THE HAMILTON-WATERLOO PROBLEM FOR TWO EVEN CYCLES FACTORS

Hung-Lin Fu and Kuo-Ching Huang
Dedicated to Professor Ko-Wei Lih on the occasion of his 60th birthday.

Abstract

This paper investigates the problem of factoring $K_{2 n}-I_{n}$ into 2-factors of two kinds or three kinds: (1) C_{t}-factors and $C_{2 t}$-factors, (2) C_{4}-factors and $C_{2 t}$-factors, (3) C_{4}-factors, C_{8}-factors and C_{16}-factors.

1. Introduction

The well-known Oberwolfach problem, formulated by Ringel in 1967, asks for a 2-factorization of the complete graph $K_{2 n+1}$ into 2-factors each of which isomorphic to a given 2 -factor D. If D consists of cycles of lengths $m_{1}, m_{2}, \ldots, m_{t}$ with $m_{1}+m_{2}+\ldots+m_{t}=2 n+1$, then the Oberwolfach problem is denoted by $\mathrm{OP}\left(2 n+1 ; m_{1}, m_{2}, \ldots, m_{t}\right)$. It is known that the cases $\operatorname{OP}(9 ; 4,5)$ and $\mathrm{OP}(11 ; 3,3,5)$ do not exist. Therefore, it has been conjectured that a solution to $\mathrm{OP}\left(2 n+1 ; m_{1}, m_{2}, \ldots, m_{t}\right)$ exists except the above two counterexamples. So far, the conjecture has been verified for the case when $m_{1}=m_{2}=\ldots=m_{t}$, i.e., all components of the isomorphic 2-factor D are cycles of the same odd length $[3,4]$. However, the Oberwolfach problem remains unsolved in general. It is common to extend the Oberwolfach problem to the case by considering 2-factorization of the complete graph $K_{2 n}$ with a 1 -factor I_{n} removed, denoted by $K_{2 n}-I_{n}$. It has also been verified that a solution to $\operatorname{OP}\left(2 n ; m_{1}, m_{2}, \ldots, m_{t}\right)$ exists when $m_{1}=m_{2}=\ldots=m_{t}$ except that $\mathrm{OP}(6 ; 3,3)$ and $\mathrm{OP}(12 ; 3,3,3,3)$ have no solution $[2,3,6]$.

The Hamilton-Waterloo problem (HWP) is a generalization of the Oberwolfach problem which asks for a 2-factorization of $K_{2 n+1}$ in which r of the 2-factors are isomorphic to a given 2 -factor D_{1} and the remaining s of the 2 -factors are

[^0]isomorphic to another given 2-factor D_{2}, where $r+s=n$. Again, one may ask the similar problem by considering 2-factorizations of $K_{2 n}-I_{n}$.

For convenience, we introduce the following notations. Let I_{n} be a 1-factor of $K_{2 n}$. Suppose H is a subgraph of G. Let $m H$ be the edge-disjoint union of m copies of H. An H-factor of a graph G is a spanning subgraph of G in which each component is isomorphic to H. An $\left\{H_{1}^{m_{1}}, H_{2}^{m_{2}}, \ldots, H_{t}^{m_{t}}\right\}$-factorization of a graph G is a factorization which consists precisely of $m_{i} H_{i}$-factors. If there is such a factorization of G, then we say that $\left(G ; H_{1}^{m_{1}}, H_{2}^{m_{2}}, \ldots, H_{t}^{m_{t}}\right)$ exists. Let $\operatorname{HWP}(v ; m, n)$ be the set of pairs (r, s) such that $\left(G ; C_{m}^{r}, C_{n}^{s}\right)$ exists for $G=K_{v}$ if v is odd and $G=$ $K_{v}-I_{\frac{v}{2}}$ if v is even, where C_{t} denotes a cycle of length t. The cases $(m, n)=(3, v)$, $(m, n)^{2}=(3,4)$ and $(m, n) \in\{(4,6),(4,8),(4,16),(8,16),(3,5),(3,15),(5,15)\}$ are considered in $[7,5,1]$, respectively. In this paper, we completely determine the sets $\operatorname{HWP}(2 n ; t, 2 t)$ for even integers $t \geq 4$ and $\operatorname{HWP}(2 n ; 4,2 t)$ for $t \geq 3$. Moreover, we also show that $\left(K_{2 n}-I_{n} ; C_{4}^{r}, C_{8}^{s}, C_{16}^{t}\right)$ exists for all pairs (r, s, t) with $r+s+t=n-1$.

2. Basic Constructions

In this section we present the idea and some basic constructions in order to prove our main results. Since the following lemmas are easy to see, we omit the proofs.

Lemma 1. Suppose G_{1} and G_{2} are two vertex-disjoint graphs. If $\left(G_{1} ; C_{m}^{r}, C_{n}^{s}\right)$ and $\left(G_{2} ; C_{m}^{r}, C_{n}^{s}\right)$ both exist, then $\left(G_{1} \cup G_{2} ; C_{m}^{r}, C_{n}^{s}\right)$ exists.

Lemma 2. Suppose G_{1} and G_{2} are two edge-disjoint graphs with the same vertex set. If $\left(G_{1} ; C_{m}^{r_{1}}, C_{n}^{s_{1}}\right)$ and $\left(G_{2} ; C_{m}^{r_{2}}, C_{n}^{s_{2}}\right)$ both exist, then $\left(G_{1} \cup G_{2} ; C_{m}^{r_{1}+r_{2}}\right.$, $\left.C_{n}^{s_{1}+s_{2}}\right)$ exists.

The trivial necessary condition for $K_{2 n}$ having a $C_{2 t}$-factor is $2 n=2 t k$ or $n=$ $t k$. On the other hand, if $n=t k$, then $K_{2 n}-I_{n}=k\left(K_{2 t}-I_{t}\right) \bigcup(2 k-2)\left(k K_{t, t}\right)=$ $\left(k K_{2 t}-I_{n}\right) \bigcup(2 k-2)\left(k K_{t, t}\right)$, we shall prove that $\left(K_{2 t}-I_{t} ; C_{m}^{r_{1}}, C_{2 t}^{s_{1}}\right)$ exists for $r_{1}+s_{1}=t-1$ and $m=4$ or t, and $\left(K_{t, t} ; C_{m}^{\frac{t}{2}}\right)$ exists for $m=t$ or $2 t$. Then, by Lemma 1 , $\left(k\left(K_{2 t}-I_{t}\right) ; C_{m}^{r_{1}}, C_{2 t}^{s_{1}}\right)$ and $\left(k K_{t, t} ; C_{m}^{\frac{t}{2}}\right)$ both exist. Let (r, s) be a pair of nonnegative integers with $r+s=n-1=t k-1$. It is not difficult to see that there are pairs of nonnegative integers $\left(r_{1}, s_{1}\right)$ with $r_{1}+s_{1}=t-1$ and $\left(r_{2}, s_{2}\right)$ with $r_{2}+s_{2}=2 k-2$ such that $(r, s)=\left(r_{1}, s_{1}\right)+\frac{t}{2}\left(r_{2}, s_{2}\right)$. Now, factor $k\left(K_{2 t}-I_{t}\right)=k K_{2 t}-I_{n}$ into $r_{1} C_{t}$-factors and $s_{1} C_{2 t}$-factors and factor $r_{2} k K_{t, t}$'s into $\frac{t}{2} r_{2} C_{t}$-factors and the remaining $s_{2} k K_{t, t}$'s into $\frac{t}{2} s_{2} C_{2 t}$-factors. By Lemma 2, $\left(K_{2 n}-I_{n} ; C_{t}^{r}, C_{2 t}^{s}\right)$ exists, i.e., $(r, s) \in \operatorname{HWP}(2 n ; t, 2 t) \subseteq\{(r, s): r+s=n-1\}$.

Therefore, we have $\operatorname{HWP}(2 n ; t, 2 t)=\{(r, s): r+s=n-1\}$ for even integers t. By the same argument, we also obtain that $\operatorname{HWP}(2 n ; 4,2 t)=\{(r, s): r+s=n-1\}$ for integers $t \geq 3$.

The following lemma is a well-known result.
Lemma 3. The complete graph $K_{2 t}$ is 1-factorable and it can be decomposed into $t-1$ Hamilton cycles and one 1-factor. Moreover, by ordering the vertices of $K_{2 t}$, one of the $t-1$ Hamilton cycles is of the form $v_{0} v_{1} \cdots v_{2 t-1} v_{0}$ and the 1 -factor is $\left\{v_{0} v_{t}, v_{i} v_{2 t-i}: 1 \leq i \leq t-1\right\}$.

Before proving the next lemma, we define a new graph. Suppose G is a graph. The duplicate graph of G, denoted by $D G$, obtained from G by replacing each vertex v_{i} of G by two new vertices x_{i} and y_{i} and replacing each edge $v_{i} v_{j}$ of G by four edges $x_{i} x_{j}, x_{i} y_{j}, y_{i} x_{j}$ and $y_{i} y_{j}$, i.e., each edge $v_{i} v_{j}$ of G corresponds to a $K_{2,2}=C_{4}$ in $D G$. In what follows, let the vertex sets and edge sets of duplicate graphs are the same as above if no confusion occurs.

Lemma 4. Let $C=v_{0} v_{1} v_{2} \cdots v_{t-1} v_{0}$ be an even cycle. Then $\left(D C ; C_{m}^{2}\right)$ exists for $m=4, t$ and $2 t$. Moreover, let $I_{t}=\left\{x_{i} y_{i}: 0 \leq i \leq t-1\right\}$ and $G=D C \bigcup I_{t}$. Then there is a 1-factor M of G such that $\left(G-M ; C_{m}^{1}, C_{2 t}^{1}\right)$ exists for $m=4$ and t.

Proof. Since t is even, $F_{1}=\left\{v_{i} v_{i+1}: i\right.$ is odd $\}$ and $F_{2}=\left\{v_{i} v_{i+1}: i\right.$ is even $\}$ are two 1 -factors of C. Hence, $D F_{1}$ and $D F_{2}$ are two C_{4}-factors of $D C$. Next, by directed construction, $\left\{x_{0} x_{1} x_{2} \cdots x_{t-1} x_{0}, y_{0} y_{1} y_{2} \cdots y_{t-1} y_{0}\right\}$ and $\left\{x_{0} y_{1} x_{2} y_{3} \cdots x_{t-2} y_{t-1} x_{0}, y_{0} x_{1} y_{2} x_{3} \cdots y_{t-2} x_{t-1} y_{0}\right\}$ are two C_{t}-factors of $D C$ and $\left\{x_{0} x_{1} \cdots x_{t-1} y_{0} y_{1} \cdots y_{t-1} x_{0}\right\}$ and $\left\{x_{0} y_{1} x_{2} y_{3} \cdots x_{t-2} y_{t-1} y_{0} x_{1} y_{2} x_{3} \cdots y_{t-2} x_{t-1}\right.$ $\left.x_{0}\right\}$ are two $C_{2 t}$-factors of $D C$. Let
$Q_{1}=\left\{x_{0} x_{1} \cdots x_{\frac{t}{2}-1} y_{\frac{t}{2}-1} y_{\frac{t}{2}-2} \cdots y_{1} y_{0} x_{0}, x_{\frac{t}{2}} x_{\frac{t}{2}+1} \cdots x_{t-1} y_{t-1} y_{t-2} \cdots y_{\frac{t}{2}} x_{\frac{t}{2}}\right\}$,
$Q_{2}=\left\{x_{0} y_{1} x_{2} y_{3} \cdots x_{t-2} y_{t-1} y_{0} x_{1} y_{2} x_{3} \cdots y_{t-2} x_{t-1} x_{0}\right\}$ and
$M_{1}=G-\left(Q_{1} \cup Q_{2}\right)$.
It is routine to verify that Q_{1} is a C_{t}-factor, Q_{2} is a $C_{2 t}$-factor and M_{1} is a 1 -factor of G, respectively.

Let $F_{3}=\left\{x_{i} x_{i+1} y_{i+1} y_{i} x_{i}: i\right.$ is even $\}, Q_{2}$ be the same as above and $M_{2}=$ $G-\left(F_{3} \bigcup Q_{2}\right)$. It is easy to see that F_{3} is a C_{4}-factor, Q_{2} is a $C_{2 t}$-factor and M_{2} is a 1 -factor of G, respectively.

Lemma 5. Suppose G is a graph consisting of an even cycle $C=v_{0} v_{1} v_{2} \ldots$ $v_{t-1} v_{0}$ and a l-factor $M_{1}=\left\{v_{0} v_{\frac{t}{2}}, v_{i} v_{t-i}: 1 \leq i \leq \frac{t}{2}-1\right\}$. Let $H=D G \bigcup I_{t}$, where $I_{t}=\left\{x_{i} y_{i}: 0 \leq i \leq t-1\right\}$. Then there is a l-factor M of H such that ($H-M ; C_{t}^{r}, C_{2 t}^{s}$) exists for all pairs (r, s) with $r+s=3$.

$$
\begin{aligned}
& \text { Proof. Let } F_{1}=\left\{x_{0} x_{1} x_{t-1} x_{t-2} x_{2} \cdots x_{\frac{t}{2}} x_{0}, y_{0} y_{1} y_{t-1} y_{t-2} y_{2} \cdots y_{\frac{t}{2}} y_{0}\right\}, \\
& F_{2}=\left\{x_{0} y_{t-1} x_{1} y_{2} x_{t-2} \cdots y_{\frac{t}{2}} x_{0}, y_{0} x_{t-1} y_{1} x_{2} y_{t-2} \cdots x_{\frac{t}{2}} y_{0}\right\} \\
& Q_{1}=\left\{x_{0} x_{1} x_{t-1} x_{t-2} x_{2} \cdots x_{\frac{t}{2}} y_{0} y_{1} y_{t-1} y_{t-2} y_{2} \cdots y_{\frac{t}{2}} x_{0}\right\} \text { and } \\
& Q_{2}=\left\{x_{0} y_{t-1} x_{1} y_{2} x_{t-2} \cdots y_{\frac{t}{2}} y_{0} x_{t-1} y_{1} x_{2} y_{t-2} \cdots x_{\frac{t}{2}} x_{0}\right\}
\end{aligned}
$$

Then F_{1} and F_{2} are two C_{t}-factors of H, Q_{1} and Q_{2} are two $C_{2 t}$-factors of H and $F_{1} \bigcup F_{2}=Q_{1} \bigcup Q_{2}$. Let $R_{1}=D G-\left(F_{1} \bigcup F_{2}\right)$. Then $R_{1}=$ $\left\{x_{0} y_{1} y_{2} x_{3} x_{4} \cdots x_{t-1} x_{0}, y_{0} x_{1} x_{2} y_{3} y_{4} \cdots y_{t-1} y_{0}\right\}$ which is a C_{t}-factor of H if $t \equiv 0$ $(\bmod 4)$ and $R_{1}=\left\{x_{0} y_{1} y_{2} x_{3} x_{4} \cdots y_{t-1} y_{0} x_{1} x_{2} y_{3} y_{4} \cdots x_{t-1} x_{0}\right\}$ which is a $C_{2 t^{-}}$ factor of H if $t \equiv 2(\bmod 4)$.

For $t \equiv 0(\bmod 4)$, let $R_{2}=\left(R_{1}-\left\{x_{0} y_{1}, y_{0} x_{1}\right\}\right) \bigcup\left\{x_{0} y_{0}, x_{1} y_{1}\right\}$ which is a $C_{2 t^{-}}$ factor of H and $M_{2}=\left(I_{t}-\left\{x_{0} y_{0}, x_{1} y_{1}\right\}\right) \bigcup\left\{x_{0} y_{1}, y_{0} x_{1}\right\}$ which is a 1-factor of H. Then $\left\{F_{1}, F_{2}, R_{1}, I_{t}\right\},\left\{F_{1}, F_{2}, R_{2}, M_{2}\right\},\left\{R_{1}, Q_{1}, Q_{2}, I_{t}\right\}$ and $\left\{R_{2}, Q_{1}, Q_{2}, M_{2}\right\}$ are the desired four factorizations.

For $t \equiv 2(\bmod 4)$, let $R_{3}=\left(R_{1}-\left\{x_{0} x_{t-1}, y_{0} y_{t-1}, x_{\frac{t}{2}-1} y_{\frac{t}{2}}, x_{\frac{t}{2}} y_{\frac{t}{2}-1}\right\}\right) \bigcup\left\{x_{i} y_{i}:\right.$ $\left.i=0, \frac{t}{2}-1, \frac{t}{2}, t-1\right\}$ which is a C_{t}-factor of H and $M_{3}=\left(I_{t}-\left\{x_{i} y_{i}: i=\right.\right.$ $\left.\left.0, \frac{t}{2}-1, \frac{t}{2}, t-1\right\}\right) \bigcup\left\{x_{0} x_{t-1}, y_{0} y_{t-1}, x_{\frac{t}{2}-1} y_{\frac{t}{2}}, x_{\frac{t}{2}} y_{\frac{t}{2}-1}\right\}$ which is a 1 -factor of H. Then $\left\{F_{1}, F_{2}, R_{3}, M_{3}\right\},\left\{F_{1}, F_{2}, R_{1}, I_{t}\right\},\left\{R_{3}, Q_{1}, Q_{2}, M_{3}\right\}$ and $\left\{R_{1}, Q_{1}, Q_{2}, I_{t}\right\}$ are the desired four factorizations.

Lemma 6. Suppose $t \geq 4$ is an even integer. Then $\operatorname{HWP}(2 t ; t, 2 t)=\{(r, s)$: $r+s=t-1\}$.

Proof. By definition, $\operatorname{HWP}(2 t ; t, 2 t) \subseteq\{(r, s): r+s=t-1\}$. Conversely, let (r, s) be a pair with $r+s=t-1$. By Lemma 3, we have $(0, t-1) \in \operatorname{HWP}(2 t ; t, 2 t)$. Now, suppose $r>0$. It is easy to see that $K_{2 t}-I_{t}=D K_{t}$. Since t is even, by Lemma $3, K_{t}$ can be decomposed into $\frac{t}{2}-1$ Hamilton cycles, denoted by $H C$ for short, and one 1-factor F. Hence, $D K_{t}=\left(\frac{t}{2}-2\right) D H C \bigcup D H C^{*} \bigcup D F^{*}$ with the particular $D H C^{*}$ and $D F^{*}$ stated in Lemma 3. Let $G=D H C^{*} \bigcup D F^{*} \bigcup I_{t}$. If r is even, by Lemma 5, then $\left(G-M_{1} ; C_{t}^{2}, C_{2 t}^{1}\right)$ exists, where M_{1} is some 1-factor of G which is also a 1-factor of $K_{2 t}$. By Lemmas 4 and $2,\left(\left(\frac{r}{2}-1\right) D H C ; C_{t}^{r-2}\right)$ and $\left(\left(\frac{t}{2}-1-\frac{r}{2}\right) D H C ; C_{2 t}^{t-2-r}\right)$ both exist. Hence, $\left(\left(\frac{t}{2}-2\right) D H C ; C_{t}^{r-2}, C_{2 t}^{t-2-r}\right)$ exists and then $\left(K_{2 t}-M_{1} ; C_{t}^{r}, C_{2 t}^{t-1-r}\right)$ exists. Thus, $(r, t-1-r) \in \operatorname{HWP}(2 t ; t, 2 t)$. If r is odd, by Lemma 5, then $\left(G-M_{2} ; C_{t}^{1}, C_{2 t}^{2}\right)$ exists, where M_{2} is some 1-factor both of G and $K_{2 t}$. By Lemmas 4 and 2, $\left(\frac{r-1}{2} D H C ; C_{t}^{r-1}\right)$ and $\left(\left(\frac{t}{2}-2-\right.\right.$ $\left.\left.\frac{r-1}{2}\right) D H C ; C_{2 t}^{t-3-r}\right)$ both exist. Hence, $\left(\left(\frac{t}{2}-2\right) D H C ; C_{t}^{r-1}, C_{2 t}^{t-3-r}\right)$ exists
and then $\left(K_{2 t}-M_{2} ; C_{t}^{r}, C_{2 t}^{t-1-r}\right)$ exists. Thus, $(r, t-1-r) \in \operatorname{HWP}(2 t ; t, 2 t)$. Therefore, $\operatorname{HWP}(2 t ; t, 2 t)=\{(r, s): r+s=t-1\}$.

The following result can be found in [8].
Lemma 7. ([8]). There is a 2-factorization of $K_{n, n}$ in which each 2-factor is the vertex disjoint union of m cycles of lengths $t_{1}, t_{2}, \ldots, t_{m}$ if and only if n is even, $t_{i} \geq 4$ is even for $1 \leq i \leq m$ and $t_{1}+t_{2}+\ldots+t_{m}=2 n$, except there is no C_{6}-factorization of $K_{6,6}$. In particular, $\left(K_{t, t} ; C_{m}^{\frac{t}{2}}\right)$ exists for even integers t and $m=4, t$ or $2 t$, except $m=t=6$.

Since $\left(K_{6,6} ; C_{6}^{3}\right)$ does not exist, we can not obtain $\operatorname{HWP}(2 n ; 6,12)$ directly by applying Lemma 7. However, by a minor modification, we also can completely determine the set $\operatorname{HWP}(2 n ; 6,12)$.

Lemma 8. Suppose $n \equiv 0(\bmod 12)$. Then $\operatorname{HWP}(2 n ; 6,12)=\{(r, s): r+s=$ $n-1\}$.

Proof. By Lemma 6, $\left(K_{12}-I_{6} ; C_{6}^{r}, C_{12}^{s}\right)$ exists for all pairs (r, s) with $r+s=$ 5. By Lemma 7, $\left(K_{12,12} ; C_{m}^{6}\right)$ exists for $m=6$ or 12 . Let (a, b) be a pair with $a+b=11$. Then $(a, b)=\left(a_{1}, b_{1}\right)+6\left(a_{2}, b_{2}\right)$, where $a_{1}+b_{1}=5$ and $a_{2}+b_{2}=1$. Since $K_{24}-I_{12}=2\left(K_{12}-I_{6}\right) \bigcup K_{12,12},\left(K_{12}-I_{6} ; C_{6}^{a_{1}}, C_{12}^{b_{1}}\right)$ and $\left(K_{12,12} ; C_{6}^{6 a_{2}}, C_{12}^{6 b_{2}}\right)$ both exist, by Lemmas 1 and $2,\left(K_{24}-I_{12} ; C_{6}^{a}, C_{12}^{b}\right)$ exists. Now, if (r, s) is a pair with $r+s=n-1=12 k-1$, then $(r, s)=$ $\left(r_{1}, s_{1}\right)+6\left(r_{2}, s_{2}\right)$, where $r_{1}+s_{1}=11$ and $r_{2}+s_{2}=2 k-2$. Since $K_{2 n}-I_{n}=$ $K_{24 k}-I_{12 k}=k\left(K_{24}-I_{12}\right) \bigcup(2 k-2)\left(k K_{12,12}\right),\left(K_{24}-I_{12} ; C_{6}^{r_{1}}, C_{12}^{s_{1}}\right)$ exists and, $\left(r_{2}\left(k K_{12,12}\right) ; C_{6}^{6 r_{2}}\right)$ and $\left(s_{2}\left(k K_{12,12}\right) ; C_{12}^{6 s_{2}}\right)$ both exist by Lemmas 1 and 2 , we have $\left(K_{2 n}-I_{n} ; C_{6}^{r}, C_{12}^{s}\right)$ exists. Therefore, $(r, s) \in \operatorname{HWP}(2 n ; 6,12)$ and then $\operatorname{HWP}(2 n ; 6,12)=\{(r, s): r+s=n-1\}$.

For the case that $n \equiv 6(\bmod 12)$, we need the following. Let $K_{u(g)}$ be the complete u-partite graph with g vertices in each partite set.

Lemma 9. ([4])/ The graph $K_{u(g)}$ is C_{3}-factorable if and only if $(u-1) g$ is even and $u g \equiv 0(\bmod 3)$.

Lemma 10. Let $n \equiv 6(\bmod 12)$. Then $\operatorname{HWP}(2 n ; 6,12)=\{(r, s): r+s=$ $n-1\}$.

Proof. Let $n=6 k$, where k is odd. Then $K_{2 n}-I_{n}=k\left(K_{12}-I_{6}\right) \bigcup K_{k(12)}$. By Lemma 9, $K_{k(12)}$ is $K_{4,4,4}$-factorable, i.e., $K_{k(12)}=\frac{3(k-1)}{2}\left(k K_{4,4,4}\right)$, where
$k K_{4,4,4}$ is a $K_{4,4,4}$-factor. It is not difficult to see that $K_{4,4,4}=D K_{2,2,2}$ which can be decomposed into two $D C_{6}$. Since $\left(D C_{6}, C_{m}^{2}\right)$ exists for $m=6$ or 12 , by Lemmas 4 and 2 , $\left(K_{4,4,4} ; C_{m}^{4}\right)$ exists. By Lemma $1,\left(k K_{4,4,4} ; C_{m}^{4}\right)$ exists. If (r, s) is a pair with $r+s=n-1=6 k-1$, then $(r, s)=\left(r_{1}, s_{1}\right)+4\left(r_{2}, s_{2}\right)$, where $r_{1}+s_{1}=5$ and $r_{2}+s_{2}=\frac{3(k-1)}{2}$. Since $\left(K_{12}-I_{6} ; C_{6}^{r_{1}}, C_{12}^{s_{1}}\right)$ exists by Lemma 6 and, $\left(r_{2}\left(k K_{4,4,4}\right) ; C_{6}^{4 r_{2}}\right)$ and $\left(s_{2}\left(k K_{4,4,4}\right) ; C_{12}^{4 s_{2}}\right)$ both exist by Lemma 2, we have $\left(K_{2 n}-I_{n} ; C_{6}^{r}, C_{12}^{s}\right)$ exists. Therefore, $(r, s) \in \operatorname{HWP}(2 n ; 6,12)$ and then $\operatorname{HWP}(2 n ; 6,12)=\{(r, s): r+s=n-1\}$.

Combining Lemmas 8 and 10, we have
Corollary 11. Suppose $n \equiv 0(\bmod 6)$. Then $\operatorname{HWP}(2 n ; 6,12)=\{(r, s)$: $r+s=n-1\}$.

3. Main Results

Now, we are ready to prove our main results.
Theorem 12. Suppose $t \geq 4$ is even and $n \equiv 0(\bmod t)$. Then $\operatorname{HWP}(2 n ; t, 2 t)=$ $\{(r, s): r+s=n-1\}$.

Proof. By Corollary 11, the assertion holds for $t=6$. Now, suppose $t \neq 6$. Since $n \equiv 0(\bmod t)$, we have $n=t k$ and $K_{2 n}=k K_{2 t} \bigcup(2 k-2)\left(k K_{t, t}\right)$. Let (r, s) be a pair of nonnegative integers with $r+s=n-1=t k-1$. Then $(r, s)=\left(r_{1}, s_{1}\right)+\frac{t}{2}\left(r_{2}, s_{2}\right)$ for some pairs $\left(r_{1}, s_{1}\right)$ with $r_{1}+s_{1}=t-1$ and $\left(r_{2}, s_{2}\right)$ with $r_{2}+s_{2}=2 k-2$. By Lemma 6, $\left(K_{2 t}-I_{t} ; C_{t}^{r_{1}}, C_{2 t}^{s_{1}}\right)$ exists. Hence, by Lemma $1,\left(k\left(K_{2 t}-I_{t}\right) ; C_{t}^{r_{1}}, C_{2 t}^{s_{1}}\right)=\left(k K_{2 t}-I_{n} ; C_{t}^{r_{1}}, C_{2 t}^{s_{1}}\right)$ exists. By Lemma 7, $\left(K_{t, t} ; C_{m}^{\frac{t}{2}}\right)$ exists for $m=t$ or $2 t$. Hence, by Lemma $1,\left(k K_{t, t} ; C_{m}^{\frac{t}{2}}\right)$ exists. By Lemma 2, $\left(r_{2}\left(k K_{t, t}\right) ; C_{t}^{\frac{t}{2} r_{2}}\right)$ and $\left(s_{2}\left(k K_{t, t}\right) ; C_{2 t}^{\frac{t}{2} s_{2}}\right)$ both exist and then $\left(K_{2 n}-I_{n} ; C_{t}^{r}, C_{2 t}^{s}\right)$ exists, i.e., $(r, s) \in \operatorname{HWP}(2 n ; t, 2 t)$. Therefore, $\operatorname{HWP}(2 n ; t, 2 t)=\{(r, s): r+s=$ $n-1\}$.

In what follows, we study $\operatorname{HWP}(2 n ; 4,2 t)$ for $t \geq 3$. The necessary condition for the existence of ($K_{2 n}-I_{n} ; C_{4}^{r}, C_{2 t}^{s}$) with $r+s=n-1$ is that $2 n$ is divisible by 4 and $2 t$. Hence, we may assume that $n=t k$ is even. We also need the following result.

Lemma 13. ([6]). A C_{k}-factorization of $K_{2 n}-I_{n}$ exists if and only if k divides $2 n$ except that $K_{6}-I_{3}$ and $K_{12}-I_{6}$ do not admit a C_{3}-factorization.

Theorem 14. For an integer $t \geq 3, \operatorname{HWP}(2 n ; 4,2 t)=\{(r, s): r+s=n-1\}$.
Proof. The assertion holds for $t=3$ which is proved in [1]. Suppose $t \geq 4$ is even. Let (r, s) be a pair with $r+s=n-1$. By Lemma 3, $(0, n-1) \in$ $\operatorname{HWP}(2 n ; 4,2 t)$. Let $r>0$. It is easy to see that $K_{2 n}-I_{n}=D K_{n}$. Since n is even, by Lemma 13, $K_{n}-I_{\frac{n}{2}}$ is C_{t}-factorable. Let $K_{n}-I_{\frac{n}{2}}=\bigcup_{i=1}^{\frac{n}{2}-1} F_{i}$, where each F_{i} is a C_{t}-factor. It is clear that $D I_{\frac{n}{2}}$ corresponds to a C_{4}-factor in $K_{2 n}$. Let C be a t-cycle of F_{i}. Since t is even, by Lemma 4, $\left(D C, C_{4}^{2}\right)$ and $\left(D C, C_{2 t}^{2}\right)$ both exist. Hence, $\left(D F_{i}, C_{4}^{2}\right)$ and $\left(D F_{i}, C_{2 t}^{2}\right)$ exist. If r is odd, then $\left(D\left(\bigcup_{i=1}^{\frac{r-1}{2}} F_{i} \bigcup I_{\frac{n}{2}}\right) ; C_{4}^{r}\right)$ and $\left(D\left(\bigcup_{i=\frac{r+1}{2}}^{\frac{n}{2}-1} F_{i}\right) ; C_{2 t}^{s}\right)$ both exist. By Lemma 2, $\left(K_{2 n}-\right.$ $\left.I_{n} ; C_{4}^{r}, C_{2 t}^{s}\right)$ exists. Hence, $(r, s) \in \operatorname{HWP}(2 n ; 4,2 t)$. If r is even, by Lemma 4, $\left(\left(D F_{1} \cup I_{n}\right)-M_{1} ; C_{4}^{1}, C_{2 t}^{1}\right)$ exists for some 1-factor M_{1} of $D F_{1} \cup I_{n}$ which is also a 1-factor of $K_{2 n}$. Hence, $\left(\left(\left(D F_{1} \bigcup I_{n}\right)-M_{1}\right) \bigcup D I_{\frac{n}{2}} ; C_{4}^{2}, C_{2 t}^{1}\right)$ exists. Since $\left(D\left(\bigcup_{i=2}^{\frac{r}{2}-1} F_{i}\right) ; C_{4}^{r-2}\right)$ and $\left(D\left(\bigcup_{i=\frac{r}{2}+1}^{\frac{n}{2}-1} F_{i}\right) ; C_{2 t}^{s}\right)$ both exist, by Lemma 2, $\left(K_{2 n}-\right.$ $\left.M_{1} ; C_{4}^{r}, C_{2 t}^{s}\right)$ exists. Hence, $(r, s) \in \operatorname{HWP}(2 n ; 4,2 t)$. Therefore, the assertion holds for t is even.

Now, suppose $t \geq 5$ is odd. Since $n=k t$ is even, n is divisible by $2 t$. Again, by Lemma 13, $K_{n}-I_{\frac{n}{2}}$ is $C_{2 t}$-factorable. By Lemma 4, Lemma 2 and a similar argument as above, $\left(K_{2 n}^{2}-I_{n} ; C_{4}^{r}, C_{2 t}^{s}\right)$ exists. Therefore, the assertion holds for $t \geq 5$ being odd and then we complete the proof.

4. Concluding Remark

So far, we study the Hamilton-Waterloo problem for (1) C_{t}-factors and $C_{2 t^{-}}$ factors if t is even and (2) C_{4}-factors and $C_{2 t}$-factors if $t \geq 3$. However, by using the similar argument in Lemma 6, we are able to deal with the Hamilton-Waterloo problem for cycle size 4,6 and 8 . Here is the result.

Theorem 15. Suppose $n \equiv 0(\bmod 8)$. Then $\left(K_{2 n}-I_{n} ; C_{4}^{r}, C_{8}^{s}, C_{16}^{t}\right)$ exists for all pairs (r, s, t) with $r+s+t=n-1$.

Proof. Suppose $n=8 k$. Then $K_{2 n}-I_{n}=\left(k K_{16}-I_{n}\right) \bigcup(2 k-2)\left(k K_{8,8}\right)$. By a similar argument as in Lemma 6, ($\left.K_{16}-I_{8} ; C_{4}^{r_{1}}, C_{8}^{s_{1}}, C_{16}^{t_{1}}\right)$ exists for all pairs $\left(r_{1}, s_{1}, t_{1}\right)$ with $r_{1}+s_{1}+t_{1}=7$. Hence, by Lemma $2,\left(k K_{16}-I_{n} ; C_{4}^{r_{1}}, C_{8}^{s_{1}}, C_{16}^{t_{1}}\right)$ exists for $r_{1}+s_{1}+t_{1}=7$. By Lemma 7, $\left(K_{8,8} ; C_{m}^{4}\right)$ exists for $m=4,8$ or 16. By

Lemma 1 , $\left(k K_{8,8} ; C_{m}^{4}\right)$ exists. If (r, s, t) is a pair with $r+s+t=n-1=4 \cdot(2 k-$ $2)+7$, it is not difficult to see that $(r, s, t)=\left(r_{1}, s_{1}, t_{1}\right)+4\left(r_{2}, s_{2}, t_{2}\right)$, where $r_{1}+s_{1}+t_{1}=7$ and $r_{2}+s_{2}+t_{2}=2 k-2$. Now, factor $k K_{16}-I_{n}$ into $r_{1} C_{4}$-factors, $s_{1} C_{8}$-factors and $t_{1} C_{16}$-factors. By Lemma 2, we can factor $r_{2}\left(k K_{8,8}\right)$ into $4 r_{2} C_{4}$-factors, $s_{2}\left(k K_{8,8}\right)$ into $4 s_{2} C_{8}$-factors and $t_{2}\left(k K_{8,8}\right)$ into $4 t_{2} C_{16}$-factors. Hence, by Lemma 2, $\left(K_{2 n}-I_{n} ; C_{4}^{r}, C_{8}^{s}, C_{16}^{t}\right)$ exists for $r+s+t=n-1$.

Acknowledgment

The authors would like to thank the referees for their helpful comments.

References

1. P. Adams, E. J. Billington and D. E. Bryant, On the Hamilton-Waterloo Problem, Graph and Combinatorics, 18 (2002), 13-51.
2. B. Alspach and R. Haggkvist, Some Oberservation on the Oberwolfach Problem, J. Graph Theory, 9 (1985), 177-187.
3. B. Alspach, P. J. Schellenberg, D. R. Stinson and D. Wagner, The Oberwolfach Problem and Factors of Uniform Odd Length Cycles, J. Combinatorial Theory (A), 52 (1989), 20-43.
4. C. J. Colbourn and J. H. Dinitz (Eds.), The CRC Handbook of Combinatorial Design, CRC Press, Boca Raton, FL. 1996.
5. P. Danziger, G. Quattrocchi and B. Stevens, The Hamilton-Waterloo Problem for Cycle Size 3 and 4, in preprints.
6. D. G. Hoffman and P. J. Schellenberg, The existence of C_{k}-factorization of $K_{2 n}-F$, Discrete Math., 97 (1991), 243-250.
7. P. Horak, R. Nedela and A. Rosa, The Hamilton-Waterloo Problem: the case of Hamilton cycles and triangle-factors, Discrete Math., 284 (2004), 181-188.
8. W. Piotrowski, The Solution of the Bipartite Analogue of the Oberwolfach Problem, Discrete Math., 97 (1991), 339-356.

Hung-Lin Fu

Department of Applied Mathematics, National Chiao Tung University,
Hsin Chu 30050, Taiwan
E-mail: hlfu@math.nctu.edu.tw
Kuo-Ching Huang
Department of Applied Mathematics, Providence University,
Shalu 43301, Taiwan

[^0]: Received December 10, 2007, Accepted January 10, 2008.
 Communicated by Xuding Zhu.
 2000 Mathematics Subject Classification: 05C38.
 Key words and phrases: Hamilton-Waterloo problem, 2-Factorization, C_{t}-factor.

