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PRODUCT PROCESSES IN VARYING ENVIRONMENTS

Mokhtar H. Konsowa

Abstract. A particular type of branching processes in varying envi-
ronments is considered. It is assumed that all individuals of the same
generation produce, given that the preceding generation is not extinct,
randomly and independently of the past generations the same number
of children. We show that the number of children in the nth genera-
tion normed by its expectation converges almost surely to a limit whose
expectation is 0 or 1. We give a sufficient condition for convergence in
quadratic mean to a limit whose mean is one. A nonclassical norming
sequence of constants is defined so that the almost sure limit is finite
greater than zero with probability 1. We also show, under certain cir-
cumstances, that the almost sure limit has infinite mean.

1. Introduction

In this paper, we consider branching processes such that all individuals of
the nth generation produce, given nonextinction, randomly and independently
of the past generations same number of children according to a law of distri-
bution that depends on n. Then we have a type of branching processes which
is different from a well known branching processes in varying environments
(BPIVE) in which each individual of the nth generation produces, randomly
and independently of the individuals of the same and of the past generations a
number of children according to a certain law of distribution that depends on
n. BPIVE have been studied extensively by many authors. See, for instance,
[1], [4], [5] and [6]. We call the type we consider here product processes in
varying environments (PPIVE). We were led to this type of processes orig-
inally in a derivation of some limit theorems while determining the type of
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being the random walks on spherically symmetric random trees transient or
recurrent. See [7]. Let Z0 = 1 and for n ≥ 1 let Zn denote the number of
children in the nth generation. If dn denotes the number of children of each
individual of the nth generation, then

Zn+1 = dnZn =
j=n∏

j=0

dj ; n = 0 , 1 , 2 , 3 , ...

Let Mn = E(Zn) and Wn = Zn/Mn. The sequence {Wn} is a nonnegative
martingale, hence it converges almost surely (a.s.) to a limit W . We show,
provided Mn →∞, that E(W ) = 0 or 1. We give a sufficient condition for the
quadratic mean convergence to a limit with mean 1. It could happen that the
a.s. limit W is identical zero, in which case, we can not say much about Zn for
large n. In that case the sequence {Mn} is not the right norming sequence. A
nonclassical norming sequence of constants {Cn} is defined such that Zn/Cn

converges a.s. to a non-zero limit, provided that
∑

n p(dn 6= 1) is finite. If, in
addition, Mn →∞ and Cn/Mn → 0, then

E(lim
n

Zn/Cn) = E(sup
n

Zn/Mn) = ∞.

In the next section we cast the light on some differences between BPIVE
and PPIVE.

2. Some Differences Between BPIVE and PPIVE

Theorem 1 (Lyons 1992). For BPIVE, let dnk denote the number of
children of the kth individual of the nth generation and assume that the doubly
indexed sequence {dnk} is uniformly bounded. Then the a.s. limit of Zn/Mn

is positive a.s.; given nonextinction.

In the case of PPIVE, the following example violates Theorem 1.

Example 1 [7]. Let qn = min(c/n, 1), where c > 0. Define dn such that

dn =





1 with prob. 1− qn,

2 with prob. qn.

Then Zn/Mn → 0 a.s. as n →∞. This can be investigated by showing that

E 4
√

Zn
4
√

EZn
→ 0 as n →∞
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and the result follows from Fatou’s lemma.

In the case of BPIVE, let φ∗n(s) denote the probability generating function
of dnk and f∗n(s) is that of Zn. Then φ∗n and f∗n are related by the well known
result:

f∗n+1(s) = f∗n(φ∗n(s)) , s ∈ [0, 1].

For the PPIVE, let φn(s) and fn(s) denote the probability generating function
of dn and Zn, respectively. It can easily be shown that

fn+1(s) ≥ fn(φn(s))(1)

and we may have strict inequality as the following example shows.

Example 2. Let d0 = d1 = 1 a.s. For n ≥ 2, let

dn =





1 with prob . 1/n,

2 with prob . 1− 1/n.

Then

Z4 =





1 with prob . 1/6,

2 with prob . 1/2,

4 with prob . 1/3.

Simple calculations show that f4(1/2) = 11/48 and f3(φ3(1/2)) = 2/9.

3. The Asymptotic Behaviour of Zn and Zn/Mn

It is well known for classical Galton–Watson Processes that there is no
stability for population sizes; that is, for k ≥ 1,

lim
n

p(Zn = k) = 0.

The violation of this behaviour in case of PPIVE is displayed in the following:

Theorem 1. Assume that for every n, p(dn = 0) < 1 and that Zn → Z∞
a.s. as n →∞. Then

p(0 < Z∞ < ∞) = 1 if and only if
∑
n

p(dn 6= 1) < ∞.
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Proof. If p(0 < Z∞ < ∞) = 1, then

p(Z∞ = 0) = p(Z∞ = ∞) = 0.(2)

Obviously Z∞ > 0 a.s. implies that dn ≥ 1 a.s. for every n. Hence, Z∞ < ∞
a.s. assures that p(dn 6= 1i.o.) = 0. Consequently, dn = 1 eventually a.s. Thus,∑

n p(dn 6= 1) < ∞. Conversely, suppose that
∑

n p(dn 6= 1) < ∞. It follows
from Borel–Cantelli lemma that p(dn 6= 1i.o.) = 0; that is, dn eventually
equals 1. Consequently, p(0 < Z∞ < ∞) = 1.

The following proposition is comparable to Proposition 3.10 of Lyons [8].

Proposition 2. If the sequence {dn} is uniformly bounded, then limn Mn =
∞ if and only if Zn →∞ a.s.; given nonextinction.

Proof. Given nonextinction, it is obvious that we have

p(Z∞ = Zn|Zn) =
∏

k≥n

p(dk = 1) =
∏

k≥n

[1− p(dk ≥ 2)]

and that

E(dk) = 1 + E(dk − 1 ; dk ≥ 2).

If {dn} is uniformly bounded by A, then

1 + p(dk ≥ 2) ≤ E(dk) ≤ 1 + (A− 1)p(dk ≥ 2).

Consequently,
∏

k E(dk) = ∞ if and only if
∑

k p(dk ≥ 2) = ∞, if and only if
p(Z∞ = Zn|Zn) = 0; that is, limn Mn = ∞ if and only if p(Zn →∞) = 1.

The following example shows that in Proposition 2 the condition that {dn}
is uniformly bounded can not be excluded.

Example 3. Let

dn =





1 with prob . 1− 1/n2,

n with prob . 1/n2.

Then
∑

n p(dn = n) < ∞; that is dn = 1 eventually a.s. Therefore, there exists
Z such that Z∞ ≤ Z a.s. However, limn Mn = ∞.

In the rest of this section, we use Wn to denote Zn/Mn. It can easily be
shown that {Wn} is a nonnegative martingale. Hence the following proposition
follows from the martingale convergence theorem and Fatou’s lemma.
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Proposition 3. The sequence {Wn} converges a.s. to a limit W such that
E(W ) ≤ 1.

Proposition 4. If {dn} is uniformly bounded and Z∞ < ∞ a.s., then
E(W ) = 1; given nonextinction.

Proof. It follows from Proposition 2 that limn Mn < ∞. Hence,

E(W )= E(limn Zn/Mn) = E(limn Zn)/ limn Mn

= limn Mn/ limn Mn = 1.

The equality before the last one follows from the monotonicity of Zn.

For the next theorem, we need the following lemma of Cohn [1].

Lemma 5. Let {Xn} be a sequence of real valued random variables con-
verging to a limit X such that p(0 < X < ∞) > 0. If for some real α and all
δ > 0

p(X ∈ (α− δ , α + δ)) > 0,

then there exists a sequence of real numbers {αn} converging to α such that
for all γ > 0

lim
n

p(X ∈ (α− γ , α + γ)|Xn = αn) = 1 .

The technique used by Cohn and Hering [2] is employed to prove the fol-
lowing result:

Theorem 6. E(W ) = 0 or 1, provided that Mn →∞.

Proof. Assume that E(W ) > 0. If Zn,k denotes the number of the kth
generation offspring of an individual of the nth generation, then Zn+k = Zn ·
Zn,k and EZn,k = Edn · · ·Edn+k−1. Hence, we have

Zn+k/Mn+k = Zn(Zn,k/Ed0 · · ·Edn−1Edn · · ·Edn+k−1)

= M−1
n Zn(Zn,k/Edn · · ·Edn+k−1)

= M−1
n Zn(Zn,k/EZn,k).

Therefore,

W = limk Zn+k/Mn+k = M−1
n Zn limk Zn,k/EZn,k

= M−1
n ZnW̃n a. s.
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Since W̃n is independent of Zn, it follows that

E(W ) = E(W̃n).(3)

Since E(W ) > 0, Lemma 5 guarantees the existence of a sequence {an} such
that an → a > 0 and

M−1
n anMnW̃n → a in probability,

and consequently,

W̃n → 1 in probability.

Then there exists a subsequence {W̃nk
} such that

W̃nk
→ 1 a. s.

It follows from (3) and Fatou’s lemma that E(W ) ≥ 1. Hence the result
follows from Proposition 3.

The following theorem gives a sufficient condition for the quadratic mean
convergence. But first we introduce a straightforward lemma. Let var(dj) =
σ2

j .

Lemma 7. var(Wn) =
j=n∏

j=1

[
σ2

j

(Edj)2
+ 1

]
− 1.

Theorem 8. If limn var(Wn) < ∞, then Wn → W in quadratic mean
such that E(W ) = 1 and

var(W ) =
j=∞∏

j=1

[
σ2

j

(Edj)2
+ 1

]
− 1.(4)

Proof. The assumption that limn var(Wn) < ∞ implies that Wn converges
in quadratic mean to a r. v. Y such that E(Y 2) < ∞. See Theorem 4.1 of
Doob [3]. Since Wn → W a.s., then Y = W a.s. That limn E(W 2

n) < ∞ follows
from the assumption that limn var(W 2

n) < ∞ and the fact that E(Wn) = 1.
It follows also from the same result of Doob that E(W ) = 1. Minkowski’s
inequality assures that

(var(Wn))1/2−(E(Wn −W )2)1/2 ≤ (var(W ))1/2 ≤ (var(Wn))1/2

+(E(Wn −W )2)1/2.
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Taking the limit as n →∞ we have

var(W ) = lim
n

var(Wn)

and equation (4) follows from Lemma 7.

4. Nonclassical Norming Sequence of Constants

We have seen that we could have zero as the a.s. limit of Zn/Mn. In
which case, we can not tell much about Zn for large n. That is, Mn is not the
right normalization for Zn. We will employ the notion of cumulant generating
function (cgf) to obtain a normalizing sequence {Cn} such that Zn/Cn has a
non–zero a.s. limit. The cgf of a random variable X is − log E(ēsx). Then
the cgf is strictly increasing and continuous. Therefore its inverse does exist.
The cgf of Zn/Cn is − log fn(e−s/Cn) and its inverse is − log f−1

n (e−s)Cn for
s ∈ [0,− log q] where q = p(Zn → 0). Let hn(s) = − log f−1

n (e−s) and Cn =
1/hn(s0) for s0 ∈ (0,− log q).

We are now ready for the following theorem.

Theorem 9. If W ′
n = Zn/Cn, then there exists a random variable W ′

such that W ′
n → W ′ a.s.

Proof. We first show that Yn = e−W ′
n is a submartingale and then the

result follows from the fact that supn |Yn| < ∞ and the martingale convergence
theorem.

E(Yn+1|Yn)= E(e−hn+1(s0)Zn+1 |Zn) = E(e−hn+1(s0)dnZn |Zn)

= E[(e−hn+1(s0))dnZn ] = E[(f−1
n+1(e

−s0))dnZn ]

≥ [E(f−1
n+1(e

−s0))dn ]Zn = [φn(f−1
n+1(e

−s0))]Zn

≥ [φn(φ−1
n ((f−1

n (e−s0)))]Zn = [f−1
n (e−s0)]zn

= [elog f−1
n (e−s0 )]Zn = e−hn(s0)Zn = e−W ′

n .

The first inequality above follows from convexity, while the second one follows
from (1) and the fact that f−1

n+1(e
−s) is strictly decreasing.

The following theorem gives a sufficient condition for having the a.s. limit
W ′ of Theorem 9 such that p(0 < W ′ < ∞) = 1.

Theorem 10. If
∑

n p(dn 6= 1) < ∞, then for some s0 ∈ (0,∞) we have

Znhn(s0) → W ′ a.s.
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such that

p(0 < W ′ < ∞) = 1 .

Proof. It follows from Theorem 1 that Zn → Z∞ a.s. such that p(0 <
Z∞ < ∞) = 1. The continuity theorem assures that the sequence {fn(s)} of
probability generating functions of {Zn} converges to a function f(s). Conse-
quently,

hn(s0)Zn → − log f−1(e−s0)Z∞ = kZ∞ a.s.

where 0 < k < ∞. Obviously, p(0 < kZ∞ < ∞) = 1.

Example 4. If dn is as defined in Example 3, then Zn/Mn → 0 a.s. But,
hn(s0)Zn → W ′ a.s. such that p(0 < W ′ < ∞) = 1.

The following theorem is analogous to Theorem 2.4 of Cohn and Hering
[2] for BPIVE.

Theorem 11. If Mn → ∞ and there exists a sequence of normalizing
constants {Cn} such that limn Cn/Mn = 0 and limn Zn/Cn = W a.s. with
W < ∞ a.s. and p(W > 0) > 0, then EW = E supn Zn/Mn = ∞.

Example 5. If {dn} is as defined in Example 4 and Cn = 1/hn(s0), then
E(W ) = E supn Zn/Mn = ∞.

Conclusions

We end up this paper with the following concluding remarks:

1. We have shown that PPIVE is different from BPIVE.

2. We have given a necessary and sufficient condition under which the se-
quence of population sizes is finite greater than zero.

3. It is shown that the sequence of population sizes normalized by their
expectations has an a.s. limit whose expectation is either 0 or 1 and
quadratic mean limit whose expectation is 1.

4. A nonclassical normalizing sequence for population sizes is defined such
that the a.s. limit does exist and a condition is imposed so that such
limit is finite greater than 0.
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