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A CLASS OF LYM ORDERS IN DIVISOR LATTICES

Yi Wang and Yeong-Nan Yeh
Dedicated to Professor Ko-Wei Lih on the occasion of his 60th birthday.

Abstract. We present a new class of LYM orders, which generalizes Lih’s
result and is a common generalization of Griggs’ result and a result of West,
Harper and Daykin.

1. INTRODUCTION

A partially ordered set (or poset) is a set equipped with a reflexive, antisym-
metric, and transitive relation. A poset P is ranked if there is a rank function
r : P → N such that r(x) = 0 if x is a minimal element of P and r(z) = r(y) + 1
if z covers y in P . We call r(x) the rank of x. The rank of P is the maximum
value of r(x) taken over all x ∈ P . Let Pi denote the set of elements of rank i in
P . Its cardinality |Pi| is called the ith Whitney number of P . We say that P is LC
if the Whitney numbers of P form a log-concave sequence, that is,

|Pi|2 ≥ |Pi−1| · |Pi+1|

for all i > 0. An antichain is a subset of pairwise incomparable elements of P .
We say that P has the Sperner property if the maximum size of an antichain in P

equals the largest Whitney number of P . We say that P has the LYM property if
∑

i

|A ∩ Pi|/|Pi| ≤ 1

for every antichain A of P . It is well known that the LYM property implies the
Sperner property ([5]).
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The subset lattice or the Boollean lattice Bn is the poset of all subsets of
an n-element set, ordered by inclusion. In 1928, Sperner [13] showed, in current
terminology, that the subset lattice has the Sperner property. In 1967, Rota [12] made
a famous conjecture that the partition lattice has the Sperner property. Although the
conjecture was shown to be invalid in general by Canfield [1] in 1978, efforts to
prove analogues of Sperner’s theorem for other posets have led to the emergence of
an entire theory (see [4] for details). In 1980, Lih [11] discovered a generalization
of Sperner’s theorem. Let X = {1, 2, . . . , n} be an n-element set and Y a subset
of k elements of X where k ≤ n. Let C(n, k) be the collection of all subsets of X

which intersect Y , ordered by inclusion. Lih showed that C(n, k) has the Sperner
property. Griggs [6] further showed, among other things, that C(n, k) has the LYM
property before long. He also generalized this result as follows.

Theorem 1. ([6]). Let X = {1, 2, . . . , n} be partitioned into parts X 1, X2,
. . ., Xr. Suppose that Ii ⊆ {0, 1, . . . , |Xi|} is an arithmetic progression for each
i. Then

P = {Z ⊆ X : |Z ∩ Xi| ∈ Ii, 1 ≤ i ≤ r},
ordered by inclusion, is LYM and LC.

On the other hand, West, Harper and Daykin [16] gave a different generalization
of Lih’s result.

Theorem 2. ([16]). Let C1 ⊂ C2 ⊂ · · · ⊂ Cs be a chain of subsets of
X = {1, 2, . . . , n}. Suppose that {ai} and {bi} are two nondecreasing sequences
with ai ≤ bi for 1 ≤ i ≤ s. Then

P = {Z ⊆ X : ai ≤ |Z ∩ Ci| ≤ bi, 1 ≤ i ≤ s},

ordered by inclusion, is LYM and LC.
They also hoped to find out a common generalization of their result and that of

Griggs. Indeed, there are similarities in the statements and the proofs of Theorem 1
and Theorem 2. In this note we broaden these results to the divisor lattice and give
a common generalization.

Let n = pe1
1 pe2

2 · · ·pet
t be a positive integer, where the pi are distinct primes

and ei ∈ N. The divisor lattice D(n) is the poset of all (positive) divisors of n,
ordered by divisibility. As usual, let σ(n) = e1 + e2 + · · ·+ et denote the number
of prime divisors of n counted according to multiplicity. Then D(n) is a ranked
poset with the rank function σ. Clearly, D(n) reduces to Bn when n is square-
free. Denote by (m, k) the largest common divisor of two positive integers m, k
and replace σ((m, k)) by σ(m, k). Given two nonnegative integers a ≤ b, denote
[a, b] = {i ∈ N : a ≤ i ≤ b}. Our main result is the following.
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Theorem 3. Let n = n1n2 · · ·nr where ni are positive integers of pairwise
coprime. Suppose that Ii ⊆ [0, σ(ni)] is an arithmetic progression and J i = [ai, bi]
where ai ≤ bi for each i. Then

P = {m ∈ D(n) : σ(m, nj) ∈ Ij and
j∑

i=1

σ(m, ni) ∈ Jj for 1 ≤ j ≤ r},

ordered by divisibility, is LYM and LC.
When n is square-free, the corresponding result is the following.

Corollary 1. Suppose that X = {1, 2, . . . , n} is partitioned into partsX 1, X2,
. . . , Xr. Let Ii ⊆ [0, |Xi|] be an arithmetic progression and J i = [ai, bi] where
ai ≤ bi for each i. Then

P = {Z ⊆ X : |Z ∩ Xj| ∈ Ij and
j∑

i=1

|Z ∩ Xi| ∈ Jj for 1 ≤ j ≤ r},

ordered by inclusion, is LYM and LC.

It is not difficult to see that Theorem 1 and 2 follow immediately from Corol-
lary 1. In fact, we can obtain Theorem 1 by putting each Ji = [0, n] in Corollary 1.
On the other hand, suppose that C1 ⊂ C2 ⊂ · · · ⊂ Cs is a chain of subsets of X .
Let

X1 = C1, X2 = C2 \ C1, . . . , Xs = Cs \ Cs−1, Xs+1 = X \ Cs.

Then X1, X2, . . . , Xs, Xs+1 is a partition of X and Ci = X1 ∪ X2 ∪ · · · ∪ Xi

(1 ≤ i ≤ s). We obtain Theorem 2 by putting Js+1 = [0, n] and Ii = [0, |Xi|]
(1 ≤ i ≤ s + 1) in Corollary 1.

2. PROOF OF THEOREM 3

We use the product theorem for LYM posets to prove Theorem 3. The (direct)
product Q1 × Q2 of two posets Q1 and Q2 is defined to be the set of all pairs
(q1, q2), q1 ∈ Q1, q2 ∈ Q2, with the order given by (q1, q2) ≤ (q′1, q′2) if and only if
q1 ≤ q′1 in Q1 and q2 ≤ q′2 in Q2. Furthermore, the product of two ranked posets
Q1 and Q2 is defined to be the poset together with the rank function r given by
r(q1, q2) = r1(q1) + r2(q2), where r1 and r2 are the rank functions of Q1 and Q2,
respectively. The product of two LYM posets P and Q may not be LYM in general,
but it will be true if P and Q are LC also. The following result is discovered by
Harper [7] and later independently by Hsieh and Kleitman [10].
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Product Theorem. If two posets Q1, Q2 are both LYM and LC, then so is
their product poset Q1 × Q2.

A subposet of a poset Q is a subset of Q whose elements are ordered as in Q.
Let Q =

⋃n
i=0 Qi be a poset of rank n. Given a subset I of [0, n], let QI =

⋃
i∈I Qi

be the subposet of Q induced by I . Clearly, an antichain of QI is also antichain of
Q. It follows that if the poset Q is LYM, then so is the subposet QI .

Let {Wi}n
i=0 be a log-concave sequence of positive numbers. Then the sequence

{Wi/Wi−1}n
i=1 is nonincreasing. Thus Wj/Wj−1 ≥ Wk/Wk−1 for j ≤ k, or

equivalently, WjWk−1 ≥ Wj−1Wk. It follows that

(2.1) W 2
i ≥ Wi−1Wi+1 ≥ Wi−2Wi+2 ≥ · · · ≥ Wi−dWi+d.

Let I = {a, a + d, a + 2d, . . . , a + md} be an arithmetic progression in the closed
interval [0, n]. Then the inequality (2.1) implies that the subsequence {W i}i∈I is
log-concave.

From the above discussion, we can conclude the following.

Lemma 1. Let Q be a ranked poset of rank n and let I be an arithmetic
progression in the closed interval [0, n]. If Q is LYM and LC, then so is the
subposet QI induced by I .

We now prove Theorem 3.

Proof of Theorem 3. We proceed by induction on r. If r = 1, then

P = {m ∈ D(n) : σ(m, n) ∈ I ∩ J},

where I ⊆ [1, σ(n)] is an arithmetic progression and J = [a, b]. Clearly, I ∩ J is
still an arithmetic progression. Note that P consists of those elements of D(n) with
rank in I ∩J and it is also well known that D(n) is LYM and LC ([3]). Hence the
subposet P of D(n) is LYM and LC by Lemma 1.

Suppose next that r > 1. Consider the following two posets:

P1 = {m ∈ D(nr) : σ(m, nr) ∈ Ir}

and

P2 = {m ∈ D(n1 · · ·nr−1) : σ(m, nj) ∈ Ij and
j∑

i=1

σ(m, ni) ∈ Jj

for 1 ≤ j ≤ r − 1}.
By the induction hypotheses and Lemma 1, both P1 and P2 are LYM and LC.
So P1 × P2 is also LYM and LC by the Product Theorem. Note that P1 × P2 is
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isomorphic to the subposet of D(n)

Q = {m ∈ D(n) : σ(m, nj) ∈ Ij for 1 ≤ j ≤ r and
j∑

i=1

σ(m, ni) ∈ Jj for 1 ≤ j ≤ r − 1}

and that P is the subposet QJr of Q induced by Jr. Hence P is LYM and LC by
Lemma 1. This completes the proof of Theorem 3.

3. REMARKS

Let F be a collection of t-subsets of X = {1, · · · , n}. Consider the filter
generated by F :

P (F ) = {Y ⊆ X : Y ⊇ A for some A ∈ F},

which is a subposet of the Boolean lattice Bn. Lih [11] conjectured that P (F ) has
the Sperner property. The case t = 0 is just the classical Sperner theorem and the
case t = 1 is Lih’s result about C(n, k). However, Zhu [18] found counterexamples
to the conjecture with t > n/2. Griggs [6] showed that the conjecture fails for
t = 4 and Zha [17] constructed counterexamples for all t ≥ 4 and n ≥ 2t − 1.
Horrocks [8, 9] gave a graph-theoretical interpretation for the t = 2 conjecture and
left 116 exceptional graphs in his proof. Cheng and Lih [2] carried on further with
Horrocks’s reduction method to reduce the number of exceptional graphs and gave
a complete proof for the t = 2 conjecture. The conjecture remains open for t = 3.
An interesting problem is to consider analogue of Lih’s conjecture for the divisor
lattices and other posets. We also refer the reader to [14, 15] for a subspace lattice
analogue of Lih’s poset C(n, k).
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