
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 12, No. 4, pp. 951-968, July 2008
This paper is available online at http://www.tjm.nsysu.edu.tw/

CIRCULAR CONSECUTIVE CHOOSABILITY OF GRAPHS
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Dedicated to Professor Ko-Wei Lih on the occasion of his 60th birthday.

Abstract. This paper considers list circular colouring of graphs in which the
colour list assigned to each vertex is an interval of a circle. The circular
consecutive choosability chcc(G) of G is defined to be the least t such that
for any circle S(r) of length r ≥ χc(G), if each vertex x of G is assigned an
interval L(x) of S(r) of length t, then there is a circular r-colouring f of G
such that f(x) ∈ L(x). We show that for any finite graph G, χ(G) − 1 ≤
chcc(G) < 2χc(G). We determine the value of chcc(G) for complete graphs,
trees, even cycles and balanced complete bipartite graphs. Upper and lower
bounds for chcc(G) are given for some other classes of graphs.

1. INTRODUCTION

Suppose r is a positive real number. Let S(r) denote the circle obtained from
the interval [0, r] by identifying 0 and r into a single point. For any real number
x, [x]r ∈ [0, r) denotes the remainder of x upon division of r. For a, b ∈ S(r),
[a, b]r = {t ∈ S(r) : [t − a]r ≤ [b − a]r} is the interval of S(r) from a to b along
the “increasing” direction. For example, if r = 3.5, [3, 1]3.5 = [3, 3.5)∪ [0, 1]. The
length of the interval [a, b]r is equal to [b − a]r. The distance between a and b,
denoted by |a − b|r, is the length of the shorter interval among the two intervals
[a, b]r, [b, a]r. In other words, |a − b|r = min{[a − b]r, [b − a]r} = min{|a − b|,
r − |a− b|}.
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For a graph G = (V, E) and a real number r ≥ 1, a circular r-colouring of G

is a mapping f : V (G) → S(r) such that for any edge xy of G, |f(x)−f(y)|r ≥ 1.
The circular chromatic number χc(G) of G is the least r for which G has a circular
r-colouring. It is well-known [11, 12] that for any graph G, χ(G) − 1 < χc(G) ≤
χ(G). So χc(G) is a refinement of χ(G) and χ(G) is an approximation of χc(G).

Suppose G is a graph, r is a positive real number. A (�, r)-circular colour-list
assignment for G is a function L that assigns to each vertex v of G a set L(v) which
is the union of disjoint closed intervals of S(r). If for each vertex v, the sum of the
lengths of the disjoint intervals in L(v) is equal to t, then L is called a (t, r)-circular
colour-list assignment. Suppose L is a (�, r)-circular colour-list assignment for a
graph G. A circular L-colouring of G is a circular r-colouring f of G such that
f(v) ∈ L(v) for each vertex v of G. A graph G is called circular t-choosable
if for any r and for any (t, r)-circular colour-list assignment L, G has a circular
L-colouring. The circular choosability chc(G) of G (also called the circular list
chromatic number of G and denoted by χc,l(G)) is defined in [13] as

chc(G) = inf{t : G is circular t-choosable}.
Let ch(G) be the choosability (also known as the list chromatic number) of G.

It is proved in [13] that for any graph G, chc(G) ≥ ch(G)− 1. On the other hand,
chc(G) − ch(G) can be arbitrarily large. In particular, it is proved in [13] that for
any ε > 0, there is a k-degenerate graph G for which chc(G) ≥ 2k − ε.

In this paper, we consider those circular colour-lists L in which each L(x) is
an interval of S(r). A (�, r)-circular consecutive colour-list assignment of G is a
mapping L which assigns to each vertex v of G a closed interval L(v) of S(r). If
L(v) has length t for each vertex v, then L is called a (t, r)-circular consecutive
colour-list assignment of G. We say G is circular consecutive (t, r)-choosable
if for any (t, r)-circular consecutive colour-list assignment L of G, G is circular
L-colourable.

Observe that if r < χc(G), then for any (�, r)-circular colour-list assignment
L, G is not circular L-colourable. Therefore, for the definition to be meaningful,
we restrict to real numbers r ≥ χc(G).

Definition 1.1. Suppose r ≥ χc(G). The circular consecutive choosability of
G with respect to r is defined as

chr
cc(G) = inf{t : G is circular consecutive (t, r)-choosable}.

The circular consecutive choosability of G is defined as

chcc(G) = sup{chr
cc(G) : r ≥ χc(G)}.

Equivalently, chcc(G) is the infimum of those t such that for any r ≥ χc(G), G is
circular consecutive (t, r)-choosable.
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It follows from the definition, chcc(G) ≤ chc(G) for any graph G. As chc(G) ≥
ch(G)−1, we know that chc(G) can be arbitrarily large for bipartite graphs G. We
shall show in Section 4 that chcc(G) < 2χc(G) ≤ 2χ(G) for any graph G. Thus
chc(G) cannot be bounded in terms of chcc(G).

Circular colouring provides a model for many periodic scheduling problems.
The vertices of G represent jobs to be scheduled periodically with period r, and
adjacent vertices represent jobs that cannot be carried out at the same time. The
whole period is the circle S(r). A scheduling is a mapping f : V (G) → S(r),
where f(x) is the starting moment of job x. We assume that each job needs a unit
time to complete. So if x ∼ y, then the distance between f(x) and f(y) on S(r)
needs to be at last 1. Such a period scheduling is a circular r-colouring of G. It is
natural that for each job x, there are some restrictions on the starting moment of x.
This motivates the problem of list circular colouring of G, where we require that
f(x) ∈ L(x) for each x, where L(x) is the set of permissible starting moment of
x. It is not unusual that for each vertex x, L(x) is just one interval. In this case,
we have circular consecutive list colouring of G.

Another motivation for the study of circular choosability of graphs is the appli-
cation in inductive proofs of circular colourability of graphs. To prove a graph G

is circular r-colourable, one may find an induced subgraph H of G, find a circular
r-colouring f of G − H (by induction hypothesis), then extend f to a circular r-
colouring of H to obtain a circular r-colouring of G. In the extension, the colours
available to vertices of H are restricted. Thus we are facing with a circular list
colouring problem. Such techniques have been used in the study of the circular
chromatic number of planar graphs of large girth in a sequence of papers [1, 2,
3, 10]. In the inductive proof described above, if a vertex x of H is adjacent to
one coloured vertex in G, the set of available colours to x is an interval of S(r).
Therefore we are left with a circular consecutive list colouring problem of H .

Circular consecutive choosability is also a generalization of the consecutive
choosability of a graph introduced by Waters [9]. In Section 2, we define consec-
utive choosability of graphs and discuss the relation between circular consecutive
choosability and consecutive choosability.

In Section 3, we give two other equivalent definitions of circular consecutive
choosability. Section 4 gives upper and lower bounds for the circular consecutive
choosability of graphs in terms of their circular chromatic number. In Section
5, the circular consecutive choosability of trees, cycles and complete graphs are
determined. In Section 6, we present some relatively sharp upper and lower bounds
for chr

cc(G) for some special classes of graphs.

2. CONSECUTIVE CHOOSABILITY

Circular consecutive choosability is a generalization of the concept of consecu-
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tive list colouring of graphs introduced by Waters in [9]. For a positive real number
t, a t-interval assignment of a graph G is a function L which assigns to each vertex
x of G a closed interval L(x) of length t. An L-colouring of G is a function
f : V (G) → R such that for each vertex x of G, f(x) ∈ L(x) and for each edge
xy of G, |f(x)−f(y)| ≥ 1. A graph G is said to be t-interval choosable if for any
t-interval assignment L, G has an L-colouring. The consecutive choosability of G
is defined as

τ(G) = inf{t : G is t-interval choosable}.
It follows easily from the definition that for any r ≥ χc(G), chr

cc(G) ≥ τ(G). It
is proved in [9] that for any graph G, τ(G) ≥ χ(G)−1. Thus for any graph G, for
any r ≥ χc(G), chcc(G) ≥ chr

cc(G) ≥ χ(G) − 1. Lemma 2.1 below shows that in
some sense, the circular consecutive list colouring is a generalization of consecutive
list colouring.

Observe that a mapping l : V (G) → S(r) corresponds to a (t, r)-circular
consecutive colour-list assignment L defined as L(x) = [l(x), l(x)+ t]r. A circular
r-colouring f is said to be compatible with (l, t) if f(x) ∈ [l(x), l(x) + t]r for
each vertex x. Thus to prove that a graph is circular consecutive (t, r)-choosable,
it suffices to show that for any mapping l : V (G) → S(r), there is a circular
r-colouring f compatible with (l, t).

Lemma 2.1. Suppose G is a finite graph on n vertices. If r ≥ n 2 + 1, then
chr

cc(G) = τ(G).

Proof. As observed above, τ(G) ≤ chr
cc(G) for any r. We now prove that

τ(G) ≥ chr
cc(G) for r ≥ n2 + 1. Assume that τ(G) = t, and r ≥ n2 + 1. Let

l : V (G) → [0, r) be an arbitrary mapping. We need to show that G has a circular
r-colouring compatible with (l, t). We may assume that 0 = l(x1) ≤ l(x2) ≤ · · · ≤
l(xn). As t = τ(G) ≤ χ(G)(1− 1/n) ≤ n− 1 (see [9]), it follows that there is an
index i such that [l(xi+1) − l(xi)]r ≥ t + 1 (the sum in the indices are modulo n,
i.e., xn+1 = x1). Let l′(xj) = [l(xj) − l(xi+1)]r. Then 0 = l′(xi+1) ≤ l′(xi+2) ≤
· · · ≤ l′(xn) ≤ l′(x1) ≤ l′(x2) ≤ · · · ≤ l′(xi) ≤ r − (t + 1). Regard l′ as a
mapping l′ : V (G) → R. It is known [9] that if τ(G) = t then G is t-interval
choosable. So there is a colouring f of G such that f(x) ∈ [l′(x), l′(x) + t] for
each vertex x and |f(x) − f(y)| ≥ 1 for each edge xy. Now for any vertex x,
0 ≤ l′(x) ≤ f(x) ≤ l′(x) + t ≤ r − 1. So for any edge xy, |f(x)− f(y)| ≤ r − 1.
Let g(x) = [f(x) + l(xi+1)]r. Then g is a circular r-colouring compatible with
(l, t).

Lemma 2.1 shows that the consecutive choosability of a graph G corresponds
to the circular consecutive choosability of G with respect to sufficiently large r.
Indeed, in the definition of consecutive choosability of G, the intervals assigned to
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vertices of G are intervals of the real line R, which may be regarded as an infinite
circle.

3. EQUIVALENT DEFINITIONS

This section gives two different definitions of chr
cc(G). Sometimes these alter-

nate definitions are used in our proofs. A mapping l : V (G) → R can be viewed
as a mapping from V (G) to S(r) by identifying a point x of R with [x]r. By
such a convention, the circular consecutive choosability of a graph can be defined
alternately as follows.

Lemma 3.1. Suppose G is a graph and r > t are positive real numbers.
Then G is circular consecutive t-choosable with respect to r if and only if for any
mapping l : V (G) → R, there is a mapping f : V (G) → R such that the following
hold:

• For each vertex v, l(v) ≤ f(v) ≤ l(v) + t.
• For any edge xy of G, min{[f(x)− f(y)]r, [f(y)− f(x)]r} ≥ 1.

Proof. Assume G is circular consecutive t-choosable with respect to r. Let
l : V (G) → R be an arbitrary mapping. Let l′ : V (G) → S(r) be defined as
l′(x) = [l(x)]r. As G is circular consecutive t-choosable with respect to r, there is
a circular r-colouring g : V (G) → [0, r) of G which is consistent with (l ′, t). Let
f : V (G) → R be defined as [f(v)]r = g(v) and l(v) ≤ f(v) < l(v) + r. Since
[f(v)− l(v)]r = [g(v)− l(v)]r ≤ t, we conclude that f(v) ≤ l(v) + t.

Conversely, assume that for any mapping l : V (G) → R, there is a mapping
f : V (G) → R such that l(v) ≤ f(v) ≤ l(v) + t for each vertex v, and |f(x) −
f(y)|r ≥ 1 for each edge xy. A mapping l : V (G) → S(r) can be viewed as a
mapping from V (G) to R. Then the mapping g defined as g(v) = [f(v)]r is a
circular r-colouring of G which is compatible with (l, t).

The circular chromatic number of graphs can be defined through (p, q)-colourings.
Given integers p ≥ 2q, a (p, q)-colouring of a graph G is a mapping f : V (G) →
{0, 1, · · · , p− 1} such that for any edge xy of G, q ≤ |f(x)− f(y)| ≤ p− q. The
circular chromatic number of G can be defined as

χc(G) = inf{p/q : G has a (p, q)-colouring}.
In [13], it is shown that the circular choosability of graphs can also be defined

through (p, q)-colourings.

Definition 3.2. Suppose G is a graph and p ≥ 2q are positive integers. A
(p, q)-list assignment L is a mapping which assigns to each vertex v of G a subset
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L(v) of {0, 1, · · · , p − 1}. An L-(p, q)-colouring of G is a (p, q)-colouring f of
G such that for any vertex v, f(v) ∈ L(v). Suppose t is a positive real number.
A t-(p, q)-list assignment is a (p, q)-list assignment L such that for every vertex v,
|L(v)| ≥ tq.

It is shown in [13] that we can define the circular choosability of G as

chc(G) = inf{t : for any p ≥ 2q, for any t-(p, q)-list assignment L, G
is L-(p, q)-colourable.}

Similarly, the circular consecutive choosability of graphs can also be defined
through (p, q)-colourings. Given a positive integer p, and a, b ∈ {0, 1, · · · , p− 1}.
The circular integral interval [a, b] p is defined as

[a, b]p = {a, a + 1, a + 2, · · · , b},
where the additions are modulo p. The length |[a, b]p| of the interval [a, b]p is
the cardinality of the set [a, b]p. For example [2, 5]8 = {2, 3, 4, 5} and [5, 2]8 =
{5, 6, 7, 0, 1, 2}, and these two intervals have lengths 4 and 6, respectively. We
are interested in (p, q)-list assignments L such that for each vertex x, L(x) is a
circular integral interval. Once the length of the interval L(x) is known, then L(x)
is determined by its left end point. Thus we have the following definition.

Definition 3.3. Suppose G is a graph and p, q are positive integers such that
p/q ≥ χc(G), and s is a positive integer. Let l : V (G) → {0, 1, · · · , p − 1} be a
mapping. A (p, q)-colouring f of G is compatible with (l, s) if for any vertex x,
f(x) ∈ [l(x), l(x)+ s − 1]p, i.e., [f(x)− l(x)]p ≤ s − 1.

Observe that the circular consecutive integral interval starting from l(x) and of
cardinality s is the interval [l(x), l(x) + s − 1]p. So in the definition above, we
require that [f(x)− l(x)]p ≤ s − 1 (instead of [f(x)− l(x)]p ≤ s).

Definition 3.4. Suppose G is a graph, p, q are positive integers such that
p/q ≥ χc(G), and s is a positive integer. We say a graph G is circular consecutive
(p, q)-s-choosable if for any mapping l : V (G) → {0, 1, · · · , p − 1}, G has a
(p, q)-colouring f which is compatible with (l, s). We define the consecutive (p, q)-
choosability of G as

chp,q(G) = min{s : G is circular consecutive (p, q)-s-choosable}.
The following lemma shows that the definition of chp,q(G) is determined by

chr
cc(G) for r = p/q.

Lemma 3.5. For any graph G and for any r = p/q ≥ χc(G),

chp,q(G) = �chr
cc(G)q� + 1.
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Proof. First we show that chp,q(G) ≤ �q chr
cc(G)�+ 1. Assume chr

cc(G) = t.
Let s = �qt� + 1. Let l : V (G) → {0, 1, · · · , p− 1} be an arbitrary mapping. We
need to show that G has a (p, q)-colouring compatible with (l, s).

Let l′ : V (G) → [0, r) be defined as l′(x) = l(x)/q. As G is circular consec-
utive t-choosable with respect to r, there is a circular r-colouring f of G which is
compatible with (l′, t). It is easy to verify that φ(x) = �f(x)q� is an (p, q)-colouring
of G compatible with (l, s). Thus chp,q(G) ≤ �q chr

cc(G)� + 1.
Now we show that chp,q(G) ≥ �q chr

cc(G)� + 1. This is equivalent to show
that chr

cc(G) < chp,q(G)/q.
Assume G has n vertices, and let ε < 1/n. Assume chp,q(G) = s and let

t = (s − ε)/q. Let l be an arbitrary mapping from V (G) to [0, r). We shall show
that G has a circular r-colouring compatible with (l, t).

For b ∈ [0, 1), let l′b(x) = 	l(x)q + b
. As chp,q(G) = s, G has a (p, q)-
colouring f ′

b compatible with (l′b, s), i.e., f
′
b is a (p, q)-colouring of G with f ′

b(x) ∈
[l′b(x), l′b(x)+s−1]p. Let fb(x) = (f ′

b(x)−b)/q. Now we estimate [fb(x)− l(x)]r.
By definition,

[fb(x)− l(x)]r = [f ′
b(x)/q − b/q − l′b(x)/q + l′b(x)/q − l(x)]r.

Thus

q[fb(x)− l(x)]r ≤ [f ′
b(x)−b− l′b(x)]p + l′b(x)− l(x)q ≤ (s−1)−b+ l′b(x)− l(x)q.

Thus

[fb(x) − l(x)]r ≤ t

⇔ q[fb(x) − l(x)]r ≤ qt = s − ε

⇐ (s − 1)− b + l′b(x) − l(x)q ≤ s − ε

⇔ 	l(x)q + b
 − (l(x)q + b) ≤ 1− ε.

The inequality 	l(x)q+b
−(l(x)q+b) ≤ 1−ε holds provided that the fractional part
of l(x)q + b is greater than or equal to ε. Thus there is a subset Ax of [0, 1) which
is an open interval of S(1) of length ε such that if b ∈ Ax, then [fb(x)− l(x)]r ≤ t.
As ε < 1/n, there is a b ∈ [0, 1) such that [fb(x) − l(x)]r ≤ t for all vertices x of
G, i.e., fb is a circular r-colouring of G compatible with (l, t). Thus G is circular
consecutive t-choosable, and hence chr

cc(G) < chp,q(G)/q.

Corollary 3.6. Suppose G is a finite graph and r = p/q ≥ χ c(G). Then

chr
cc(G) = lim

s→∞ chps,qs(G)/qs.
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Corollary 3.6 can be regarded as another definition of chr
cc(G) for rational

r ≥ χc(G). As chcc(G) = sup{chr
cc : r ≥ χc(G)}, it follows that chcc(G) ≥

limq→∞ sup{chp,q(G)/q : p ≥ χc(G)q}. In the following we shall show that equal-
ity holds.

Lemma 3.7. Suppose r ′ > r. Then chr′
cc(G) ≤ r′

r chr
cc(G)− r′

r + 1.

Proof. Suppose chr
cc(G) = t and let t′ = tr′/r−r′/r+1. Let l′ be an arbitrary

mapping from V (G) to [0, r′). Let l(x) = l′(x)r/r′ be a mapping from V (G) to
[0, r). As chr

cc(G) = t, there is a circular r-colouring f of G compatible with (l, t).
Let f ′ be defined as f ′(x) = [l′(x) + a(x)]r′, where

a(x) = min{[f(x)− l(x)]rr′/r, t′}.

We shall show that f ′ is a circular r′-colouring of G compatible with (l′, t′). By
definition, [f ′(x) − l′(x)]r′ ≤ t′. So we only need to show that f′ is indeed a
circular r′-colouring of G. By definition, either f′(x) = f(x)r′/r, or

[f(x)− l(x)]rr′/r > t′ = tr′/r − r′/r + 1 = [f ′(x)− l′(x)]r′.

In the latter case, we have

[f(x)r′/r − l(x)r′/r]r′ > t′.

Since [f(x)− l(x)]r ≤ t, we have

[f(x)r′/r − l(x)r′/r]r′ ≤ tr′/r = t′ + r′/r − 1 = [f ′(x) − l′(x)]r′ + r′/r − 1.

So in any case,
f ′(x) ∈ [f(x)r′/r − r′/r + 1, f(x)r′/r]r′.

Therefore for any edge xy of G, we have

[f ′(x) − f ′(y)]r′ ≥ [f(x)− f(y)]rr′/r − r′/r + 1 ≥ 1.

Hence f ′ is indeed a circular r ′-colouring of G.

We shall see in next section that the bound provided in Lemma 3.7 is tight
for complete bipartite graphs. Now we use this lemma to prove that chcc(G) =
sup{chp,q(G)/q : p ≥ χc(G)q}.

Theorem 3.8. For any finite graph G, chcc(G) = limq→∞ sup{chp,q(G)/q :
p ≥ χc(G)q}.
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Proof. As noted above, chcc(G) ≥ limq→∞ sup{chp,q(G)/q : p ≥ χc(G)q}. To
prove that the equality holds, it suffices to show that for any real number r ≥ χc(G)
and for any ε > 0, there exist p/q ≥ χc(G) such that

chr
cc(G) ≤ chp,q(G)/q + ε.

If r = χc(G), then r = p/q is a rational number and hence chr
cc(G) ≤

chp,q(G)/q. Assume r > χc(G) and that chr
cc(G) = t. Let r′ = p/q be a ra-

tional such that χc(G) ≤ r′ ≤ r and r/r′ < (r + ε)/r < (t′ + ε)/t′, where
t′ = chr′

cc(G). By Lemma 3.7 and Corollary 3.3,

t ≤ rt′/r′ − r/r′ + 1 < rt′/r′ < t′ + ε = chr′
cc(G) + ε = lim

s→∞ chps,qs(G)/(qs)+ ε.

Thus for some positive integer s, chr
cc(G) ≤ chps,qs(G)/(qs) + ε.

4. SOME GENERAL BOUNDS ON chcc(G)

First we consider chr
cc(G) for the case that r = χc(G). The following result is

parallel to a result in [9].

Lemma 4.1. If r = χc(G) and G has n vertices, then chr
cc(G) ≤ r(1−1/n).

Proof. Let t = r(1 − 1/n), and let l be an arbitrary mapping from V (G)
to [0, r). Let f : V (G) → S(r) be a circular r-colouring of G. For b ∈ [0, r),
let fb(x) = [f(x) + b]r for x ∈ V (G). Then each fb is a circular r-colouring of
G. For each vertex x, let Ax = (l(x) + t − f(x), l(x) + t + r/n − f(x))r. It is
straightforward to verify that for any b ∈ Ax, [fb(x) − l(x)]r ≤ t. As G has n
vertices, and Ax has length r/n, so S(r)\∪x∈V (G)Ax = ∅. I.e., there is a b ∈ [0, r)
such that for any x ∈ V (G), [fb(x)− l(x)]r ≤ t. Hence fb is a circular r-colouring
of G compatible with (l, t). So chr

cc(G) ≤ t = r(1− 1/n).

Lemma 4.2. For any r ≥ χc(G), ch2r
cc (G) ≤ chr

cc(G).

Proof. Suppose chr
cc(G) = t and l : V (G) → [0, 2r) is an arbitrary mapping.

Let l′ : V (G) → [0, r) be defined as l′(x) = [l(x)]r. In other words, l′(x) =
l(x) if l(x) ∈ [0, r) and l′(x) = l(x) − r otherwise. As chr

cc(G) = t, G has a
circular r-colouring f ′ which is compatible with (l ′, t). For any x ∈ V (G), let
f(x) ∈ [l(x), l(x) + r)2r be the unique number such that [f(x)]r = f ′(x). Then
for any vertex x of G, [f(x)− l(x)]2r = [f ′(x)− l′(x)]r ≤ t. Thus f is a circular
2r-colouring which is compatible with (l, t).

Corollary 4.3. For any graph G, chcc(G) = sup{chr
cc(G) : χc(G) ≤ r <

2χc(G)}.
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Theorem 4.4. Suppose G is a graph on n vertices and r is a real number
greater than or equal to χc(G). Then

χ(G)− 1 ≤ chr
cc(G) ≤ r − r

|V (G)| −
r

χc(G)
+ 1.

Proof. The lower bound follows from an earlier observation. For the upper
bound, let r0 = χc(G), it follows from Lemma 3.7 that

chr
cc(G) ≤ r

r0
chr0

cc(G)− r

r0
+ 1.

By Lemma 4.1, chr0
cc (G) ≤ r0(1− 1/n). So chr

cc(G) ≤ r − r
|V (G)| − r

χc(G) + 1.

Since chcc(G) = supχc(G)≤r<2χc(G) chr
cc(G), we have the following corollary.

Corollary 4.5. Suppose G is a graph on n vertices. Then

χ(G) − 1 ≤ chcc(G) ≤ 2χc(G)(1− 1/n) − 1.

We shall see later that the upper bound for chcc(G) in terms of χc(G) in
Corollary 4.5 is best possible.

5. TREES, CYCLES AND COMPLETE GRAPHS

This section determines the circular consecutive choosability of some special
graphs. First we determine the consecutive choosability of trees.

Theorem 5.1. Let T be a tree on n vertices. Then chcc(T ) = 2(1− 1
n ).

Proof. As a tree with at least an edge has circular chromatic number 2 (cf. [8])
, we only need to consider chp,q(T ) for p/q ≥ 2. It is proved in [6] that for any p ≥
2q, for any list assignment L : V (T ) → P({0, 1, · · · , p− 1}), if for any subtree T ′

of T ,
∑

v∈V (T ′) |L(v)| ≥ 2q(|V (T ′)|−1)+1, then there is a (p, q)-colouring f of T
such that f(v) ∈ L(v) for all v. On the other hand, if f : V (T ) → Z≥0 is a mapping
such that

∑
v∈V (T ) f(v) < 2q(|V (T )| − 1) + 1, then there is a list assignment

L : V (T ) → P({0, 1, · · · , p−1}) such that each L(v) is an interval of length f(v)
and G is not L-(p, q)-colourable. This implies that chp,q(T ) = 	2q(1 − 1

n) + 1
n
.

By Corollary 3.8, chcc(T ) = limq→∞ sup{chp,q(T )/q : p ≥ 2q} = 2(1− 1
n ).

Next we consider the complete graphs Kn.
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Theorem 5.2. For any integer n ≥ 1, chcc(Kn) = n − 1.

Proof. As χc(Kn) = n (cf. [8]), we only need to considerchr
cc(Kn) for r ≥ n.

By Corollary 4.5, chcc(Kn) ≥ n − 1. It remains to show that for any r ≥ n,
chr

cc(Kn) ≤ n − 1. We prove it by induction on n. For n = 2, the conclusion
follows from Theorem 5.1. Assume n ≥ 3 and let l : V (Kn) → S(r) be an arbitrary
mapping. Without loss of generality, assume that l(v0) = 0 (the vertex set of Kn

is assumed to be v0, v1, v2, · · · , vn−1). By induction hypothesis, there is a circular
r-colouring f ′ of Kn − v0 which is compatible with (l, n − 2). We may assume
that f ′(v1) < f ′(v2) < · · · < f ′(vn−1). Now we define a circular r-colouring f of
Kn as follows:

f(v0) = min{1, f ′(v1)}
f(vi) = max{f ′(vi), f(vi−1) + 1}, for i = 1, 2, · · · , n − 1.

It can be easily proved by induction that for each i ≥ 1, either f(vi) = f ′(vi)
or f(vi) = f(v0) + i ≤ f ′(vi) + 1. In particular, either f(vn−1) = f ′(vn−1) or
f(vn−1) = f(v0) + n − 1. In any case, f(vn−1) − f(v0) ≤ r − 1. Thus f is a
circular r-colouring of Kn. As 0 ≤ f(v0) = [f(v0) − l(v0)]r ≤ 1 ≤ n − 1 and
for i ≥ 1, [f(vi) − l(vi)]r ≤ [f ′(vi) − l(vi)]r + 1 ≤ n − 1, we conclude that f is
compatible with (l, n− 1).

Lemma 5.3. For any integer n ≥ 3, chcc(Cn) ≥ 2.

Proof. The case n = 3 follows from Theorem 5.2. First we show that
chcc(Cn) ≥ 2 for any n ≥ 4. As χc(Cn) ≤ χ(Cn) ≤ 3, it suffices to prove
that for some r ≥ 3, chr

cc(Cn) ≥ 2. Let δ > 0 be a real number such that
r = n(1 − δ/2) > 3. We shall prove that chr

cc(Cn) > 2 − δ. Assume the vertices
of Cn are v0, v1, · · · , vn−1, in which vi is adjacent to vi+1 for i = 0, 1, · · · , n− 1.
Assume to the contrary that chr

cc(Cn) ≤ 2 − δ. Let l : V (Cn) → R be de-
fined as l(vi) = j(1 − δ/2). Since chr

cc(G) ≤ 2 − δ, there is a mapping f :
V (Cn) → R such that l(vi) ≤ f(vi) ≤ l(vi)+2− δ and |f(vi)−f(vi+1)|r ≥ 1 for
i = 0, 1, · · · , n − 1 (where the summation in the indices are modulo n). First we
claim that f(vi+1) > f(vi) for i = 0, 1, · · · , n− 1. For otherwise, we should have
f(vi) ≥ f(vi+1)+1, which implies that f(vi) ≥ l(vi+1)+1 = (i+1)(1−δ/2)+1 =
l(vi) + 2 − δ/2, in contrary to our assumption. Since f(vi+1) − f(vi) ≥ 1 for
i = 0, 1, · · · , n − 1, we have f(vn−1) − f(v0) ≥ n − 1. If f(vn−1) − f(v0) < r,
then |f(vn−1)−f(v0)|r = r−(f(vn−1)−f(v0)) ≤ r−(n−1) < 1, which is a con-
tradiction. If f(vn−1)−f(v0) ≥ r, then |f(vn−1)−f(v0)|r = f(vn−1)−f(v0)−r ≤
l(vn−1) + 2 − δ − l(v0) − r = 1− δ/2 < 1, which is again a contradiction.

Lemma 5.4. If n ≥ 2 is even and r ≥ 2, then chcc(Cn) ≤ 2. If n is odd and
r ≥ 3, then chr

cc(Cn) ≤ 2.
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Proof. By Corollary 3.6, it suffices to prove that if n is even, then for any
p/q ≥ 2, chp,q(Cn) ≤ 2q+1. If n is odd, then for any p/q ≥ 3, chp,q(Cn) ≤ 2q+1.
Let � : V (Cn) → {0, 1, · · · , p−1} is an arbitrary mapping. Let L(v) = [�(v), �(v)+
2q]p. We shall show that there is a (p, q)-colouring f of Cn that is compatible with
(�, 2q + 1), i.e., f(vi) ∈ L(vi) for all i.

The case n = 2 follows from Theorem 5.1, as the two parallel edges of C2

can be replaced by a single edge. The case n = 3 follows from Theorem 5.2 and
Lemma 3.5. Assume n ≥ 4, and the above statement is true for n − 2.

For colours i, j ∈ {0, 1, · · · , p − 1}, if |i − j| ≥ q then we say colour i is
adjacent to colour j. We write i ∼ j if i and j are adjacent colours, and let
N (i) = {j : i ∼ j}, N̄ (i) = {j : i ∼ j}. In other words, N (i) = [i + q, i+ p− q]p
is an interval of length p− 2q + 1 and N̄(i) = [i− q + 1, i + q − 1]p is an interval
of length 2q−1. As for any v ∈ V (Cn), L(v) has length 2q +1 and for any colour
i, N̄(i) has length 2q − 1, we conclude that L(v) ∩ N (i) = ∅. As L(v) and N (i)
are intervals, we know that if N (i) contains a colour j ∈ L(v), then N (i) contains
at least one of the two end colours of the interval L(v).

If �(vi) is adjacent to �(vi+1) for i = 0, 1, · · · , n − 1 (where summation in
the indices are modulo n), then f(vi) = �(vi) is a required (p, q)-colouring of Cn.
Assume this is not the case. Without loss of generality, assume that �(vn−2) is not
adjacent to �(vn−1). Consider the cycle Cn−2 with vertices v0, v1, · · · , vn−3, with
the restriction of L to {v0, v1, · · · , vn−3} as a colour-list assignment to Cn−2. By
induction hypothesis, there is a (p, q)-colouring f of Cn−2 such that for each i,
f(vi) ∈ L(vi).

If f(vn−3) ∈ L(vn−1), then choose a colour j ∈ N (f(vn−3)) ∩ L(vn−2).
Extending f by letting f(vn−2) = j and f(vn−1) = f(vn−3), we obtain a required
(p, q)-colouring of Cn. Thus we can assume that f(vn−3) ∈ L(vn−1). Similarly,
we assume that f(v0) ∈ L(vn−2).

As f(v0) ∈ N (f(vn−3)) \L(vn−2) and N (f(vn−3)) ∩L(vn−2) = ∅, it follows
that N (f(vn−3)) contains [f(v0), �(vn−2)]p or [�(vn−2)+2q, f(v0)]p. By symmetry,
we may assume that

(1) [f(v0), �(vn−2)]p ⊆ N (f(vn−3)).

Then the interval N (�(vn−2)) contains f(vn−3) ∈ [�(vn−1), �(vn−1)+2q]p, but
does not contain �(vn−1) (as by our assumption, �(vn−2) is not adjacent to �(vn−1)).
Since N (�(vn−2)) ∩ [�(vn−1), �(vn−1) + 2q]p = ∅, we conclude that
(2) [�(vn−1) + 2q, f(vn−3)]p ⊆ N (�(vn−2)).

Without loss of generality, we may assume that f(v0) = 0. It follows from (1)
and (2) that

q = f(v0) + q < �(vn−2) + q ≤ �(vn−1) + 2q < f(vn−3) ≤ p − q.
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Hence �(vn−1) + 2q ∼ f(v0).
By (1) and (2), we have f(vn−3) ∼ �(vn−2) and �(vn−2) ∼ �(vn−1) + 2q.

Therefore f can be extended to a required colouring of Cn by letting f(vn−2) =
�(vn−2) and f(vn−1) = �(vn−1) + 2q.

Corollary 5.5. If n ≥ 4 is even, then chcc(Cn) = 2.

If n is odd, it follows from a result of [13] that chcc(Cn) ≤ chc(Cn) = 2n
n−1 .

We conjectured that chcc(Cn) = 2 for all n in an earlier version of this paper, and
the conjecture is confirmed by Liu [4]. It is recently proved by Pan and Zhu [5]
that every 2-choosable graph is circular consecutive 2-choosable.

6. BOUNDS ON chcc(G) FOR SPECIAL GRAPHS

This section discusses the circular consecutive choosability of some other special
classes of graphs. Lower and upper bounds are obtained for chcc(G) for these
graphs.

A k-tuple colouring of a graph G is an assignment of k distinct colours to
each vertex of G so that adjacent vertices receive no colours in common. The kth
chromatic number of G, denoted by χk(G), is the smallest number of colours needed
to give G a k-tuple colouring. Clearly χ1(G) is the ordinary chromatic number of
G.

The fractional chromatic number ofG,denoted by χf (G), is defined as inf{χk(G)
k

: k = 1, 2, . . .}. It is well-known [7] that for finite graphs G, the infimum is always
attained and χf (G) is always a rational. From the definition of χk(G) and χf (G),
we have χk(G) ≥ kχf (G).

Suppose G = (V, E) is a graph and m is a positive integer. We denote by
G[m] the graph obtained from G by replacing each vertex with an independent set
of cardinality m. Namely G[m] has vertex set V × {0, 1, · · · , m − 1} in which
(x, i)(y, j) is an edge if and only if xy ∈ E .

Theorem 6.1. Let H be a graph with χf (H) = χc(H). Then for any real
number r ∈ [χc(H), 2χc(H)),

chr
cc(H [m]) ≥ r − r

χc(H)
− r

m
+ 1.

Proof. Let
ε =

r

m
, δ =

r

χc(H)
+

r

m
− 1.

Then χf (H) = χc(H) = r
δ−ε+1 .
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Let l : V (H [m]) → [0, r) be defined as

l((v, j)) = jε, j = 0, 1, . . . , m− 1.

Assume to the contrary that chr
cc(H [m]) < r − r

χc(H)
− r

m + 1 = r − δ. Then for
some δ′ > δ, there is a circular r-colouring which is compatible with (l, r − δ ′).
Since χc(H) ≤ r < 2χc(H), we have 0 ≤ δ − ε < 1. Without loss of generality,
we may assume that δ′ − ε < 1.

If m = 1 then r − r
χc(H)

− r
m + 1 < 0 and the theorem holds trivially. Thus we

assume that m ≥ 2. Let f be a circular r-colouring of H [m] which is compatible
with (l, r − δ ′).

First we claim that for each vertex v of H , there are two vertices (v, j1)
and (v, j2) of H [m] such that |f((v, j1)) − f((v, j2))|r ≥ δ′ − ε. Let Vv =
{(v, 0), (v, 1), · · · , (v, m− 1)}. If the claim is not true, then for some v ∈ V (H),
f(Vv) is contained in an interval [a, b]r of length less than δ ′ − ε. Without loss
of generality, we may assume that 0 ≤ a < b < r − ε. Let j be the smallest
index such that jε > b. Since a ≤ f((v, j)) ≤ b < jε = l((v, j)), the length
of [f((v, j))− l((v, j))]r is equal to f((v, j))− l((v, j)) + r. As f((v, j)) ≥ a,
b − a < δ′ − ε and b ≥ (j − 1)ε, we have

f((v, j))− l((v, j))+ r ≥ a − b − (jε− b) + r ≥ r − (b − a) − ε > r − δ′.

This is in contrary to the assumption that f is compatible with (l, r − δ ′).
For each v ∈ V (H), let (v, j1) and (v, j2) be two vertices such that |f((v, j1))−

f((v, j2))|r ≥ δ′ − ε.
Let Av = ∪m−1

i=0 [f((v, i)), f((v, i)) + 1)r. If for all i, j, [f((v, i)), f((v, i)) +
1)r ∩ [f((v, j)), f((v, j))+ 1)r = ∅, then Av is a single interval. Since δ′ − ε < 1
and since there are j1 and j2 such that |f((v, j1)) − f((v, j2))|r ≥ δ′ − ε, we
conclude that the total length of Av is at least 1 + δ ′ − ε. Otherwise, Av has total
length at least 2 > 1 + δ ′ − ε.

If u, v ∈ V (H) are adjacent, then for any j, j′ ∈ {0, 1, · · · , m−1}, |f((v, j))−
f((u, j ′))|r ≥ 1. Therefore Av ∩ Au = ∅. Let q be a positive integer and let
k = �(δ′ − ε)q� + q − 1. For each vertex v of H , let φ(v) = {i : i/q ∈ Av}.
Since Av is either an interval of length at least 1 + δ ′ − ε or contains two disjoint
intervals of length 1, we conclude that |φ(v)| ≥ k. Let n = �rq� + 1. Then
φ(v) ⊆ {0, 1, · · · , n − 1} for all v ∈ V (H). Hence φ gives a k-tuple n-colouring
of H . Therefore

χf (H) ≤ n/k =
�rq� + 1

�(δ′ − ε)q� + q − 1
≤ rq + 1

(δ′ − ε + 1)q − 2
.

By letting q approach infinity, we obtain the following contradiction:

χf (H) ≤ lim
q→∞

rq + 1
(δ′ − ε + 1)q − 2

=
r

δ′ − ε + 1
<

r

δ − ε + 1
= χf (H).
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Corollary 6.2. Let H be a graph with χf (H) = χc(H). Then for any real
number r ∈ [χc(H), 2χc(H)),

lim
m→∞ chr

cc(H [m]) = r − r

χc(H)
+ 1.

Proof. Let m be a positive integer. By Theorem 6.1, we have

chr
cc(H [m]) ≥ r − r

χc(H)
− r

m
+ 1.

By Lemma 3.7,

chr
cc(G) ≤ r

χc(G)
chχc(G)

cc (G)− r

χc(G)
+ 1.

Since ch
χc(G)
cc (G) ≤ χc(G)(1− 1

|V (G)|), we have

chr
cc(H [m]) ≤ r − r

χc(H)
− r

mn
+ 1.

Thus limm→∞ chr
cc(H [m]) = r − r

χc(H) + 1.

Corollary 6.3. For any positive integers n, m, for any real number n ≤ r <

2n,
chr

cc(Kn[m]) ≥ r − r

n
− r

m
+ 1.

By Theorem 4.4, we have

chr
cc(Kn[m]) ≤ r − r

nm
− r

n
+ 1.

So there is a small gap between the upper and lower bounds for chr
cc(Kn[m]). We

have not been able to determine the exact value of chr
cc(Kn[m]) for all n, m, r. In

the following, we determine the value for the case n = 2 and the case n ≥ 3 but
m = 2kn − 1 for some positive integer k.

Theorem 6.4. For any real number r ∈ [2, 4) and any positive integer m,

chr
cc(Km,m) =

r

2
− r

2m
+ 1.

Proof. If m = 1 then, by Theorem 5.2, the theorem is true. Thus we assume that
m ≥ 2 and assume the vertices of Km,m are {vi,j : i = 1, 2, j = 0, 1, · · · , m − 1},
where v1,j is adjacent to v2,j′ for 0 ≤ j, j′ ≤ m − 1. By Theorem 4.4, since
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χc(Km,m) = 2, we have chr
cc(Km,m) ≤ r

2 − r
2m + 1. It remains to show that

chr
cc(Km,m) ≥ r

2 − r
2m + 1. Let ε = r

m and δ = r
2 + r

2m − 1. Then r = 2+ 2δ− ε,
δ − ε < 1 and ε ≤ 2δ.

Let
l(v1,j) = jε, j = 0, 1, . . . , m− 1;

l(v2,j) = jε + δ + 1, j = 0, 1, . . . , m− 1.

We shall show that for any real number δ′ > δ, Km,m has no circular r-colouring
compatible with (l, r − δ ′). Assume to the contrary that f is an r-colouring of
Km,m which is compatible with (l, r − δ ′). Let Ai = ∪m−1

j=0 [f(vi,j), f(vi,j) + 1)r.
Then A1 ∩ A2 = ∅, and the sum of the total lengths of A1 and A2 is at most r.
As each Ai has total length at least 1, and r < 4, we conclude that at least one
of A1, A2, say A1, has total length less than 2. This implies that A1 is a single
interval. Assume A1 = [a, b)r. Observe that l(v1,j) (j = 0, 1, · · · , m− 1) partition
the circle S(r) into m intervals of length ε. Thus by symmetry, we may assume
that 1 ≤ b < 1 + ε. Since l(v1,1) = ε and [f(v1,1) − l(v1,1)]r ≤ r − δ′, and since
A1 has total length less than 2, we conclude that

f(v1,1) ∈ (r − 1, r − δ′ + ε]r.

(Note that in case δ′ < ε, [r − δ′ + ε]r = ε − δ′.) This implies that for any j,
1 ≤ b ≤ f(v2,j) ≤ r − δ′ + ε − 1. In particular,

1 ≤ f(v2,0) ≤ r − δ′ + ε − 1.

As l(v2,0) = 1 + δ > r − δ′ + ε − 1, we conclude that f(v2,0) < l(v2,0) and hence

[f(v2,0) − l(v2,0)]r = f(v2,0) − l(v2,0) + r ≥ 1 − (1 + δ) + r = r − δ > r − δ′.

This is in contrary to the assumption that f is compatible with (l, r − δ ′).

As a consequence of Corollary 4.3 and Theorem 6.4, we have the following
corollary.

Corollary 6.5. For any m ≥ 1,

chcc(Km,m) = 3 − 2
m

.

Observe that ch4
cc(Km,m) ≤ ch2

cc(Km,m) = 2− 1
m and limr→4− chr

cc(Km,m) =
3 − 2

m . Thus chr
cc(G) need not be continuous as a function of r.

Theorem 6.6. Let n and m be two positive integers such that m = 2kn − 1
for some integer k ≥ 2. Then for any real number r in [n, 2nm/(m + 1)),

chr
cc(Kn[m]) = r − r

n
− r

nm
+ 1.
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Proof. By Theorem 4.4, chr
cc(Kn[m]) ≤ r − r

n − r
nm + 1. Let ε = r

m and
δ = r

n + r
nm − 1. Then r = nδ − ε + n and δ + 1 = 2kε. The condition that

r < 2nm/(m + 1) implies that δ < 1. Let

l(i, j) = jε + δ, j = 0, 1, . . . , m− 1, i = 0, 1, · · · , n− 1.

We shall prove that for any circular r-colouring f of Kn[m], there is a vertex
(i, j) such that [f(i, j) − l(i, j)]r ≥ r − δ. For i = 0, 1, · · · , n − 1, let Ai =
∪m−1

j=0 (f(i, j), f(i, j) + 1]r, and let Ii = {j : 0 ≤ j ≤ m − 1, jε ∈ Ai}. Since
Ii ⊆ {0, 1, · · · , m − 1} and Ii ∩ Ij = ∅ for i = j, there is an index i such that
|Ii| ≤ m/n < 2k. As 1 + δ = 2kε and δ < 1, we conclude that 1 > kε and hence
for any interval X of S(r) of length 1, |X ∩ {jε : j = 0, 1, · · · , m − 1}| ≥ k.
Observe that Ai is the union of intervals of S(r) of length 1. Since |Ii| < 2k,
we conclude that Ai cannot contains two disjoint intervals of length 1. So all the
intervals in Ai intersects, and hence Ai is a single interval. Assume Ai = (a, b]r.
Without loss of generality, assume that 0 ≤ a < ε. Since |Ii| ≤ 2k − 1, then
b < 2kε = δ + 1. So 0 ≤ f(i, j) ≤ b − 1 < δ for j = 0, 1, · · · , m − 1. Then
[f(i, 0)− l(i, 0)]r = f(i, 0)− l(i, 0)+ r ≥ r − δ.

As χc(Kn[m]) = n, by Lemma 3.7, chcc(Kn[m]) ≤ 2n − 1 − 2
m . Let r0 =

2nm/(m + 1). By Theorem 6.6, for m = 2kn − 1 (k ≥ 2), we have

chcc(Kn[m]) ≥ lim
r→r−0

chr
cc(Kn[m]) = 2n − 1 − 2n

m + 1
.

When m is large, the lower bound and the upper bound for chcc(Kn[m]) are arbi-
trarily close. In this sense, the upper bound in Lemma 3.7 is best possible.
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