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THE HAMILTON-WATERLOO PROBLEM
FOR TWO EVEN CYCLES FACTORS

Hung-Lin Fu and Kuo-Ching Huang
Dedicated to Professor Ko-Wei Lih on the occasion of his 60th birthday.

Abstract. This paper investigates the problem of factoring K2n − In into
2-factors of two kinds or three kinds: (1) Ct-factors and C2t-factors, (2)
C4-factors and C2t-factors, (3) C4-factors, C8-factors and C16-factors.

1. INTRODUCTION

The well-known Oberwolfach problem, formulated by Ringel in 1967, asks for
a 2-factorization of the complete graph K2n+1 into 2-factors each of which isomor-
phic to a given 2-factor D. If D consists of cycles of lengths m1, m2, . . . , mt

with m1 + m2 + . . . + mt = 2n + 1, then the Oberwolfach problem is de-
noted by OP(2n + 1; m1, m2, . . . , mt). It is known that the cases OP(9; 4, 5) and
OP(11; 3, 3, 5) do not exist. Therefore, it has been conjectured that a solution to
OP(2n + 1; m1, m2, . . . , mt) exists except the above two counterexamples. So far,
the conjecture has been verified for the case when m1 = m2 = . . . = mt, i.e.,
all components of the isomorphic 2-factor D are cycles of the same odd length
[3, 4]. However, the Oberwolfach problem remains unsolved in general. It is com-
mon to extend the Oberwolfach problem to the case by considering 2-factorization
of the complete graph K2n with a 1-factor In removed, denoted by K2n − In.
It has also been verified that a solution to OP(2n; m1, m2, . . . , mt) exists when
m1 = m2 = . . . = mt except that OP(6; 3, 3) and OP(12; 3, 3, 3, 3) have no solu-
tion [2, 3, 6].

The Hamilton-Waterloo problem (HWP) is a generalization of the Oberwolfach
problem which asks for a 2-factorization of K2n+1 in which r of the 2-factors
are isomorphic to a given 2-factor D1 and the remaining s of the 2-factors are
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isomorphic to another given 2-factor D2, where r + s = n. Again, one may ask the
similar problem by considering 2-factorizations of K2n − In.

For convenience, we introduce the following notations. Let In be a 1-factor of
K2n. SupposeH is a subgraph ofG. LetmH be the edge-disjoint union ofm copies
of H . An H-factor of a graph G is a spanning subgraph of G in which each compo-
nent is isomorphic to H . An {Hm1

1 , Hm2
2 , . . . , Hmt

t }-factorization of a graph G is a
factorization which consists precisely of mi Hi-factors. If there is such a factoriza-
tion of G, then we say that (G; Hm1

1 , Hm2
2 , . . . , Hmt

t ) exists. Let HWP(v; m, n) be
the set of pairs (r, s) such that (G; C r

m, Cs
n) exists for G = Kv if v is odd and G =

Kv−I v
2
if v is even, whereCt denotes a cycle of length t. The cases (m, n) = (3, v),

(m, n) = (3, 4) and (m, n) ∈ {(4, 6), (4, 8), (4, 16), (8, 16), (3, 5), (3, 15), (5, 15)}
are considered in [7, 5, 1], respectively. In this paper, we completely determine the
sets HWP(2n; t, 2t) for even integers t ≥ 4 and HWP(2n; 4, 2t) for t ≥ 3. More-
over, we also show that (K2n − In; Cr

4 , Cs
8 , Ct

16) exists for all pairs (r, s, t) with
r+s+t=n−1.

2. BASIC CONSTRUCTIONS

In this section we present the idea and some basic constructions in order to
prove our main results. Since the following lemmas are easy to see, we omit the
proofs.

Lemma 1. SupposeG1 andG2 are two vertex-disjoint graphs. If (G1; Cr
m, Cs

n)
and (G2; Cr

m, Cs
n) both exist, then (G1 ∪ G2; Cr

m, Cs
n) exists.

Lemma 2. Suppose G1 and G2 are two edge-disjoint graphs with the same
vertex set. If (G1; Cr1

m , Cs1
n ) and (G2; Cr2

m , Cs2
n ) both exist, then (G1∪G2; Cr1+r2

m ,

Cs1+s2
n ) exists.

The trivial necessary condition for K2n having a C2t-factor is 2n = 2tk or n =
tk. On the other hand, if n = tk, thenK2n−In = k(K2t−It)

⋃
(2k−2)(kKt,t) =

(kK2t − In)
⋃

(2k − 2)(kKt,t), we shall prove that (K2t − It; Cr1
m , Cs1

2t ) exists for

r1 + s1 = t − 1 and m = 4 or t, and (Kt,t; C
t
2
m) exists for m = t or 2t. Then,

by Lemma 1, (k(K2t − It); Cr1
m , Cs1

2t ) and (kKt,t; C
t
2
m) both exist. Let (r, s) be a

pair of nonnegative integers with r + s = n − 1 = tk − 1. It is not difficult to
see that there are pairs of nonnegative integers (r1, s1) with r1 + s1 = t − 1 and
(r2, s2) with r2 + s2 = 2k − 2 such that (r, s) = (r1, s1) + t

2 (r2, s2). Now, factor
k(K2t−It) = kK2t−In into r1 Ct-factors and s1 C2t-factors and factor r2 kKt,t’s
into t

2r2 Ct-factors and the remaining s2 kKt,t’s into t
2s2 C2t-factors. By Lemma 2,

(K2n− In; Cr
t , Cs

2t) exists, i.e., (r, s) ∈ HWP(2n; t, 2t) ⊆ {(r, s) : r + s = n−1}.
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Therefore, we have HWP(2n; t, 2t) = {(r, s) : r+s = n−1} for even integers t. By
the same argument, we also obtain that HWP(2n; 4, 2t) = {(r, s) : r + s = n − 1}
for integers t ≥ 3.

The following lemma is a well-known result.

Lemma 3. The complete graph K2t is 1-factorable and it can be decomposed
into t − 1 Hamilton cycles and one 1-factor. Moreover, by ordering the vertices
of K2t, one of the t − 1 Hamilton cycles is of the form v 0v1 · · ·v2t−1v0 and the
1-factor is {v0vt, viv2t−i : 1 ≤ i ≤ t − 1}.

Before proving the next lemma, we define a new graph. Suppose G is a graph.
The duplicate graph of G, denoted by DG, obtained from G by replacing each
vertex vi of G by two new vertices xi and yi and replacing each edge vivj of G
by four edges xixj , xiyj, yixj and yiyj , i.e., each edge vivj of G corresponds to a
K2,2 = C4 in DG. In what follows, let the vertex sets and edge sets of duplicate
graphs are the same as above if no confusion occurs.

Lemma 4. Let C = v0v1v2 · · ·vt−1v0 be an even cycle. Then (DC; C2
m) exists

for m = 4, t and 2t. Moreover, let It = {xiyi : 0 ≤ i ≤ t− 1} and G = DC
⋃

It.
Then there is a 1-factorM ofG such that (G−M ; C 1

m, C1
2t) exists for m=4 and t.

Proof. Since t is even, F1 = {vivi+1 : i is odd} and F2 = {vivi+1 : i
is even} are two 1-factors of C. Hence, DF1 and DF2 are two C4-factors of
DC. Next, by directed construction, {x0x1x2 · · ·xt−1x0, y0y1y2 · · ·yt−1y0} and
{x0y1x2y3 · · · xt−2yt−1x0, y0x1y2x3 · · ·yt−2xt−1y0} are two Ct-factors ofDC and
{x0x1 · · ·xt−1y0y1 · · ·yt−1x0} and {x0y1x2y3 · · ·xt−2yt−1y0x1y2x3 · · ·yt−2xt−1

x0} are two C2t-factors of DC. Let

Q1 = {x0x1 · · ·x t
2
−1y t

2
−1y t

2
−2 · · ·y1y0x0, x t

2
x t

2
+1 · · ·xt−1yt−1yt−2 · · ·y t

2
x t

2
},

Q2 = {x0y1x2y3 · · ·xt−2yt−1y0x1y2x3 · · ·yt−2xt−1x0} and
M1 = G − (Q1

⋃
Q2).

It is routine to verify that Q1 is a Ct-factor, Q2 is a C2t-factor and M1 is a
1-factor of G, respectively.

Let F3 = {xixi+1yi+1yixi : i is even}, Q2 be the same as above and M2 =
G − (F3

⋃
Q2). It is easy to see that F3 is a C4-factor, Q2 is a C2t-factor and M2

is a 1-factor of G, respectively.

Lemma 5. Suppose G is a graph consisting of an even cycle C = v 0v1v2 · · ·
vt−1v0 and a 1-factor M1 = {v0v t

2
, vivt−i : 1 ≤ i ≤ t

2 − 1}. Let H = DG
⋃

It,
where It = {xiyi : 0 ≤ i ≤ t − 1}. Then there is a 1-factor M of H such that
(H − M ; Cr

t , Cs
2t) exists for all pairs (r, s) with r + s = 3.
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Proof. Let F1 = {x0x1xt−1xt−2x2 · · ·x t
2
x0, y0y1yt−1yt−2y2 · · ·y t

2
y0},

F2 = {x0yt−1x1y2xt−2 · · ·y t
2
x0, y0xt−1y1x2yt−2 · · ·x t

2
y0},

Q1 = {x0x1xt−1xt−2x2 · · ·x t
2
y0y1yt−1yt−2y2 · · ·y t

2
x0} and

Q2 = {x0yt−1x1y2xt−2 · · ·y t
2
y0xt−1y1x2yt−2 · · ·x t

2
x0}.

Then F1 and F2 are two Ct-factors of H , Q1 and Q2 are two C2t-factors
of H and F1

⋃
F2 = Q1

⋃
Q2. Let R1 = DG − (F1

⋃
F2). Then R1 =

{x0y1y2x3x4 · · ·xt−1x0, y0x1x2y3y4 · · ·yt−1y0} which is a Ct-factor of H if t ≡ 0
(mod 4) and R1 = {x0y1y2x3x4 · · · yt−1y0x1x2y3y4 · · ·xt−1x0} which is a C2t-
factor of H if t ≡ 2 (mod 4).

For t ≡ 0 (mod 4), letR2 = (R1−{x0y1, y0x1})
⋃{x0y0, x1y1} which is a C2t-

factor of H andM2 = (It−{x0y0, x1y1})
⋃{x0y1, y0x1} which is a 1-factor of H .

Then {F1, F2, R1, It}, {F1, F2, R2, M2}, {R1, Q1, Q2, It} and {R2, Q1, Q2, M2}
are the desired four factorizations.

For t ≡ 2 (mod 4), letR3 = (R1−{x0xt−1, y0yt−1, x t
2
−1y t

2
, x t

2
y t

2
−1})

⋃{xiyi :
i = 0, t

2 − 1, t
2 , t − 1} which is a Ct-factor of H and M3 = (It − {xiyi : i =

0, t
2 − 1, t

2 , t− 1}) ⋃{x0xt−1, y0yt−1, x t
2
−1y t

2
, x t

2
y t

2
−1} which is a 1-factor of H .

Then {F1, F2, R3, M3}, {F1, F2, R1, It}, {R3, Q1, Q2, M3} and {R1, Q1, Q2, It}
are the desired four factorizations.

Lemma 6. Suppose t ≥ 4 is an even integer. Then HWP(2t; t, 2t) = {(r, s) :
r + s = t − 1}.

Proof. By definition, HWP(2t; t, 2t) ⊆ {(r, s) : r + s = t−1}. Conversely, let
(r, s) be a pair with r+s = t−1. By Lemma 3, we have (0, t−1) ∈ HWP(2t; t, 2t).
Now, suppose r > 0. It is easy to see that K2t − It = DKt. Since t is even, by
Lemma 3, Kt can be decomposed into

t

2
− 1 Hamilton cycles, denoted by HC for

short, and one 1-factor F . Hence, DKt = (
t

2
− 2)DHC

⋃
DHC∗ ⋃

DF ∗ with
the particular DHC∗ and DF ∗ stated in Lemma 3. Let G = DHC∗ ⋃

DF ∗ ⋃
It.

If r is even, by Lemma 5, then (G−M1; C2
t , C1

2t) exists, whereM1 is some 1-factor
of G which is also a 1-factor of K2t. By Lemmas 4 and 2, ((

r

2
− 1)DHC; Cr−2

t )

and ((
t

2
−1− r

2
)DHC; Ct−2−r

2t ) both exist. Hence, ((
t

2
−2)DHC; Cr−2

t , Ct−2−r
2t )

exists and then (K2t−M1; Cr
t , Ct−1−r

2t ) exists. Thus, (r, t−1−r) ∈ HWP(2t; t, 2t).
If r is odd, by Lemma 5, then (G−M2; C1

t , C2
2t) exists, whereM2 is some 1-factor

both of G and K2t. By Lemmas 4 and 2, (
r − 1

2
DHC; Cr−1

t ) and ((
t

2
− 2 −

r − 1
2

)DHC; Ct−3−r
2t ) both exist. Hence, ((

t

2
− 2)DHC; Cr−1

t , Ct−3−r
2t ) exists
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and then (K2t − M2; Cr
t , Ct−1−r

2t ) exists. Thus, (r, t − 1 − r) ∈ HWP(2t; t, 2t).
Therefore, HWP(2t; t, 2t) = {(r, s) : r + s = t − 1}.

The following result can be found in [8].

Lemma 7. ([8]). There is a 2-factorization of K n,n in which each 2-factor is
the vertex disjoint union of m cycles of lengths t 1, t2, . . . , tm if and only if n is
even, ti ≥ 4 is even for 1 ≤ i ≤ m and t1 + t2 + . . .+ tm = 2n, except there is no
C6-factorization of K6,6. In particular, (Kt,t; C

t
2
m) exists for even integers t and

m = 4, t or 2t, except m = t = 6.

Since (K6,6; C3
6 ) does not exist, we can not obtain HWP(2n; 6, 12) directly by

applying Lemma 7. However, by a minor modification, we also can completely
determine the set HWP(2n; 6, 12).

Lemma 8. Suppose n ≡ 0 (mod 12). Then HWP(2n; 6, 12) = {(r, s) : r+s =
n − 1}.

Proof. By Lemma 6, (K12−I6; Cr
6 , Cs

12) exists for all pairs (r, s) with r+s =
5. By Lemma 7, (K12,12; C6

m) exists for m = 6 or 12. Let (a, b) be a pair
with a + b = 11. Then (a, b) = (a1, b1) + 6(a2, b2), where a1 + b1 = 5 and
a2 + b2 = 1. Since K24 − I12 = 2(K12 − I6)

⋃
K12,12, (K12 − I6; Ca1

6 , Cb1
12)

and (K12,12; C6a2
6 , C6b2

12 ) both exist, by Lemmas 1 and 2, (K24 − I12; Ca
6 , Cb

12)
exists. Now, if (r, s) is a pair with r + s = n − 1 = 12k − 1, then (r, s) =
(r1, s1) + 6(r2, s2), where r1 + s1 = 11 and r2 + s2 = 2k − 2. Since K2n − In =
K24k − I12k = k(K24 − I12)

⋃
(2k − 2)(kK12,12), (K24 − I12; C

r1
6 , Cs1

12) exists
and, (r2(kK12,12); C6r2

6 ) and (s2(kK12,12); C6s2
12 ) both exist by Lemmas 1 and 2,

we have (K2n − In; Cr
6 , Cs

12) exists. Therefore, (r, s) ∈ HWP(2n; 6, 12) and then
HWP(2n; 6, 12) = {(r, s) : r + s = n − 1}.

For the case that n ≡ 6 (mod 12), we need the following. Let Ku(g) be the
complete u-partite graph with g vertices in each partite set.

Lemma 9. ([4])/ The graph Ku(g) is C3-factorable if and only if (u − 1)g is
even and ug ≡ 0 (mod 3).

Lemma 10. Let n ≡ 6 (mod 12). Then HWP(2n; 6, 12) = {(r, s) : r + s =
n − 1}.

Proof. Let n = 6k, where k is odd. Then K2n − In = k(K12 − I6)
⋃

Kk(12).

By Lemma 9, Kk(12) is K4,4,4-factorable, i.e., Kk(12) =
3(k − 1)

2
(kK4,4,4), where
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kK4,4,4 is a K4,4,4-factor. It is not difficult to see that K4,4,4 = DK2,2,2 which
can be decomposed into two DC6. Since (DC6, C

2
m) exists for m = 6 or 12,

by Lemmas 4 and 2, (K4,4,4; C4
m) exists. By Lemma 1, (kK4,4,4; C4

m) exists. If
(r, s) is a pair with r + s = n − 1 = 6k − 1, then (r, s) = (r1, s1) + 4(r2, s2),

where r1 + s1 = 5 and r2 + s2 =
3(k − 1)

2
. Since (K12 − I6; Cr1

6 , Cs1
12) exists by

Lemma 6 and, (r2(kK4,4,4); C4r2
6 ) and (s2(kK4,4,4); C4s2

12 ) both exist by Lemma 2,
we have (K2n − In; Cr

6 , Cs
12) exists. Therefore, (r, s) ∈ HWP(2n; 6, 12) and then

HWP(2n; 6, 12) = {(r, s) : r + s = n − 1}.

Combining Lemmas 8 and 10, we have

Corollary 11. Suppose n ≡ 0 (mod 6). Then HWP(2n; 6, 12) = {(r, s) :
r + s = n − 1}.

3. MAIN RESULTS

Now, we are ready to prove our main results.

Theorem 12. Suppose t ≥ 4 is even and n ≡ 0(mod t). Then HWP(2n; t, 2t) =
{(r, s) : r + s = n − 1}.

Proof. By Corollary 11, the assertion holds for t = 6. Now, suppose t �= 6.
Since n ≡ 0 (mod t), we have n = tk and K2n = kK2t

⋃
(2k − 2)(kKt,t).

Let (r, s) be a pair of nonnegative integers with r + s = n − 1 = tk − 1. Then
(r, s) = (r1, s1)+

t

2
(r2, s2) for some pairs (r1, s1) with r1 +s1 = t−1 and (r2, s2)

with r2 +s2 = 2k−2. By Lemma 6, (K2t−It; Cr1
t , Cs1

2t ) exists. Hence, by Lemma

1, (k(K2t−It); C
r1
t , Cs1

2t ) = (kK2t−In; Cr1
t , Cs1

2t ) exists. By Lemma 7, (Kt,t; C
t
2
m)

exists for m = t or 2t. Hence, by Lemma 1, (kKt,t; C
t
2
m) exists. By Lemma 2,

(r2(kKt,t); C
t
2
r2

t ) and (s2(kKt,t); C
t
2
s2

2t ) both exist and then (K2n − In; Cr
t , Cs

2t)
exists, i.e., (r, s) ∈ HWP(2n; t, 2t). Therefore, HWP(2n; t, 2t) = {(r, s) : r + s =
n − 1}.

In what follows, we study HWP(2n; 4, 2t) for t ≥ 3. The necessary condition
for the existence of (K2n−In; Cr

4 , Cs
2t) with r+s = n−1 is that 2n is divisible by

4 and 2t. Hence, we may assume that n = tk is even. We also need the following
result.

Lemma 13. ([6]). A Ck-factorization of K2n−In exists if and only if k divides
2n except that K6 − I3 and K12 − I6 do not admit a C3-factorization.
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Theorem 14. For an integer t ≥ 3, HWP(2n; 4, 2t) = {(r, s) : r+s = n−1}.

Proof. The assertion holds for t = 3 which is proved in [1]. Suppose t ≥ 4
is even. Let (r, s) be a pair with r + s = n − 1. By Lemma 3, (0, n − 1) ∈
HWP(2n; 4, 2t). Let r > 0. It is easy to see that K2n − In = DKn. Since

n is even, by Lemma 13, Kn − In
2
is Ct-factorable. Let Kn − In

2
=

n
2
−1⋃

i=1

Fi,

where each Fi is a Ct-factor. It is clear that DIn
2
corresponds to a C4-factor in

K2n. Let C be a t-cycle of Fi. Since t is even, by Lemma 4, (DC, C2
4) and

(DC, C2
2t) both exist. Hence, (DFi, C

2
4 ) and (DFi, C

2
2t) exist. If r is odd, then

(D(

r−1
2⋃

i=1

Fi

⋃
In

2
); Cr

4) and (D(

n
2
−1⋃

i= r+1
2

Fi); Cs
2t) both exist. By Lemma 2, (K2n −

In; Cr
4 , Cs

2t) exists. Hence, (r, s) ∈ HWP(2n; 4, 2t). If r is even, by Lemma
4, ((DF1

⋃
In) − M1; C1

4 , C1
2t) exists for some 1-factor M1 of DF1

⋃
In which

is also a 1-factor of K2n. Hence, (((DF1
⋃

In) − M1)
⋃

DIn
2
; C2

4 , C1
2t) exists.

Since (D(

r
2
−1⋃

i=2

Fi); Cr−2
4 ) and (D(

n
2
−1⋃

i= r
2
+1

Fi); Cs
2t) both exist, by Lemma 2, (K2n −

M1; Cr
4 , Cs

2t) exists. Hence, (r, s) ∈ HWP(2n; 4, 2t). Therefore, the assertion
holds for t is even.

Now, suppose t ≥ 5 is odd. Since n = kt is even, n is divisible by 2t. Again,
by Lemma 13, Kn − In

2
is C2t-factorable. By Lemma 4, Lemma 2 and a similar

argument as above, (K2n − In; Cr
4 , Cs

2t) exists. Therefore, the assertion holds for
t ≥ 5 being odd and then we complete the proof.

4. CONCLUDING REMARK

So far, we study the Hamilton-Waterloo problem for (1) Ct-factors and C2t-
factors if t is even and (2) C4-factors and C2t-factors if t ≥ 3. However, by using
the similar argument in Lemma 6, we are able to deal with the Hamilton-Waterloo
problem for cycle size 4, 6 and 8. Here is the result.

Theorem 15. Suppose n ≡ 0 (mod 8). Then (K2n − In; Cr
4 , Cs

8, C
t
16) exists

for all pairs (r, s, t) with r + s + t = n − 1.

Proof. Suppose n = 8k. Then K2n − In = (kK16 − In)
⋃

(2k − 2)(kK8,8).
By a similar argument as in Lemma 6, (K16− I8; Cr1

4 , Cs1
8 , Ct1

16) exists for all pairs
(r1, s1, t1) with r1 + s1 + t1 = 7. Hence, by Lemma 2, (kK16− In; Cr1

4 , Cs1
8 , Ct1

16)
exists for r1 + s1 + t1 = 7. By Lemma 7, (K8,8; C4

m) exists for m = 4, 8 or 16. By
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Lemma 1, (kK8,8; C4
m) exists. If (r, s, t) is a pair with r + s + t=n−1=4 · (2k−

2) + 7, it is not difficult to see that (r, s, t) = (r1, s1, t1) + 4(r2, s2, t2), where
r1+s1+t1 =7 and r2 +s2 + t2 = 2k−2. Now, factor kK16−In into r1 C4-factors,
s1 C8-factors and t1 C16-factors. By Lemma 2, we can factor r2(kK8,8) into
4r2 C4-factors, s2(kK8,8) into 4s2 C8-factors and t2(kK8,8) into 4t2 C16-factors.
Hence, by Lemma 2, (K2n − In; Cr

4 , Cs
8, C

t
16) exists for r + s + t = n − 1.
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