B1) cl(∅) ⊂ F0 ⊂ F1 ⊂ . . . ⊂ Fd = E ( cl(∅) is the set of all loops in E),
(B2) if (e0, e1, . . . , ek) is a B-sequence, then the rank r({e0, e1, . . . , ek}) is k or

k + 1 provided e0 is a loop or not,
(B3) (e0, e1, . . . , ek) is a B-sequence if and only if

ψB(ej) = j for j = 0, 1, . . . , k.

LetK be a d-pseudomanifold,B = (b0, b1, . . . , bd) an ordered basis of a matroid
(E, I) of rank d + 1. If φ is a map from V (K) into Em, the Cartesian product
E × · · · × E of m factors, we shall write

(5.5) φ(v) = (φ1(v), . . . , φm(v))

and

(5.6) (ψB ◦ φ)(v) = ((ψB ◦ φ1)(v), . . . , (ψB ◦ φm)(v))

for v ∈ V (K), where ψB is given by (5.3) and (5.4), so that ϕ = ψB ◦ φ is an m-
labelling in K and we may consider a given pair (σ, f) which is complete, subcom-
plete or not by using the map φ and the ordered basis B instead of the m-labelling
ϕ. We may consider the orientations or the induced orientations when (K, ω) is
coherently oriented. We call a pair (σ, f) B-complete, positively B-complete or
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negatively B-complete, (relative to φ and B) if it is complete, positively complete
or negatively complete (relative to ϕ) and a pair (τ, g) B-subcomplete, positively
B-subcomplete or negatively B-subcomplete if it is subcomplete, positively sub-
complete or negatively subcomplete, and we writeKB(φ), K+

B(φ), K−
B(φ), ∂KB(φ),

∂K+
B(φ), and ∂K−

B(φ), in place of K(ϕ), K+(ϕ), K−(ϕ), ∂K(ϕ), ∂K+(ϕ), and
∂K−(ϕ) respectively. The notations such as KB(φ)∗, . . . , ∂K−

B(φ)∗ are defined by
a similar way.

The following Theorem 3 is a direct consequence of Theorem 1.

Theorem 3. Let φ : V (K) → Em where K is a d-pseudomanifold (d > 0)
and (E, I) is a matroid of rank d+ 1. Then for each ordered basis B of (E, I),

|KB(φ)| ≡ m|∂KB(φ)| (mod 2)

and

|KB(φ)∗| ≡ (m− d)|∂KB(φ)∗| (mod 2).

Suppose further, (K, ω) is a coherently oriented d-pseudomanifold, then

(−1)d{|K+
B(φ)| − |K−

B(φ)|} = m{|∂K+
B(φ)| − |∂K−

B(φ)|}

and

(−1)d{|K+
B(φ)∗| − |K−

B(φ)∗|} = (m− d){|∂K+
B(φ)∗| − |∂K−

B(φ)∗|}.

The following Theorem 4 is corresponding to Theorem 2.

Theorem 4. Let φ : V (T̃ ) → Em where T̃ is the vertex scheme of a trian-
gulation T of a d-simplex a0a1 . . . ad and (E, I) is a matroid of rank d + 1 with
an ordered basis B. If φ satisfies the facial condition (relative to the ordered basis
B):
for each v ∈ V (T̃ ) and each j ∈ {1, . . . , m},

v ∈ ak0ak1 . . .akr implies (ψB ◦ φj)(v) ∈ {k0, k1, . . . , kr}

whenever 0 ≤ r ≤ d and 0 ≤ k0 < k1 . . . < kr ≤ d, then, with the canonical
orientation ω, we have

|T̃+
B (φ)| − |T̃−

B (φ)| = md+1

and
|T̃+

B (φ)∗| − |T̃−
B (φ)∗| = m(m− 1) . . . (m− d).
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Proof. By the facial condition (relative to B), the m-labelling ϕ = ψB ◦ φ is
Sperner. Thus the theorem follows from Theorem 2.

Sometimes we are interested in the combinatorics of a pseudomanifold with an
independence structure. This is indeed a special case of Theorem 3 with m =
1, E = V (K) and φ = idV (K) the identity map on V (K). Precisely, let K be
a d-pseudomanifold and (V (K), I) be a matroid of rank d + 1 with an ordered
basis B. Let KB (resp. ∂KB) be the collection of all those d-simplexes σ =
{v0, v1, . . . , vd} (resp. boundary (d− 1)-simplexes) of K such that (v0, v1, . . . , vd)
(resp. (v0, v1, . . . , vd−1)) is a B-sequence. When K is orientable with an coherent
orientation-valued function ω, let K+

B (resp. K−
B) be the collection of all those d-

simplexes σ = {v0, v1, . . . , vd} of K such that (v0, v1, . . . , vd) is a B-sequence and
ω(σ) = (+1)[v0, v1, . . . , vd] (resp. (−1)[v0, v1, . . . , vd]) and let ∂K+

B (resp. ∂K−
B)

be the collection of all those boundary (d − 1)-simplexes τ = {v0, v1, . . . , vd−1}
of K such that (v0, v1, . . . , vd−1) is a B-sequence and the induced orientation on τ
from the orientation ω(σ) on the unique d-simplex σ of K having τ as a (d−1)-face
is (+1)[v0, v1, . . . , vd−1] (resp. (−1)[v0, v1, . . . , vd−1]). Then, by Theorem 3 with
the explanation above, the following Theorem 5 is true.

Theorem 5. Let K be a d-pseudomanifold and (V (K), I) be a matroid of rank
d+ 1. Then for each ordered basis B of (V (K), I),

|KB| ≡ |∂KB| (mod 2)

Suppose further, (K, ω) is coherently oriented, then

(−1)d{|K+
B| − |K−

B|} = |∂K+
B| − |∂K−

B|.

An analogous discussion about the special case of Theorem 4 is the notion of
Sperner Matroid, in which the matroid dependence and the affine dependence are
compatible in a triangulation of a simplex as stated in Theorem 6.

Theorem 6. Let T be a triangulation of a d-simplex a 0a1 . . .ad and (V (T ), I)
be a Sperner matroid over T , that is, for each v ∈ V (T ),

v ∈ conv({ak0, ak1, . . . , akr}) implies v ∈ cl({ak0, ak1, . . . , akr})
whenever 0 ≤ r ≤ d and 0 ≤ k0 < k1 . . . < kr ≤ d. If B = (a0, a1, . . . , ad) is an
ordered basis and if the (d− 1)-simplex a 1 . . .ad contains no loops of the matroid
(V (T ), I), then, with the canonical orientation ω,

|T̃+
B | − |T̃−

B | = 1
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where T̃ is the vertex scheme of T .

Theorem 6 was proved by Lee and Shih [7]. We conclude by remarking that the
hypothesis “a1 . . . ad contains no loops” in Theorem 6 implies the corresponding
labelling is Sperner, hence Theorem 6 holds.
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