ON THE STABILITY OF A FUNCTIONAL EQUATION OF PEXIDER TYPE

Yong-Soo Jung and Kyoo-Hong Park

Abstract

We study the Hyers-Ulam stability of a functional equation of Pexider type associated with a functional equation $f(x y)=x f(y)+f(x) y$ which defines derivations in algebras.

1. Introduction

The problem of stability of functional equations was originally raised by S. M. Ulam [9] in 1940: given a group V, a metric group W with metric $d(\cdot, \cdot)$, and a $\epsilon>0$, does there exist a $\delta>0$ such that if a mapping $f: V \rightarrow W$ satisfies $d(f(x y), f(x) f(y)) \leq \delta$ for all $x, y \in V$, then a homomorphism $g: V \rightarrow W$ exists with $d(f(x), g(x)) \leq \epsilon$ for all $x \in V$? For Banach spaces the Ulam problem was first solved by D. H. Hyers [1] in 1941, which states that if $\delta>0$ and $f: X \rightarrow Y$ is a mapping with X, Y Banach spaces, such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \delta \tag{1.1}
\end{equation*}
$$

for all $x, y \in X$, then there exists a unique additive mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \delta
$$

for all $x, y \in X$. Due to this fact, the additive functional equation $f(x+y)=$ $f(x)+f(y)$ is said to have the Hyers-Ulam stability property on (X, Y). This terminology is also applied to other functional equations which has been studied by many authors (see, for example, [2-4, 6]. During the 34th International Symposium on Functional Equations, G. Maksa [4] posed the problem concerning the HyersUlam stability of the functional equation

$$
\begin{equation*}
f(x y)=x f(y)+f(x) y \tag{1.2}
\end{equation*}
$$

Received January 20, 2002, accepted May 5, 2006.
Communicated by Mau-Hsiang Shih.
2000 Mathematics Subject Classification: 39B72, 47H15.
Key words and phrases: Functional equation, Stability.
on the interval $(0,1$], which is usually called a derivation. Recently J. Tabor [8] gave an answer to the question of Maksa by proving the Hyers-Ulam stability of the functional equation (1.2) on the interval $(0,1]$. In a similar way, Zs. Páles [5] proved that the functional equation (1.2) for real-valued functions on the interval $[1, \infty)$ has the Hyers-Ulam stability. In this note, by using an idea of Tabor [8], we deal with the Hyers-Ulam stability of the functional equation (1.2) of Pexider type:

$$
\begin{equation*}
f_{1}(x y)=x f_{2}(y)+f_{3}(x) y . \tag{1.3}
\end{equation*}
$$

2. Hyers-ulam Stability of EQ. (1.3).

We first introduce a theorem of F. Skof [7] concerning the stability of the additive functional equation $f(x+y)=f(x)+f(y)$ on a restricted domain:

Theorem 2.1. Let X be a Banach space. Given $c>0$, let a mapping $f:[0, c) \rightarrow X$ satisfy the inequality

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for some $\delta>0$ and for all $x, y \in[0, c)$ with $x+y \in[0, c)$. Then there exists an additive mapping $A: \mathbb{R} \rightarrow X$ such that

$$
\|f(x)-A(x)\| \leq 3 \delta
$$

for any $x \in[0, c)$, where \mathbb{R} is the set of all real numbers.
Our main result is the following:
Theorem 2.2. Let X be a Banach space, and let $f_{1}, f_{2}, f_{3}:(0, \infty) \rightarrow X$ be mappings satisfying the inequality

$$
\begin{equation*}
\left\|f_{1}(x y)-x f_{2}(y)-f_{3}(x) y\right\| \leq \delta \tag{2.1}
\end{equation*}
$$

for some $\delta>0$ and for all $x, y \in(0, \infty)$. Then there exists a solution D : $(0, \infty) \rightarrow X$ of the functional equation (1.2) such that

$$
\begin{gather*}
\left\|f_{1}(x)-D(x)-\left(f_{2}(1)+f_{3}(1)\right) x\right\| \leq(12 e) \delta \tag{2.2}\\
\left\|f_{2}(x)-D(x)-f_{2}(1) x\right\| \leq(12 e+1) \delta \tag{2.3}
\end{gather*}
$$

$$
\begin{equation*}
\left\|f_{3}(x)-D(x)-f_{3}(1) x\right\| \leq(12 e+1) \delta \tag{2.4}
\end{equation*}
$$

for all $x \in(0, \infty)$.

Proof.

Case 1. We first prove (2.2), (2.3) and (2.4) under the inequality (2.1) on the interval $(0,1]$.

Let us define the mappings $F_{1}, F_{2}, F_{3}:(0,1] \rightarrow X$ by

$$
F_{1}(x)=\frac{f_{1}(x)}{x}, F_{2}(x)=\frac{f_{2}(x)}{x}, F_{3}(x)=\frac{f_{3}(x)}{x}
$$

for all $x \in(0,1]$, respectively. Then, by (2.1), we see that F_{1}, F_{2}, F_{3} satisfy the inequality

$$
\left\|F_{1}(x y)-F_{2}(y)-F_{3}(x)\right\| \leq \frac{\delta}{x y}
$$

for all $x, y \in(0,1]$. Define the mappings $G_{1}, G_{2}, G_{3}:[0, \infty) \rightarrow X$ by

$$
G_{1}(u)=F_{1}\left(e^{-u}\right), G_{2}(u)=F_{2}\left(e^{-u}\right), \text { and } G_{3}(u)=F_{3}\left(e^{-u}\right),
$$

for all $u \in[0, \infty)$, respectively. Then

$$
\begin{equation*}
\left\|G_{1}(u+v)-G_{2}(u)-G_{3}(v)\right\| \leq \delta e^{u+v} \tag{2.5}
\end{equation*}
$$

for all $u, v \in[0, \infty)$. Putting $v=0$ in (2.5) we get

$$
\begin{equation*}
\left\|G_{1}(u)-G_{2}(u)-G_{3}(0)\right\| \leq \delta e^{u} \tag{2.6}
\end{equation*}
$$

for all $u \in[0, \infty)$. Analogously, if we put $u=0$ in (2.5), we have

$$
\begin{equation*}
\left\|G_{1}(v)-G_{2}(0)-G_{3}(v)\right\| \leq \delta e^{v} \tag{2.7}
\end{equation*}
$$

for all $v \in[0, \infty)$. We now define a mapping $F:[0, \infty) \rightarrow X$ by

$$
\begin{equation*}
F(u)=G_{1}(u)-G_{2}(0)-G_{3}(0) \tag{2.8}
\end{equation*}
$$

for all $u \in[0, \infty)$. We claim that

$$
\begin{equation*}
\|F(u+v)-F(u)-F(v)\| \leq 3 \delta e^{u+v} \tag{2.9}
\end{equation*}
$$

for all $u, v \in[0, \infty)$. In fact, it follows from (2.5), (2.6), (2.7) and (2.8) that for all $u, v \in[0, \infty)$,

$$
\begin{aligned}
&\|F(u+v)-F(u)-F(v)\| \\
&=\left\|G_{1}(u+v)-G_{2}(u)-G_{3}(v)+G_{2}(0)+G_{3}(0)\right\| \\
& \leq\left\|G_{1}(u+v)-G_{2}(u)-G_{3}(v)\right\|+\left\|G_{2}(u)-G_{1}(u)+G_{3}(0)\right\| \\
&+\left\|G_{3}(v)-G_{1}(v)+G_{2}(0)\right\| \\
& \leq \delta e^{u+v}+\delta e^{u}+\delta e^{v} \\
& \leq 3 \delta e^{u+v} .
\end{aligned}
$$

This means that

$$
\|F(u+v)-F(u)-F(v)\| \leq 3 \delta e^{c}
$$

for all $u, v \in[0, c)$ with $u+v<c$, where $c>1$ is an arbitrary given constant. According to Theorem 2.1, there exists an additive mapping $A: \mathbb{R} \rightarrow X$ such that $\|F(u)-A(u)\| \leq 9 \delta e^{c}$ for all $u \in[0, c)$. If we let $c \rightarrow 1$ in the last inequality, we then get

$$
\begin{equation*}
\|F(u)-A(u)\| \leq 9 e \delta \tag{2.10}
\end{equation*}
$$

for all $u \in[0,1]$. Moreover, it follows from (2.9) that

$$
\begin{aligned}
& \|F(u+1)-F(u)-F(1)\| \leq 3 \delta e^{u+1} \\
& \|F(u+2)-F(u+1)-F(1)\| \leq 3 \delta e^{u+2} \\
& \vdots \\
& \|F(u+k)-F(u+k-1)-F(1)\| \leq 3 \delta e^{u+k}
\end{aligned}
$$

for all $u \in[0,1]$ and $k \in \mathbb{N}$. Summing up these inequalities we obtain

$$
\begin{equation*}
\|F(u+k)-F(u)-k F(1)\| \leq 3 \delta e \cdot e^{u+k} \tag{2.11}
\end{equation*}
$$

for all $u \in[0,1]$ and $k \in \mathbb{N}$. We claim that

$$
\begin{equation*}
\|F(v)-A(v)\| \leq 12 \delta e \cdot e^{v} \tag{2.12}
\end{equation*}
$$

for all $v \in[0, \infty)$. Indeed, let $v \geq 0$ and let $k \in \mathbb{N} \cup\{0\}$ be given with $v-k \in[0,1]$. Then, by (2.10) and (2.11), we have

$$
\begin{aligned}
\|F(v)-A(v)\| \leq & \|F(v)-F(v-k)-k F(1)\| \\
& +\|F(v-k)-A(v-k)\|+\|A(k)-k F(1)\| \\
\leq & 3 \delta e \cdot e^{v}+9 \delta e+\|A(k)-k F(1)\| \\
\leq & 3 \delta e \cdot e^{v}+9 \delta e+k\|A(1)-F(1)\| \\
\leq & 3 \delta e \cdot e^{v}+9 \delta e+9 \delta e v \\
\leq & 3 \delta e\left(e^{v}+3(1+v)\right) \\
\leq & 12 \delta e \cdot e^{v} .
\end{aligned}
$$

Now, from (2.12) and the definitions of $F, F_{i}, G_{i}(i=1,2,3)$, it follows that

$$
\left\|F_{1}(x)-F_{2}(1)-F_{3}(1)-A(-\ln x)\right\| \leq 12 \delta e \cdot e^{-\ln x}=\frac{12 \delta e}{x}
$$

for all $x \in(0,1]$, i.e.,

$$
\begin{equation*}
\left\|\frac{f_{1}(x)}{x}-f_{2}(1)-f_{3}(1)-A(-\ln x)\right\| \leq \frac{12 \delta e}{x} \tag{2.13}
\end{equation*}
$$

for all $x \in(0,1]$. If we put $D(x)=x A(-\ln x)$ for all $x \in(0,1]$, we can easily check that D is a solution of the functional equation (1.2). This and (2.13) yield that

$$
\left\|f_{1}(x)-D(x)-\left(f_{2}(1)+f_{3}(1)\right) x\right\| \leq(12 e) \delta
$$

for all $x \in(0,1]$ which proves (2.2). It remains to show (2.3) and (2.4). From (2.6), (2.8) and (2.12), it follows that

$$
\begin{aligned}
\left\|G_{2}(v)-A(v)-G_{2}(0)\right\| & =\left\|G_{2}(v)-A(v)+H(v)-G_{1}(v)+G_{3}(0)\right\| \\
& \leq\|F(v)-A(v)\|+\left\|G_{1}(v)-G_{2}(v)-G_{3}(0)\right\| \\
& \leq 12 \delta e \cdot e^{v}+\delta e^{v}=(12 e+1) \delta e^{v}
\end{aligned}
$$

for all $v \in[0, \infty)$, and hence this and the definitions of F_{2}, G_{2} imply

$$
\left\|\frac{f_{2}(x)}{x}-A(-\ln x)-f_{2}(1)\right\| \leq(12 e+1) \delta e^{-\ln x}=\frac{(12 e+1) \delta}{x}
$$

for all $x \in(0,1]$, that is,

$$
\left\|f_{2}(x)-D(x)-f_{2}(1) x\right\| \leq(12 e+1) \delta
$$

for all $x \in(0,1]$ which verifies (2.3). Similarly, using (2.7), (2.8) and (2.12), we have

$$
\begin{aligned}
\left\|G_{3}(v)-A(v)-G_{3}(0)\right\| & =\left\|G_{3}(v)-A(v)+F(v)-G_{1}(v)+G_{2}(0)\right\| \\
& \leq\|F(v)-A(v)\|+\left\|G_{1}(v)-G_{2}(0)-G_{3}(v)\right\| \\
& \leq 12 \delta e \cdot e^{v}+\delta e^{v}=(12 e+1) \delta e^{v}
\end{aligned}
$$

for all $v \in[0, \infty)$. By this and the definitions of F_{3}, G_{3}, we get

$$
\left\|\frac{f_{3}(x)}{x}-A(-\ln x)-f_{3}(1)\right\| \leq(12 e+1) \delta e^{-\ln x}=\frac{(12 e+1) \delta}{x}
$$

for all $x \in(0,1]$, that is,

$$
\left\|f_{3}(x)-D(x)-f_{3}(1) x\right\| \leq(12 e+1) \delta
$$

Case 2. We now intend to prove (2.2), (2.3) and (2.4) under the inequality (2.1) on the interval $[1, \infty)$. But this is verified by using a similar way as the proof of Case 1 .

In fact, defining the mappings $F_{1}, F_{2}, F_{3}:[1, \infty) \rightarrow X$ as in the proof of Case 1 , and defining the mappings $G_{1}, G_{2}, G_{3}:[0, \infty) \rightarrow X$ by

$$
G_{1}(u)=F_{1}\left(e^{u}\right), G_{2}(u)=F_{2}\left(e^{u}\right), \text { and } G_{3}(u)=F_{3}\left(e^{u}\right)
$$

for all $u \in[0, \infty)$, respectively, we see that

$$
\begin{equation*}
\left\|G_{1}(u+v)-G_{2}(u)-G_{3}(v)\right\| \leq \delta e^{-(u+v)} \leq \delta e^{u+v} \tag{2.14}
\end{equation*}
$$

for all $u, v \in[0, \infty)$. Setting $v=0$ in (2.14) we get

$$
\begin{equation*}
\left\|G_{1}(u)-G_{2}(u)-G_{3}(0)\right\| \leq \delta e^{u} \tag{2.15}
\end{equation*}
$$

for all $u \in[0, \infty)$. Similarly, if we set $u=0$ in (2.14), we have

$$
\begin{equation*}
\left\|G_{1}(v)-G_{2}(0)-G_{3}(v)\right\| \leq \delta e^{v} \tag{2.16}
\end{equation*}
$$

for all $v \in[0, \infty)$. Introducing the mapping $F:[0, \infty) \rightarrow X$ defined as the identity (2.8) in the proof of Case 1, and making use of (2.14), (2.15) and (2.16), we see that

$$
\|F(u+v)-F(u)-F(v)\| \leq 3 \delta e^{u+v}
$$

for all $u, v \in[0, \infty)$ by following the similar method to the proof of the inequality (2.9). The remainder follows the similar reasoning to the one of Case 1 by putting $D(x)=x A(\ln x)$ for all $x \in[1, \infty)$. This completes the proof of the theorem.

The next corollary can be easily obtained from Theorem 2.2.
Corollary 2.3. Let X be a Banach space and let $f_{1}, f_{2}, f_{3}:(0, \infty) \rightarrow X$ be mappings satisfying the equation

$$
f_{1}(x y)-x f_{2}(y)-f_{3}(x) y=0 \quad \text { for all } x, y \in(0, \infty)
$$

Then there exist a solution $D:(0, \infty) \rightarrow X$ of the functional equation (1.2) and constants a, b, c such that for all $x \in(0, \infty)$,

$$
\begin{aligned}
& f_{1}(x)=D(x)+a x \\
& f_{2}(x)=D(x)+b x \\
& f_{3}(x)=D(x)+c x
\end{aligned}
$$

with $a=b+c$.

References

1. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci., 27 (1941), 222-224.
2. D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125-153.
3. S.-M. Jung and P. K. Sahoo, On the Hyers-Ulam stability of a functional equation of Davison, Kyungpook Math. J., 40 (2000), 87-92.
4. Gy. Maksa, Problems 18, In 'Report on the 34th ISFE', Aequationes Math., 53 (1997), 194.
5. Zs. Páles, Remark 27, In "Report on the 34th ISFE', Aequationes Math., 53 (1997), 200-201.
6. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
7. F. Skof, Sull'approssimazione delle appliazioni localmente δ-additive, Atti Accad. Sci. Torino, 117 (1983), 377-389.
8. J. Tabor, Remarks 20, In 'Report on the 34th ISFE', Aequationes Math., 53 (1997), 194-196.
9. S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Wiley, New-York, 1964
```
Yong-Soo Jung
Department of Mathematics,
Sunmoon University,
Asan, Chungnam 336-708,
Korea
E-mail: ysjung@sunmoon.ac.kr
Kyoo-Hong Park
Department of Mathematics Education,
Seowon University,
Cheongju, Chungbuk 361-742,
Korea
E-mail: parkkh@seowon.ac.kr
```

