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RAMSEY NUMBERS OF A CYCLE

Yusheng Li
Dedicated to Professor Ko-Wei Lih on the occasion of his 60th birthday.

Abstract. We sketch the ideas in the proofs of results on Ramsey numbers
of a cycle, particularly in many colors, in which one is due to professor Ko-
Wei Lih and the author for the right order of magnitude of Ramsey number
rk(C2m) as k → ∞ for m = 2, 3, 5.

1. INTRODUCTION

Let G be a graph. The Ramsey Number rk(G) is defined to be the smallest
positive integer N such that if the edge set of KN is colored by k colors, then
there exists a monochromatic copy of G.

We shall concentrate on Ramsey numbers rk(Cn) in this article, where Cn is a
cycle of length n.

It is trivial to see that r1(Cn) = n. All the exact values of r2(Cn) are known,
which will be given in the next section. For r3(Cn), only asymptotical formulas are
known as n → ∞. For general k ≥ 4, even the asymptotical formulas are open.

2. FIXED NUMBER OF COLORS

In Ramsey theory, it is a folklore that r2(C3) = r2(C4) = 6. However, all other
exact values of r2(Cn) have been found. The corect lower bound of r2(Cn) with
n ≥ 5 is a special case of the following general bound.

Lemma 1. Let m be a positive integer. Then

rk(C2m+1) ≥ 2km + 1,
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and
rk(C2m) ≥ (k + 1)m− k + 1.

Proof. It is easy to see that

rk(G) ≥ (χ − 1)(rk−1(G)− 1) + 1,

where χ = χ(G) is the chromatic number of G, and the first lower bound follows
immediately. The second is also easy. Let Nk = rk(C2m) − 1. Then there is an
edge-coloring of the complete graph of order Nk by k colors such that there is no
monochromatic C2m. Consider such a colored complete graph and a new complete
graph of order m − 1. Color all the edges of new graph and those between the
two complete graphs by a new color. Clearly, there is no monochromatic C2m, thus
Nk+1 ≥ Nk +m−1, which together with the fact that N1 = r1(C2m)−1 = 2m−1
implies the second assertion.

Rosta [17], and Faudree and Schelp [8] independently obtained the following
result, which together with r2(C3) and r2(C4) gives all the exact values of r2(Cn).

Theorem 1.

r2(Cn) =

{
2n − 1 for odd n ≥ 5,

3n/2− 1 for even n ≥ 6.

For three colors, it was shown that the lower bounds in Lemma 1 are asymptot-
ically equal to the exact values as n → ∞.

Theorem 2.

r3(Cn) =

{
(4 + o(1))n for odd n,

(2 + o(1))n for even n,

where o(1) is a small term tending to zero as n → ∞.
The result for the odd length case was obtained by Luczak [16], and Gyárfás,

Ruszinkó, Sárközy and Szemerédi [11], and the other by Figaj and Luczak [9]. They
used the Regularity Lemma of Szemerédi, a powerful tool in modern graph theory,
which can be found in some standard textbooks, see, e.g., Bollobás [2]. For four
or more colors, we believe that the lower bounds in Lemma 1 are asymptotically
sharp.

Problem 1. Prove or disprove the asymptotical equalities

rk(C2n+1) ∼ 2kn and rk(C2n) ∼ (k + 1)n

for k fixed and n → ∞.
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3. AN ODD CYCLE IN MANY COLORS

For n ≥ 3 fixed and k → ∞, it seems to be very hard to estimate rk(Cn).
From the definition, we know that N = rk(G)− 1 is the largest integer for which
KN has a k-edge coloring so that there is no monochromatic G; such an edge
coloring of KN is called a Ramsey coloring for rk(G). In a Ramsey coloring, any
graph induced by monochromatic edges is called a Ramsey graph. It was shown
[1, 6, 7, 18] that

c1321k/5 ≤ rk(C3) ≤ c2 k!,

where c1 and c2 are positive constants with c2 < e. For general odd cycles, Bondy
and Erd"os [3] obtained

(1) rk(C2m+1) ≤ (2m + 1)(k + 2)!.

The upper bound was refined by Graham, Rothschild, and Spencer [10] as

(2) rk(C2m+1) < 2m(k + 2)!.

Recently we [13] improved the above upper bounds as follows.

Theorem 3. Let k ≥ 2 be an integer. Then

rk(C5) ≤
√

18kk!.

Theorem 4. Let ε > 0 be a constant. If each Ramsey graph G of rk(C2m+1)
satisfies δ(G) ≥ εd(G), where d(G) is the average degree of G, then there is a
constant c = c(ε, m) > 0 such that

rk(C2m+1) ≤
(
ckk!

)1/m
.

The background for the assumption in Theorem 4 is a widespread belief that
the Ramsey graphs for rk(G) are nearly regular. Various known Ramsey colorings
and random graphs can serve as supporting evidence.

The proofs of Theorem 3 and 4, which we shall sketch, are similar. The idea
in the proofs of upper bounds (1) and (2) is as follows. Let Gi be a Ramsey graph
for rk(C2m+1) in color i, and let v be a vertex of Gi. Then the neighborhood of v
contains contains no path of length 2m − 1, thus it contains an independent set of
size at least di(v)/(2m− 1) + 1, where di(v) is the degree of v in Gi. However,
the edges of the complete subgraph induced by this independent set are colored by
k − 1 colors other than i, thus its size is at most rk−1(G). Our idea is to get a
global independent set of Gi instead of that in a neighborhood. Our proof relies
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heavily on the following lower bound for the independence number of a graph with
a certain forbidden cycle, which is proved by probabilistic method [15].

Lemma 2. Let m ≥ 2 be an integer and let G = (V, E) be a graph of order
N that contains no C2m+1. Then

α(G) ≥ c

(∑
v∈V

d(v)1/(m−1)

)(m−1)/m

,

where c = c(m) > 0 is a constant. In particular, c(2) =
√

2/6. So if G contains
no C5, then α(G) ≥√Nd/18, where d is the average degree of G.

Problem 2. Prove or disprove that rk(C2m+1) = o((k!)1/m) for m fixed and
k → ∞.

4. AN EVEN CYCLE IN MANY COLORS

If G is a bipartite graph, then rk(G) is closely related to its Turán number
ex(n; G), which is the maximum number of edges in an n-vertex graph that does
not contain G. It was shown by Bondy and Simonovits [4] that

(3) ex(n; C2m) ≤ c n1+1/m,

where here and henceforth c is a constant depending on m only. However the
constants may vary in different contexts.

Lemma 3. Let m ≥ 2 be an integer. Then

rk(C2m) ≤ c km/(m−1).

Furthermore, if the order of rk(C2m) is km/(m−1) as k → ∞, then the order of
ex(n; C2m) is n1+1/m as n → ∞.

Proof. Let N = rk(C2m)−1. Then there is an edge-coloring of KN in k colors
containing no monochromatic C2m. So each monochromatic subgraph of KN has
at most ex(N ; C2m) edges. Thus from (3), we have(

N

2

)
≤ k ex(N ; C2m) ≤ kc1N

1+1/m,

yielding rk(C2m)=N+1 ≤ ckm/(m−1) for some constant c = c(m). Similarly, it can
be proved that, if rk(C2m) ≥ c1k

m/(m−1) for some constant c1, then ex(n; C2m) ≥
c2n

1+1/m for some constant c2.



Ramsey Numbers of a Cycle 1011

From the above result, we know that it is harder to obtain the exact order of
magnitude of rk(C2m) than that of ex(n; C2m). The asymptotic formula (so the
order) of rk(C4) is k2, obtained by Chung and Graham [5], by by Irving [12].

Recently, professor Ko-Wei Lih and the author [14] obtained the right order of
rk(C2m) for m = 2, 3, 5.

Theorem 5. Fix m = 2, 3, or 5. As k → ∞, we have
rk(C2m) ≥ ckm/(m−1).

The key step of our proof is an edge coloring of KN,N by k colors such that
there is no monochromatic C2m, which is a generalization of Wenger’s constructions
[19]. In order to show our main result, let us define brk(G) for a bipartite graph G
as the minimum integer N such that, in any edge-coloring of the complete bipartite
graph KN,N by k colors, there is a monochromatic G. Using the dichotomy method,
we can prove the following result easily.

Lemma 4. If brk(C2m) ≥ c1k
m/(m−1) as k → ∞, then

rk(C2m) ≥ c2k
m/(m−1),

where c1 and c2 are positive constants.
Our edge coloring of KN,N is as follows. Let m ≥ 2 be an integer and let

q ≥ m be a prime power. Let F (q) be the Galois field of q elements, and let both
X and Y be copies of the Cartesian product Fm(q). Denote by N the number
qm = |X | = |Y |. We shall use vectors in Fm−1(q) as colors to color the complete
bipartite graph KN,N on partite sets X and Y such that there is no monochromatic
C2m for m = 2, 3, 5. For vertices A ∈ X and B ∈ Y with

A =




a1

a2
...

am


 and B =




b1

b2
...

bm


 ,

color the edge AB with color S ∈ Fm−1(q) where

S =




a1 + b1

a2 + b2
...

am−1 + bm−1


+ bm




a2

a3
...

am


 .

Let us denote by HS(m, q) the subgraph induced by all edges in color S, whose
edge sets form a partition of KN,N . Our main task is to show that HS(m, q)
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contains no C2m. The definition of HS(m, q) implies that for any vertex x, the last
coordinates of neighbors of x are pairwise distinct hence form F (q). In particular,
HS(m, q) is q-regular. Then we can show that if HS(m, q) contains a cycle C2m =
(A1, B1, . . . , Am, Bm) with Ai ∈ X and Bi ∈ Y , then for each Bi there exists a
Bj , i �= j, such that they have the same mth (last) coordinates. This implies that
HS(m, q) contains no C2m for m = 2, 3, 5 immediately.

Problem 3. Prove or disprove that the order of magnitude of rk(C2m) is
km/(m−1) for m ≥ 2 fixed and n → ∞.
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