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PARTIALLY ORDERED NORMED lINEAR SPACES
WITH WEAK FATOU PROPERTY

S. Koshi, S. Dimiev and R. Lazov

Abstract. Let E be a Riesz space with lattice ordered norm ‖ · ‖.
Amemiya proved that E is complete under this norm if E has weak Fatou
property for monotone sequence (: E is monotone complete) with respect
to the norm ‖ · ‖. This is a generalization of the Riesz-Fisher’s and the
Nakano’s theorem. In the cases of non normed Riesz space or non lattice
ordered norm, this theorem is not true in general. We shall investigate
in this paper a necessary and sufficient condition for Amemiya’s theorem
to be valid in a partially ordered normed linear space.

1. Partially Ordered Normed Linear Spaces

Let E be a linear space with real coefficient. Let us consider a convex cone
P in E satisfying

(a) P generates E, i.e. E = P − P ,

and

(b) P ∩ (−P ) = { 0 }.

If we define x ≥ y (we can write y ≤ x in the same meaning)⇐⇒ x−y ∈ P ,
then the relation ≥ satisfies the following properties:

(1) x ≥ y and y ≥ x =⇒ x = y.

(2) x ≥ y, y ≥ z =⇒ x ≥ z.

(3) x ≥ y =⇒ x + z ≥ y + z for all z ∈ E.
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(4) x ≥ 0 and non-negative scalar α imply αx ≥ 0.

(5) For every x ∈ E there exist x1, x2 ∈ E, x1, x2 ≥ 0 with x = x1 − x2.

If there is a relation ≥ in E satisfying (1), (2), (3), (4), and (5), then
P = {x;x ≥ 0} is a convex cone satisfying properties (a) and (b). If there is a
convex cone with (a) and (b) in E or there is an order relation with (1), (2),
(3), (4), (5) in E, then E is called a partially ordered linear sapce and P is
called an order in E.

If there exists the least upper bound for any two elements x, y ∈ E, then
E is called a Riesz space or vector lattice. In general, a partially ordered linear
space E is not necessarily a Riesz space or vector lattice, i.e. it is not necessary
to have the least upper bound for two elements x, y ∈ E.

Let us consider a norm in E. A norm ‖ · ‖ is a non-negative functional
defined on E as usual with the following properties:

(1) ‖x ‖ = 0 ⇔ x = 0

(2) ‖α x ‖ = |α | ‖x ‖
(3) ‖x + y ‖ ≤ ‖x ‖+ ‖ y ‖
for x, y ∈ E and real scalar α.

A norm is defined by an absorbing symmetric convex set U in E which
separates a nonzero element x 6= 0 and 0, i.e. if x 6= 0, then there exists a
nonzero real number α such that α U does not contain x.

It is well known that ‖x ‖ = inf{α ≥ 0;x ∈ αU}, where U = {x; ‖x‖ ≤ 1}
and U is an absorbing symmetric convex subset in E.

The relation between an order P and a norm in E is quite interesting
and also complicated if E is infinite-dimensional. If E is a Riesz space and a
norm ‖ · ‖ of E is lattice order preserving, i.e. |x | ≤ | y | for x, y in E implies
‖x ‖ ≤ ‖ y ‖, where |x | = sup{x,−x} = least upper bound of x and −x, then
E is called a normed Riesz space and the norm ‖ · ‖ is called a lattice ordered
norm or Riesz norm.

Almost 40 years ago, I. Amemiya proved that if E is a normed Riesz space
and its norm ‖ · ‖ has the weak Fatou property for monotone sequence, then
the norm ‖·‖ is complete, i.e. E is a Banach space. This theorem is considered
a generalization of the Riesz-Fisher’s and Nakano’s theorem.

We shall discuss this problem again in the case that E is not necessarily a
normed Riesz space with respect to P or the norm is not a Riesz norm.

2. Weak Fatou Property

Let E be a partially ordered linear space with an order P . A norm ‖ · ‖ on
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E is said to be an ordered norm (w.r.t. P ) if 0 ≤ x ≤ y, i.e. x, y, y − x ∈ P
imply ‖x ‖ ≤ ‖ y ‖. In this section we shall assume that every norm on a
partially ordered linear space E is an ordered norm.

A norm ‖·‖ on E is said to have the weak Fatou property for monotone se-
quence if 0 ≤ an ↑n (i.e. 0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ · · ·) and sup ‖ an ‖ < +∞
imply that {a1, a2, · · · an, · · ·} has the least upper bound, which is denoted by
sup an or ∪nan.

E is called Archimedean if inf (1/n)x = the greatest lower bound of
{x, (1/2)x, · · · (1/n)x, · · ·} = 0 for all x ∈ E with x ≥ 0, i.e. for all x with
x ∈ P .

Lemma 1. Let E be a partially ordered normed linear space with the weak
Fatou property for monotone sequence and let the norm is ordered. If 0 ≤ an ↑
(i.e. 0 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ · · ·) and an ≤ a for n = 1, 2, · · ·, then there
exists sup an, i.e. the least upper bound for an, n = 1, 2. · · ·

Lemma 2 Let E be the same as in Lemma 1 above. If a1 ≥ a2 ≥ · · · ≥
an · · · ≥ a ≥ 0, then there exists inf an, i.e. the greatest lower bound for
an, n = 1, 2, · · ·.

Proofs of Lemma 1 and Lemma 2 are easily deduced from the weak Fatou
property for monotone sequence of E. So it is omitted.

Lemma 3. Let E be the same as in Lemma 1 above. Then E is Archimedean.

Proof. By Lemma 2, there exists b = infn(1/n) a for every a ≥ 0. We
know b ≥ 0 and a ≥ nb for all n = 1, 2, · · ·. But it means that ‖ a ‖ ≥ n‖ b ‖
for all n, i.e. it must be b = 0, otherwise ‖ a ‖ = +∞.

The next lemma is essentially due to I. Amemiya.

Lemma 4. Let E be a partially ordered normed linear space with weak
Fatou property for monotone sequence and let the norm of E be ordered. Then,
there exists a positive real number Λ such that

0 ≤ an ↑ a always implies supn ‖ an ‖ ≥ Λ ‖ a ‖.

Proof. If the conclusion is false, then we can find a sequence an (n =
1, 2, · · · ) with 0 ≤ an,m ↑m an,

‖ an ‖ ≥ n
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and
supm ‖ an,m ‖ ≤ 1/2n.

Putting

bn = a1,n + a1,n + · · ·+ an,n for n = 1, 2, · · · ,

we find that the sequence {bn ≥ 0} is increasing and ‖ bn ‖ ≤ 1 for all n =
1, 2, · · ·. Hence b = sup bn exists by the weak Fatou property of the norm.

But b ≥ an,m for all n and m imply

b ≥ supman,m = an

and hence ‖ b ‖ ≥ ‖ an ‖ ≥ n. But it means that ‖ b ‖ = +∞ and this is a
contradiction. Q.E.D.

3. Completeness of the Norm

A norm ‖ · ‖ of a partially ordered linear space E is called well-situated
to an order P in E if there exists a positive constant α > 0 such that, for all
x ∈ E with ‖x ‖ ≤ 1, we can find x1 ≥ 0 and x2 ≥ 0 with x = x1 − x2 and
with ‖x1 ‖ ≤ α and ‖x2 ‖ ≤ α. It is equivalent to that there exists a positive
constant α > 0 such that for all x ∈ E we can find x1 ≥ 0 and x2 ≥ 0 with
x = x1 − x2 and with ‖x1 ‖ ≤ α‖x ‖ and ‖x2 ‖ ≤ α‖x ‖.

Theorem 1. Let E be a partially ordered normed linear space with an
order P satisfying the weak Fatou property for monotone sequence and let
the norm is a well-situated ordered norm. Then the norm ‖ · ‖ is complete.
Conversely, if E is complete by the norm and P is closed, then the norm is
well-situated.

So, let P be a closed order. Then E is complete by the norm if and only
if the norm is well-situated.

Proof. We shall prove that E is complete if the order P has the weak Fatou
property for monotone sequence and the norm is a well-situated ordered norm.
For a Cauchy sequence we can select a subsequence an, n = 1, 2, · · · with

‖ an − am ‖ ≤ 1/2n for m ≥ n.

Since the norm is well-situated, we find a positive number α and positive
elements bn, cn ∈ E such that

an − an+1 = bn − cn; bn, cn ≥ 0
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with
‖ bn ‖ and ‖ cn ‖ ≤ α‖ an − an+1 ‖.

We can find positive elements b and c ∈ E such that

b = supn

n∑

i=1

bi and c = supn

n∑

i=1

ci.

Hence we have

b−
n∑

i=1

bi = supm(bn + bn+1 + · · ·+ bm)

and

‖ b−
n∑

i=1

bi ‖ = ‖ supm(bn + bn+1 + · · · bm)‖

≤ (1/Λ)supm ‖bn + bn+1 + · · ·+ bm‖
≤ (α/Λ)(1/2n−1),

since ‖bn‖ and ‖cn‖ ≤ α/2n. Hence
n∑

i=1
bi converges to b by norm as n → ∞.

Similarly, we have
n∑

i=1
ci converges to c by norm as n →∞.

Since

a1 − an+1 = a1 − a2 + a2 − a3 + · · ·+ an − an+1

= b1 − c1 + b2 − c2 + · · ·+ bn − cn,

we have that a1 − an+1 converges to b− c by norm and hence an+1 (also an)
converges to a1 − b + c by norm.

If a subsequence of a Cauchy sequence is convergent, then the Cauchy
sequence is convergent, hence the norm is complete.

We shall show the proof of the last half of the theorem. This fact is first
proved by T . Ando [2] whose proof relies on Klee’s theorem. Here we shall
show by more elementary way.

Let us assume that E is a Banach space and P is closed. Let U = {x; ‖x‖ ≤
1} be the closed unit ball of E. Since Banach space E has 2nd category
property and

E =
∞⋃

n=1

{P ∩ nU − P ∩ nU},

there exists a number m such that {P ∩ mU − P ∩ mU}−, the closure of
{P ∩mU − P ∩mU}, contains a non-empty open ball V .
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Since
α{P ∩mU − P ∩mU} = P ∩ αmU − P ∩ αmU

for each positive number α and

{P ∩ 2mU − P ∩ 2mU} = {P ∩mU − P ∩mU} − {P ∩mU − P ∩mU},
we have

{P ∩ 2mU − P ∩ 2mU}− = {P ∩mU − P ∩mU}− − {P ∩mU − P ∩mU}−

⊃ V − V ⊃ βU

for some β > 0. Hence, there exists a positive number γ > 0 such that

{P ∩ U − P ∩ U}− ⊃ γU.

So, for each x ∈ γU , we can choose an, bn ∈ P ∩ U(n = 1, 2, · · ·) with

‖x− (a1 − b1)− · · · − (an − bn) ‖ ≤ γ/2n

and
‖ an ‖, ‖ bn ‖ ≤ 1/2n−1.

Hence
∞∑

n=1
an = a,

∞∑
n=1

bn = b are convergent, a, b ∈ U and

x = a− b.

So, we find that (γ/2)U ⊂ P ∩ U − P ∩ U . This means that the norm ‖ · ‖ is
well situated. Q.E.D

We shall consider the case when P is not closed.
A norm ‖ · ‖ of E is called weakly well-situated if there exists a positive

number α > 0 such that for every x ∈ E and for every positive number ε > 0
there exist x1, x2 ∈ P with

‖x1 ‖, ‖x2 ‖ ≤ α‖x ‖
and

‖x− (x1 − x2)‖ < ε.

Theorem 2. Let E be a partially ordered normed linear space whose norm
has the weak Fatou property for monotone sequence and is ordered. The norm
of E is complete if and only if it is weakly well-situated.

The proof of Theorem 2 is almost the same as the proof of Theorem 1 and
so it is omitted.
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4. Remarks and Examples

We shall show some examples of partially ordered normed linear spaces
which are not measurable function spaces on some measure spaces, in which
the Riesz-Fisher’s theorem is valid. Mesurable function spaces are usually
lattice ordered and norms in these spaces are usually ordered norms.

1. Let H be a Hilbert space. The totality of bounded self-adjoint operators
on H is denoted by S(H). Let P be a set of all positive-definite operators.
Then P is a positive cone in S(H). Furthermore, P − P = S(H). Hence,
S(H) is an partially ordered linear space.

S(H) is not lattice ordered, since usually two operators A and B have no
least upper bound if they are not commutative. By Theorem 2, any ordered
norm with the weak Fatou property for monotone sequence and weakly well-
situated is complete.

2. Let E be the n-dimensional Euclidean space Rn. Let P be the positive
cone determined by lexicographic order. P is not closed if n ≥ 2. Since E is
not Archimedean by the order P , any norm in E does not have the weak Fatou
property for monotone sequence by Lemma 3. But any norm in E is complete
since E is finite dimensional. In this case, it is not true that 0 ≤ a ≤ b imply
‖ a ‖ ≤ ‖ b ‖.

3. In 2-dimensional Euclidean space E = R2, every closed order P in E
is lattice ordered. But every non closed P is not lattice ordered if P− is also
an order in E. On the contrary, there is a closed order P in 3-dimensional
Euclidean space E = R3 which is not lattice ordered. We shall show such
example.

Let P be a closed cone generated by 4 elements (0,1,0), (0,1,1), (1,1,0),
(1,1,1) in E = R3. Then, by the order P , there is no least upper bound for
z = (0, 0, 1) and 0 = (0, 0, 0). Consider the set A = {(a, 1, 1); 0 ≤ a ≤ 1}. For
x, y ∈ A, x 6= y, then x and y are not comparable by the order P and for each
x with x ≥ 0 and x ≥ z there exists w ∈ A such that x ≥ w ≥ 0 and w ≥ z.
So, there is no least upper bound for two elements z and 0 by the order P .

4. In 2-dimensional Euclidean space E = R2, every order P (closed or not
closed) is weak Fatou property for monotone sequence if P− is also an order
in E. So, there are many examples of non closed order in sequence space with
`2-norm which satisfies the weak Fatou property for monotone sequence.

5. Norms in partially ordered linear spaces are not necessarily ordered
norms. For example, let P be a closed cone generated by two elements (1,1)
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and (0,−1) in R2. Then, the Euclidean norm (`2-norm) in R2 is not an order
norm.

6. In a finite dimensional space E, every norm is well-situated to an
arbitrary order. On the contrary there is an example of not weakly well-
situated norm in an infinite dimensional space. At first, we shall consider
some order in 2-dimensional R2 with Euclidean norm.

Let y1 = (1, 0), y2 = (cos /n, sin 1/n) ∈ R2 and Pn be a convex cone
generated by two elements y1 and y2. Let e = (0, 1) ∈ R2.

Consider the number

αn = inf{α; ‖x1‖, ‖X2‖ ≤ α‖e‖ and e = x1 − x2, x1, x2 ∈ Pn}.

By elementary calculus, we have

(∗) αn ≥ 1/ sin(1/n) →∞ as n →∞.

Let us consider the sequence space R2 ×R2 × · · · and consider a positive
convex cone P = (P1×P2× · · ·)∩ `2 and put E = P −P , E being a subspace
of `2. Then, the `2-norm in E is not well-situated to P by (∗) above. In this
case, E is not complete, i.e. E is not a closed subspace of `2 and `2-norm in
E has the weak Fatou property for monotone sequence to P .

7. Let E be a partially ordered linear space with a linear Hausdorff topol-
ogy whose basis is consisting of countable semi-norms which are comparable
with the order, i.e. x ≥ y ≥ 0 implies ‖x‖ ≥ ‖y‖ for semi-norm ‖ · ‖. We say
that E has a weak Fatou property if every increasing sequence xn(n = 1, 2, · · ·)
which is topologically bounded has always supn xn. A linear topology defined
by countable semi-norms ‖ · ‖n is called well-situated if there exists a positive
number α such that for every x ∈ E, there exist x1, x2 ≥ 0 with x = x1 − x2

and ‖x1‖n, ‖x2‖n ≤ α‖x‖n for all n = 1, 2, · · ·. Then we have the following
fact. If a linear topology generated by countable semi-norms has a weak Fatou
property and is well-situated, then the linear topology is complete. Proof of
this fact is almost same as Theorem 1.
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