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A POINTWISE BOUND FOR ROTATION-INVARIANT
HOLOMORPHIC FUNCTIONS THAT ARE SQUARE

INTEGRABLE WITH RESPECT TO A GAUSSIAN MEASURE

Areerak Kaewthep and Wicharn Lewkeeratiyutkul

Abstract. We consider the subspace of Segal-Bargmann space which is invari-
ant under the action of the special orthogonal group. We establish a pointwise
bound for a function in this space which is polynomially better than the point-
wise bound for a function in the Segal-Bargmann space.

1. INTRODUCTION

The Segal-Bargmann space HL2(Cd, µt) is the space of holomorphic functions
on Cd that are square-integrable with respect to the Gaussian measure µt(z) dz =
(πt)−de−|z|2/t dz, where |z|2 = |z1|2 + · · ·+ |zd|2. Here t is a fixed positive real
number. See [1, 5, 7, 8, 10, 11, 15], for details about the importance of this space.

Various generalizations of the Segal-Bargmann space have been considered. An
important part of the study of such generalizations is to obtain sharp pointwise
bounds on the functions. (See, for example, [2, 4, 9, 12, 14]). Such bounds amount
to estimates for the reproducing kernel on the diagonal.

In this paper, we consider the subspace of the standard Segal-Bargmann space
that is invariant under the special orthogonal group. The goal of the paper is
to compare two bounds for functions in this space, a simple bound obtained by
minimizing the standard bounds in the full Segal-Bargmann space over the orbits of
the group, and a sharp bound obtained by directly estimating the reproducing kernel
for the subspace. We show that the sharp bounds are polynomially better than the
simple bounds, with the difference between the two growing larger and larger as
the dimension d goes to infinity.
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This analysis is motivated in part by a comparison of [3] and [9]. In [3], Driver
obtains (among other things) bounds for a generalized Segal-Bargmann space by
representing it as the subspace of a certain infinite-dimensional standard Segal-
Bargmann space that is invariant under a certain group action. (See also [7, 16,
13]). Meanwhile, in [9], Hall obtains sharp bounds for the relevant generalized
Segal-Bargmann space by directly estimating the reproducing kernel. The difference
between the two bounds is significant; the sharper bounds of [9] are essential, for
example, in the analysis in [14].

It is well-known that for any function F ∈ HL2(Cd, µt), we have the pointwise
bound

(1) |F (z)|2 ≤ e|z|
2/t‖F‖2

L2(Cd,µt)
(z ∈ C

d).

Now suppose that F is invariant under the action of SO(d), and therefore, by
analytic continuation, under the action of SO(d,C). By minimizing (1) on each
orbit, for any SO(d)-invariant function F in the Segal-Bargmann space, we obtain
the preliminary estimate

(2) |F (z)|2 ≤ e|(z,z)|/t‖F‖2
L2(Cd,µt)

(z ∈ C
d),

where (z, z) = z2
1 + · · ·+ z2

d . Since |(z, z)| ≤ |z|2, this is already an improvement
over the pointwise bound in (1).

The SO(d) invariance means that F is determined by its values on {(z, 0, ..., 0)}
� C1. (By holomorphicity, F is determined by its values on Rd, then any point in
R

d can be rotated into R
1.) Conversely, any even holomorphic function on C

1 has an
extension to an SO(d)-invariant function on Cd. Then the space of SO(d)-invariant
functions in the Segal-Bargmann space over C

d can be expressed as an L2-space of
holomorphic functions on C1, with some non-Gaussian measure. By estimating the
reproducing kernel for this space, we obtain a sharp bound for an SO(d)-invariant
function F in HL2(Cd, µt), which will be polynomially better than (2). This bound
is described in the following theorem.

Theorem 1. There exists a constant C, depending only on d and t, such that
for each SO(d)-invariant function F in HL 2(Cd, µt), we have

|F (z)|2 ≤ C e|(z,z)|/t

1 + |(z, z)|(d−1)/2
‖F‖2

L(Cd,µt)
(z ∈ C

d).

2. SO(d,C)-INVARIANT MEASURE ON A COMPLEX SPHERE

Denote by SO(d,C) the set of d×d complex orthogonal matrices with deter-
minant one. Elements ofSO(d,C) preserve the bilinear form (·, ·) on C

ddefined by
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(z, ξ) = z1ξ1 + z2ξ2 + · · ·+ zdξd

for any z, ξ ∈ C
d. For each w ∈ C, we define

Sw = {z ∈ C
d | (z, z) = w2}.

In particular, S0 = {z ∈ Cd | (z, z) = 0}. Using the nondegeneracy of the form
(·, ·), it is not hard to show that SO(d,C) acts transitively on Sw for all w ∈ C−{0}.
Moreover, let

S = {z ∈ C
d | (z, z) ∈ (−∞, 0]}.

By the Implicit Function Theorem, S0 − {0} and S − S0 are submanifolds of Cd

with dimensions less than the dimension of C
d. This implies that S has Lebesgue

measure zero.
Denote by H

+ = {z ∈ C | �(z) > 0} the open right-half plane of C. Define
Ψ: Cd − S → H+ × S1 by

Ψ(z) = (w, z′)

where w = |(z, z)|1/2ei
θ
2 , θ is the principal value of arg(z, z), θ ∈ (−π, π), and

z′ = z
w . It is easy to verify that Ψ is a continuous bijective map whose inverse

is Ψ−1(w, z′) = wz′. We can think of this map as a “complex polar form” of an
element in Cd that is not in S. Let m be Lebesgue measure on Cd and m∗ the
Borel measure on H+ × S1 such that m∗(E) = m(Ψ−1(E)). The next theorem
shows that the pushed-forward measure m∗ on H

+×S1 can be written as a product
measure m∗ = ρ× α, where ρ is a measure on H+ defined by

ρ(A) =
∫

A

|w|2d−2dw

and α is an SO(d,C)-invariant Borel measure on S1.

Theorem 2. There is an SO(d,C)-invariant Borel measure α on S1 such that
m∗ = ρ×α. If f is a Borel function on Cd such that f≥0 or f ∈L1(Cd, m), then

(3)
∫

Cd

f(z) dz =
∫

C

∫
S1

f(wz′) dα(z′) |w|2d−2 dw,

where dw denotes the two-dimensional Lebesgue measure on C = R
2.

Proof. Since S has Lebesgue measure zero, (3) is equivalent to

(4)
∫

Cd−S
f(z) dz =

∫
C

∫
S1

f(wz′) dα(z′) |w|2d−2 dw.

First, we need to construct α. If E is a Borel set in S1, let E1 be the set in Cd

given by
E1 = {wz′ | w ∈ H

+, |w| < 1, z′ ∈ E}.
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If (4) is to hold when f = χE1 , we must have

m(E1) =
1
2

∫
D1

∫
E
dα(z′) |w|2d−2 dw =

π

2d
α(E).

Hence, for any Borel set E in S1, we define

α(E) =
2d
π
m(E1).

Since the map E 	→ E1 takes Borel sets to Borel sets and commutes with unions,
intersections and complements, α is a Borel measure on S1. If E is a Borel set in
S1 and A ∈ SO(d,C) then

α(AE) =
2d
π
m((AE)1) =

2d
π
m(A(E)1) =

2d
π

det(A)m(E1) = α(E),

where det(A) is the determinant of A over R, which is 1. Hence α is SO(d,C)-
invariant. Following a similar argument to the real polar coordinates formula (see,
e.g., [6, Theorem 2.49]) we can show that m∗ = ρ × α on all Borel sets. Hence
equation (4) holds when f is a characteristic function of a Borel set and it follows
for general f by the usual linearity and approximation argument.

The measure α in Theorem 2 is uniquely determined and can be given explicitly.
There is a diffeomorphism between the tangent bundle T (Sd−1) of the real unit
sphere Sd−1 and the complex unit sphere S1 given by

a(x,p) = cosh(p) x +
i

p
sinh(p) p for any x ∈ Sd−1 and x · p = 0

where p = |p|. See [15] for more details. Using these coordinates, we can write
the measure α explicitly as follows:

Lemma 3. The measure α is given by

α(z) = a0

(sinh 2p
2p

)d−22d−1 dp dx.

Here z = a(x,p), a0 is a constant, dx is the surface area measure on S d−1 and
dp is Lebesgue measure on Rd.

Proof. The measure α and the measure
( sinh 2p

2p

)d−22d−1 dp dx are both
SO(d,C)-invariant(Lemma 3 of [15]) and finite on compact sets. Thus, by Theorem
8.36 of [17], these two measures must agree up to a constant.
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3. POINTWISE BOUND FOR A FUNCTION IN HL2(Cd, µt)O

Denote by H(Cd)O the space of SO(d,C)-invariant holomorphic functions on
C

d, i.e., the space of holomorphic functions f for which f(Az) = f(z) for all
z ∈ Cd and A ∈ SO(d,C). In this section, we will establish a pointwise bound for
a function in the space HL2(Cd, µt)O := H(Cd)O ∩ L2(Cd, µt).

By minimizing over each orbit, we obtain the following pointwise bound:

Proposition 4. For any F ∈ HL2(Cd, µt)O and for any z ∈ Cd

(5) |F (z)|2 ≤ e|(z,z)|/t‖F‖2
L2(Cd,µt)

.

Proof. Note that |(z, z)| = |(Az, Az)| ≤ |Az|2 for any z ∈ Cd and A ∈
SO(d,C). If z /∈ S0, we have that (

√
(z, z), 0, . . . , 0) ∈ {Az | A ∈ SO(d,C)},

because SO(d,C) acts transitively on Sw where w =
√

(z, z), and thus

|(z, z)| = inf
{|Az|2 : A ∈ SO(d,C)

}
.

But Sc
0 is dense in Cd, so this equation is also true for all z ∈ Cd. This immediately

gives (5).

This simple technique yields an improvement from the Bargmann’s pointwise
bound (1). However, we will establish a polynomially-better bound than the bound
in (5). Our strategy is to construct a non-Gaussian measure λ on C so that we
can express HL2(Cd, µt)O in terms of the space HL2(C, λ)e of holomorphic even
functions on C that are square-integrable with respect to λ and then estimate the
reproducing kernel of the latter space.

Proposition 5. Let H(C)e be the set of all holomorphic even functions on C.
Then for any d ≥ 2, the map φ : H(Cd)O → H(C)e defined by

φ(f)(x) = f(x, 0, . . . , 0),

for all f ∈ H(Cd)O and all x ∈ C, is a linear isomorphism whose inverse is given
by

ψ(g)(z) = g
(√

(z, z)
)

for all g ∈ H(C)e and all z ∈ Cd.

Note that since g is even, the value of ψ(g)(z) is independent of the choice of
square root of (z, z). Again because g is even, ψ(g) will be given by a convergent
power series in integer powers of (z, z) = z2

1 + · · ·+ z2
d , and therefore ψ(g) will be

holomorphic on C
d.
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Proof. It is clear that φ is a linear map and φ(f) is a holomorphic function
on C for any f ∈ H(Cd)O. Moreover, φ(f) is even since A(−w, 0, . . . , 0) =
(w, 0, . . . , 0) for any w ∈ C, where A = diag(−1,−1, 1, 1, . . . , 1).

On the other hand, ψ is a linear map and ψ(g) is holomorphic on C
d for each

g ∈ H(C)e. Since the bilinear form is preserved under the action of the orthogonal
group, ψ(g) is SO(d,C)-invariant. It is straightforward to verify that φ◦ψ = IH(C)e

and ψ ◦ φ = IH(Cd)O , so the theorem is proved.

Henceforth, we will choose an argument of w ∈ C so that −π < arg(w) ≤ π.
Denote by Bd the Borel σ-algebra in C

d and by B the Borel σ-algebra in C. Define
Φi : (Cd,Bd, µt) → (C,B), i = 1, 2 to be the branch of

√
(z, z) with smaller and

larger argument, respectively, and for each E ∈ B define

λi(E) = µt(Φ−1
i (E)).

Then define λ = (λ1 + λ2)/2. It is easy to check that λ is a Borel measure on C

and for any measurable function g and any E ∈ B∫
E
g dλ =

1
2

∫
Φ−1

1 (E)
g ◦ Φ1 dµt +

1
2

∫
Φ−1

2 (E)
g ◦ Φ2 dµt.

It is now straightforward to verify that the restriction of φ to HL2(Cd, µt)O is a
unitary map onto HL2(C, λ)e.

Proposition 6. The measure λ is absolutely continuous with respect to Lebesgue
measure on C with density given by

(6) Λ(w) =
|w|2d−2

(πt)d

∫
S1

e−|wz|2/tdα(z).

Proof. If E is a Borel set in C, then by Theorem 2

λ(E) =
1
2

∫
Φ−1

1 (E)

e−|z|2/t

(πt)d
dz +

1
2

∫
Φ−1

2 (E)

e−|z|2/t

(πt)d
dz

=
∫

C

∫
S1

χE(w)
|w|2d−2

(πt)d
e−|wz′|2/t dα(z′) dw

=
∫

E
Λ(w) dw

where Λ is given by (6).
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Next, we will approximate the density Λ of λ and show that on holomorphic
functions, the L2-norm with respect to λ is equivalent to the L2-norm with respect
to the measure β(w)dw, where

(7) β(w) =
e−|w|2/t

tπ
|w|d−1 (w ∈ C).

Proposition 7. There exist constants m,M > 0, depending on d and t, such
that the density function Λ of λ satisfies

mβ(w) ≤ Λ(w) ≤M β(w)

for all w ∈ C with |w| ≥ 1.

Proof. From Lemma 3, for any w ∈ C

∫
S1
e−|wz|2/t dα(z) = a0

∫
Sd−1

∫
x·p=0

e−|w a(x,p)|2/t
(sinh 2p

2p

)d−2
2d−1 dp dx

= ad

∫ ∞

0
e−(cosh 2p)|w|2/t

(sinh2p
2p

)d−2
2d−1 pd−2 dp

= ad e
−|w|2/t

∫ ∞

0
e−x|w|2/t (x2 + 2x)(d−3)/2 dx,

with ad = a0σ(Sd−1)σ(Sd−2), where σ is the surface measure. The last equality
follows from the change of variables cosh2p = x+ 1.

Now, let us consider the case d ≥ 3. To approximate the above integral, we
expand (x2 + 2x)d−3 using the binomial theorem, apply the inequalities

1√
n

(
√
a1 + · · ·+ √

an ) ≤ √
a1 + · · ·+ an ≤ √

a1 + · · ·+ √
an

to (x2 + 2x)(d−3)/2 and then use the formula for the Gamma function in order to
obtain

1√
d− 2

P

(√
t

|w|
)

≤
∫ ∞

0
e−x|w|2/t (x2 + 2x)(d−3)/2 dx ≤ P

(√
t

|w|
)
,

where

P (x) =
d−3∑
k=0

a
1/2
k Γ

(
d− 1 + k

2

)
xd−1+k and ak =

(
d− 3
k

)
2d−3−k.

This shows that

ad√
d− 2

P

(√
t

|w|
)
e−|w|2/t ≤

∫
S1

e−|wz|2/t dα(z) ≤ adP

(√
t

|w|
)
e−|w|2/t.
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It follows from (6) that

(8)
e−|w|2/t

tπ
√
d− 2

Q

( |w|√
t

)
≤ Λ(w) ≤ e−|w|2/t

tπ
Q

( |w|√
t

)

where

Q(x) =
ad

πd−1

d−3∑
k=0

a
1/2
k Γ

(
d− 1 + k

2

)
xd−1−k =

d−1∑
k=2

bkx
k.

From this (7) easily follows for the case d ≥ 3.
Meanwhile in the d = 2 case we have∫

S1

e−|wz|2/t dα(z) = a2 e
−|w|2/t

∫ ∞

0

e−x|w|2/t

√
x2 + 2x

dx

=
a2√
2
e−|w|2/t

∫ ∞

0

e−u

√( |w|2
tu

− |w|2
2|w|2 + tu

)
t

|w|2 du

≥ a2

√
t√

2|w| e
−|w|2/t

(∫ ∞

0

e−u

√
u
du−

∫ ∞

0

e−u√
2|w|2/t+ u

du

)
.

The function
φ(r) =

∫ ∞

0

e−u

√
r + u

du (r ≥ 0)

is a strictly decreasing function. Hence, if we let δ=2/t and ε=φ(0)−φ(δ), then
φ(0)−φ (2|w|2/t)≥φ(0)− φ(δ) = ε for any w with 2|w|2/t ≥ δ. It follows that

Λ(w) =
|w|2
(πt)2

∫
S1

e−|wz|2/tdα(z)

≥ εa2

π
√

2t
e−|w|2/t

πt
|w|

for any w ∈ C with |w| ≥ 1.
On the other hand,∫

S1

e−|wz|2/t dα(z) ≤ a2 e
−|w|2/t

∫ ∞

0

e−x|w|2/t

√
2x

dx

=
a2

√
tπ√

2|w| e
−|w|2/t.

Hence
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Λ(w) ≤ a2√
2πt

e−|w|2/t

πt
|w|.

Corollary 8. The norms ‖ · ‖L2(C,β) and ‖ · ‖L2(C,λ) are equivalent, i.e., there
are constants k,K > 0, depending on d and t, such that

(9) k‖f‖L2(C,β) ≤ ‖f‖L2(C,λ) ≤ K‖f‖L2(C,β),

for all f ∈ HL2(C, λ).

Proof. First, we will show that there is a constant D > 0, depending on d and
t, such that

‖f‖2
L2(C,β) ≤ D ‖f‖2

L2(C−D,λ)

for any f ∈ HL2(C, λ), where D = {w ∈ C : |w| ≤ 1}.
Let w ∈ D. Denote by A(w) the annulus {z ∈ C : 2 ≤ |z−w| ≤ 3}. If f is in

HL2(C, λ) then a simple power series argument shows that∫
A(w)

f(v) dv = (9π − 4π)f(w) = 5πf(w).

This implies that

|f(w)| =
1
5π

∣∣∣ ∫
A(w)

f(v) dv
∣∣∣

=
1
5π

∣∣∣〈χA(w)
1
Λ
, f
〉

L2(C−D,λ)

∣∣∣
≤ 1

5π

∥∥∥χA∗
1
Λ

∥∥∥
L2(C−D,λ)

‖f‖L2(C−D,λ),

where A∗ = {z ∈ C : 1 < |z| < 4}, which contains each A(w), w ∈ D. It follows
that there exists a constant c such that for any w ∈ D

|f(w)| ≤ c‖f‖L2(C−D,λ).

It now follows from Proposition 7 that∫
C

|f(w)|2β(w) dw =
∫

D

|f(w)|2β(w) dw+
∫

C−D

|f(w)|2β(w) dw

≤ c2‖f‖2
L2(C−D,λ)

∫
D

β(w) dw+
1
m
‖f‖2

L2(C−D,λ)

≤ D ‖f‖2
L2(C−D,λ)
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for some constant D > 0 depending on d and t. This gives the first inequality in
(9). The second inequality in (9) can be proved in the same way.

Having established Corollary 8, it remains only to obtain pointwise bounds for
elements in HL2(C, λ). We do this by reducing to the standard Segal-Bargmann
space (if d is odd) or to the space HL2

(
C, (tπ)−1|w|e−|w|2/t dw

)
(if d is even).

We now establish pointwise bound in the latter space.

Lemma 9. The set
{

wn

(t(2n+1)/2Γ(n+ 3
2
))1/2

}∞

n=0

is an orthonormal basis for the

Hilbert space HL2
(
C, |w| e−|w|2/t

tπ dw
)
. Hence for any g ∈ HL2

(
C, |w| e−|w|2/t

tπ dw
)
,

|g(w)|2 ≤ e|w|2/t

|w| erf
( |w|√

t

)
‖g‖2 (w ∈ C),

where the error function erf is defined by

erf(x) =
2√
π

∫ x

0
e−y2

dy = e−x2
∞∑

n=0

x2n+1

Γ(n+ 3
2 )
.

Proof. The proof of the orthonormal basis part uses the same technique as
in [1, 7] and [10], which we will omit. Then the pointwise bound for a function g
in this space is

|g(w)|2 ≤
∞∑

n=0

|w|2n

t(2n+1)/2Γ(n + 3
2 )
‖g‖2 =

e|w|2/t

|w| erf
( |w|√

t

)
‖g‖2

for any w ∈ C.

Theorem 10. There is a constant B, depending on d and t, such that for any
f ∈ HL2(C, λ) and any w ∈ C − {0},

(10) |f(w)|2 ≤ B

|w|d−1
e|w|2/t ‖f‖2

L2(C,λ).

Proof.
Let f ∈ HL2(C, λ). Then f ∈ HL2(C, β), and thus

∫
C

|w|d−1|f(w)|2 e
−|w|2/t

πt
dw <∞.
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If d− 1 is an even number, then

w(d−1)/2f(w) ∈ HL2(C,
e−|w|2/t

tπ
dw).

This is the one-dimensional Segal-Bargmann space. Using Bargmann’s pointwise
bound (1) for this space, we obtain

|w|d−1|f(w)|2 ≤ ‖f‖2
L2(C,β)

e|w|2/t ≤ 1
k2 ‖f‖2

L2(C,λ)
e|w|2/t

for all w ∈ C, where k is the constant in Corollary 8.
On the other hand, if d− 1 is an odd number, then

w(d−2)/2f(w) ∈ HL2(C, |w|e
−|w|2/t

tπ
dw).

Following Lemma 9, we have

|w|d−2|f(w)|2 ≤ ‖f‖2
L2(C,β)

e|w|2/t

|w| erf
( |w|√

t

)

≤ 1
k2

‖f‖2
L2(C,λ)

e|w|2/t

|w|
for all w ∈ C − {0}.

In either case we obtain the pointwise (10) with B = 1/k2.

Proof of Theorem 1. We will transform the pointwise bound (10) to a function
in HL2(Cd, µt)O. Let F ∈ HL2(Cd, µt)O. Then F (w, 0, . . . , 0) ∈ HL2(C, λ)e,
which implies

|F (z)|2 = |F (w, 0, . . . , 0)|2 ≤ B
e|w|2/t

|w|d−1
‖F‖2

L2(Cd,µt)

where w =
√

(z, z) for any z ∈ Cd with (z, z) = 0. In particular,

|F (z)|2 ≤ B e|(z,z)|/t

|(z, z)|(d−1)/2
‖F‖2

L2(Cd,µt)
.

On the other hand, from Proposition 4,

|F (z)|2 ≤ e|(z,z)|/t‖F‖2
L2(Cd,µt)

for any z ∈ C
d.

Applying the inequality

min
{

1,
1
x

}
≤ 2
x+ 1

for each x > 0,
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we have

|F (z)|2 ≤ C e|(z,z)|/t

|(z, z)|(d−1)/2 + 1
‖F‖2

L2(Cd,µt)

for each z ∈ Cd, where C is a constant depending on d and t. This completes the
proof of Theorem 1.

Remark on the sharpness. The bound in Theorem 1 is indeed sharp. We
only outline the proof here since the argument relies heavily on properties of special
functions. We can show that the reproducing kernel of the Hilbert space HL2(C, λ)e

is given by

K(w, w) =
Γ(d/2)
a02d/2+1

BesselI
(d− 2

2
,
|w|2
t

)( t

|w|2
)d/2−1

where BesselI is the modified Bessel function of the first kind ([18, 19]). Asymp-
totically, BesselI(α, x) ∼ ex√

x
if x is large enough when α > 0 is fixed. Hence,

K(w, w) ∼ C
e|w|2/t

|w|d−1

for any w such that |w| is large enough, where C is a constant depending on d and t.
The result follows by transforming this estimate back to the space HL2(Cd, µt)O.
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