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HYPERSURFACES WITH POINTWISE 1-TYPE GAUSS MAP

Uǧur Dursun

Abstract. In this paper we prove that an oriented hypersurface M of a
Euclidean space En+1 has pointwise 1-type Gauss map of the first kind if and
only if M has constant mean curvature. Then we conclude that all oriented
isoparametric hypersurfaces ofEn+1 has 1-type Gauss map. We also show that
a rational hypersurface of revolution in a Euclidean space En+1 has pointwise
1-type Gauss map of the second kind if and only if it is a right n-cone.

1. INTRODUCTION

A submanifold M of a Euclidean space Em is said to be of finite type if its
position vector x can be expressed as a finite sum of eigenvectors of the Laplacian
∆ of M , that is, x = x0 +x1 + · · ·+xk , where x0 is a constant map, x1, . . . , xk are
non-constant maps such that ∆xi = λixi, λi ∈ R, i = 1, 2, . . . , k. If λ1, λ2, . . . , λk
are all different, then M is said to be of k-type (cf. [5, 6]). In [7], this defini-
tion was similarly extended to differentiable maps, in particular, to Gauss map of
submanifolds. The notion of finite type Gauss map is especially a useful tool in
the study of submanifolds (cf. [1-4, 7, 12]). In [7], Chen and Piccinni made a
general study on compact submanifolds of Euclidean spaces with finite type Gauss
map, and for hypersurfaces they prove that a compact hypersurface M of En+1 has
1-type Gauss map G if and only if M is a hypersphere in En+1. In this work we
show that all oriented isoparametric hypersurfaces of En+1 have 1-type Gauss map.

If a submanifold M of a Euclidean space has 1-type Gauss map G, then ∆G =
λ(G+C) for some λ ∈ R and some constant vector C. However, the Laplacian of
the Gauss map of several surfaces such as helicoid, catenoid and right cones, and
also some hypersurfaces that we study here take the form

(1.1) ∆G = f(G+ C)
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for some non-constant function f on M and some constant vector C. A submanifold
of a Euclidean space is said to have pointwise 1-type Gauss map if its Gauss map
satisfies (1.1) for some smooth function f on M and some constant vector C. A
pointwise 1-type Gauss map is called proper if the function f is non-constant. A
submanifold with pointwise 1-type Gauss map is said to be of the first kind if the
vector C in (1.1) is the zero vector. Otherwise, a submanifold with pointwise 1-type
Gauss map is said to be of the second kind.

Surfaces in Euclidean spaces and in pseudo-Euclidean spaces with pointwise
1-type Gauss map were recently studied in [8-11] and [13].

In this work our main aim is to obtain a characterization of hypersurfaces of a
Euclidean space En+1 with pointwise 1-type Gauss map. We firstly prove that an
oriented hypersurface M of a Euclidean space En+1 has pointwise 1-type Gauss
map of the first kind if and only if M has constant mean curvature. We also
conclude that all oriented isoparametric hypersurfaces of En+1 has 1-type Gauss
map. Then we extend the results given by B.Y. Chen, M. Choi and Y.H. Kim for
surfaces of revolution with pointwise 1-type Gauss map in E3, [8].

2. PRELIMINARIES

Let M be an n-dimensional hypersurface of a Euclidean space En+1. We
denote by h, A and ∇, the second fundamental form, the Weingarten map and the
induced Riemannian connection of M in En+1, respectively. Let {e1, . . . , en} be
an orthonormal local frame on M . For any real function g on M , the Laplacian ∆g
of the function g is defined by

∆g =
n∑
i=1

((∇eiei)g − eieig).

The map G : Mn → Sn ⊂ En+1 which sends each point of M to the unit
normal vector to M at the point is called the Gauss map of the hypersurface M ,
where Sn is the unit sphere in E n+1 centered at the origin.

Let x1 = ϕ(v), xn+1 = ψ(v) be a curve in the x1xn+1-half plane lying in
halfspace x1 = ϕ(v) > 0. Rotating this curve around the xn+1-axis we obtain a
rotational hypersurface M in En+1, (cf. [14]). Let {η1, . . . , ηn+1} be the standard
orthonormal basis of En+1 and Sn−1(1) be the unit sphere in En spanned by
{η1, . . . , ηn}. We can have an orthogonal parametrization of Sn−1(1) ⊂ En as

(2.1)

Y1 = cosu1, Y2 = sinu1 cos u2, . . . ,

Yn−1 = sinu1 · · · sinun−2 cosun−1,

Yn = sinu1 · · · sinun−2 sinun−1.
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It follows that

x(u1,. . . ,un−1, v)=(ϕ(v)Y1, ϕ(v)Y2,. . . ,ϕ(v)Yn, ψ(v)), Yi=Yi(u1,. . . ,un−1),

is a parametrization of the rotational hypersurface M . Let us put

(2.2) Y (u1, . . .un−1) = (Y1(u1, . . . , un−1), . . . , Yn(u1, . . . , un−1), 0),

which is the position vector of the sphere Sn−1(1) ⊂ En in En+1. Then we can
write

(2.3) x(u1, . . . , un−1, v) = ϕ(v)Y (u1, . . . , un−1) + ψ(v)ηn+1,

where ηn+1 = (0, 0, . . . , 0, 1) is the axis of the rotation. Taking derivative we have
the orthogonal coordinate vector fields on M as

(2.4) xui = ϕ(v)Yui , i = 1, . . . , n− 1, xv = ϕ′(v)Y + ψ′(v)ηn+1.

Hence the Gauss map of the hypersurface of revolution is given by

(2.5) G =
1√
p
(ψ′Y − ϕ′ηn+1), p = ϕ′2 + ψ′2.

3. HYPERSURFACES WITH POINTWISE 1-TYPE GAUSS MAP

In this section we give a characterization theorem for hypersurfaces of Euclidean
spaces with pointwise 1-type Gauss map of the first kind. To do this we need the
following lemma.

Lemma 3.1. Let M be an oriented hypersurface of a Euclidean space E n+1.
Then the Laplacian of the Gauss map G is given by

(3.1) ∆G = ‖AG‖2G+ n∇α,

where ∇α is the gradient of the mean curvature and ‖AG‖2 = tr(AGAG).

Proof. For a fixed vector C0 ∈ En+1, we put G0 =< G,C0 >. Then, for
vector fields X, Y tangent to M using the formulas of Gauss and Weingarten we
have

(3.2) Y XG0 = − < ∇Y (AG(X)) + h(AG(X), Y ), C0 > .

Let {e1, . . . , en+1} be an adapted local orthonormal frame in En+1 such that
e1, . . . , en are tangent to M and en+1 = G. Moreover we assume that e1, . . . , en
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are eigenvectors of the Weingarten map AG corresponding to the eigenvalues λi, i =
1, 2, . . . , n, that is, AG(ei) = λiei. Denote by {ω1, . . . , ωn+1} and {ωij}, i, j =
1, 2, . . . , n, the dual frame and the connection forms associated to {e1, . . . , en+1},
respectively. Then, by using the connection equations ∇eiei =

∑n
k=1 ωik(ei)ek and

the equation of Codazzi (∇eiAG)ej = (∇ejAG)ei we have

(3.3) ej(λi) = (λi − λj)ωij(ei), i �= j.

Hence, considering (3.3) we obtain

(3.4)

n∑
i=1

(∇eiAG)ei =
n∑
i=1

{∇ei(AG(ei))− AG(∇eiei)}

=
n∑
i=1

{ei(λi)ei +
n∑
j=1

(λi − λj)ωij(ei)ej}

=
n∑
i=1

{ei(λi)ei +
n∑

i�=j,j=1

ej(λi)ej}

=
n∑

i,j=1

ej(λi)ej = n∇α,

and also we have
∑n

i=1 h(AG(ei), ei) = tr(AGAG)G = ‖AG‖2G.
By using (3.2) and (3.4) we calculate the Laplacian of < G,C0 > as follows:

(3.5)

∆ < G,C0 >=
n∑
i=1

(∇eiei − eiei) < G,C0 >

= −
n∑
i=1

< AG(∇eiei)), C0 >

+
∑n

i=1 < ∇ei(AG(ei)) + h(AG(ei), ei), C0 >

= <

n∑
i=1

{∇ei(AG(ei))− AG(∇eiei))}, C0 >

+ <

n∑
i=1

h(AG(ei), ei), C0 >

= < n∇α, C0 > + < ‖AG‖2G,C0 > .

Since (3.5) holds for any C0 ∈ En+1, then the proof is completed.

Now, from the definition (1.1) and the equation (3.1) we state the following
theorem which characterizes the hypersurfaces of Euclidean spaces with pointwise
1-type Gauss map of the first kind.
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Theorem 3.2. Let M be an oriented hypersurface of a Euclidean space E n+1.
Then M has proper pointwise 1-type Gauss map of the first kind if and only if M
has constant mean curvature and ‖AG‖2 is non-constant.

We can have the following corollary on hypersurfaces with 1-type Gauss map.

Corollary 3.3. All oriented isoparametric hypersurfaces of a Euclidean space
En+1 has 1-type Gauss map.

For example, hyperplanes, hyperspheres and the generalized cylinder Sn−k×Ek

of En+1 have 1-type Gauss map.

We can also state

Theorem 3.4. If an oriented hypersurfaces M of a Euclidean space E n+1 has
proper pointwise 1-type Gauss map of the second kind, then the mean curvature of
M is non-constant.

4. HYPERSURFACE OF REVOLUTION WITH POINTWISE 1-TYPE GAUSS

MAP OF THE FIRST AND SECOND KIND

The aim of this section is to study the hypersurfaces of revolution of a Euclidean
space En+1 in terms of pointwise 1-type Gauss map of the first and second kind. We
mainly extend the results given by B.Y. Chen, M. Choi and Y.H. Kim for surfaces
of revolution with pointwise 1-type Gauss map in E3, [8].

Let M be a hypersurface of revolution in En+1 defined by (2.3). By straight-
forward calculation we can have the Weingarten map as

AG =

(
− ψ′
ϕ
√
pIn−1 0

0 ψ′ϕ′′−ϕ′ψ′′
p
√
p

)

where In−1 is the (n − 1) × (n − 1) identity map and p = ϕ′2 + ψ′2. Thus the
mean curvature of M is

(4.1) α =
1
n

(
−(n− 1)ψ′

ϕ
√
p

+
ψ′ϕ′′ − ϕ′ψ′′

p
√
p

)

and

(4.2) ‖AG‖2 =
(n− 1)ψ′2

ϕ2p
+

(ψ′ϕ′′ − ϕ′ψ′′)2

p3
.
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Since the mean curvature α is the function of v, using (2.4) we can have the gradient
of α as

(4.3) ∇α =
α′

p

(
ϕ′Y + ψ′ηn+1

)
.

Lemma 4.1. Let M be a hypersurface of revolution in Euclidean space E n+1

with pointwise 1-type Gauss map. Then either the Gauss map is harmonic, that is,
∆G = 0 or the function f defined in (1.1) depends only on v and the vector C in
(1.1) is parallel to the axis of the hypersurface of revolution.

Proof. Using (3.1) and (4.3) the Laplacian of the Gauss map (2.5) becomes

(4.4) ∆G =
(‖AG‖2ψ′

√
p

+
nα′ϕ′

p

)
Y +

(
nα′ψ′

p
− ‖AG‖2ϕ′

√
p

)
ηn+1.

Suppose that the generating curve of (2.3) is of unit speed, that is, p = ϕ′2+ψ′2 = 1.
By a direct calculation we can be have

(4.5)
∆G =

(
(n− 1)ψ′

ϕ2
− (n− 1)ϕ′ψ′′

ϕ
− ψ′′′

)
Y

+
(

(n− 1)ϕ′ϕ′′

ϕ
+ ϕ′′′

)
ηn+1.

If M has pointwise 1-type Gauss map, then (1.1) holds for some function f and
some vector C. When the Gauss map is not harmonic, (1.1), (2.1), (2.5) and (4.5)
imply that the first n components of C must be zero and

(4.6)

(n− 1)ψ′

ϕ2
− (n− 1)ϕ′ψ′′

ϕ
− ψ′′′ = fψ′(v),

(n− 1)ϕ′ϕ′′

ϕ
+ ϕ′′′ = f(c− ϕ′(v))

where C = (0, . . . , 0, c). Since ϕ′(v) and ψ′(v) are not both zero, the function f is
independent of u1, . . . , un−1.

We can have the following examples of hypersurfaces of revolution with proper
pointwise 1-type Gauss map of the first kind and the second kind, respectively.

Example 4.2. Consider the generalized catenoid, [14], which is the minimal
hypersurface of revolution parameterized by

x(u1, . . . , un−1, v) = vY (u1, . . . , un−1) +

(∫
adv√

v2(n−1) − a2

)
ηn+1, v > 0,
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where a is nonzero constant, ηn+1 = (0, 0, . . . , 0, 1) ∈ En+1 and Y (u1, . . . , un−1)
is defined in (2.2). Then, the Gauss map G of the generalized catenoid is given by

G =
1

vn−1
(aY −

√
v2(n−1) − a2ηn+1),

and hence, the Laplacian of the Gauss map satisfies

∆G =
n(n− 1)a2

v2n
G,

which implies that the generalized catenoid has proper pointwise 1-type Gauss map
of the first kind.

Example 4.3. Consider the right n-cone Ca based on the sphere Sn−1(1)
which is parameterized by

x(u1, . . . , un−1, v) = vY (u1, . . . , un−1) + avηn+1, a ≥ 0,

where ηn+1 = (0, 0, . . . , 0, 1) ∈ En+1 and Y (u1, . . . , un−1) is defined in (2.2).
Then, the Gauss map G of Ca is given by

G =
1√

1 + a2
(aY − ηn+1).

Hence, by using (3.1), (4.1), (4.2) and (4.3) for ϕ(v) = v, v > 0 and ψ(v) = av
we can have

∆G =
n − 1
v2

(G+
1√

1 + a2
ηn+1),

which means that the right n-cone has pointwise 1-type Gauss map of the second
kind.

Let M be a hypersurface of revolution in En+1 parameterized by taking ϕ(t) =
t, t > 0 and ψ(t) = g(t) in (2.3)

(4.7) x(u1, . . . , un−1, t) = tY (u1, . . . , un−1) + g(t)ηn+1,

where Y is given by (2.2). The Gauss map G of M parameterized by (4.7) is given
by

(4.8) G =
1√

1 + g′2
(g′Y − ηn+1).

When we consider (4.3) for the parametrization (4.7) we obtain from the equation
(3.1)

(4.9) ∆G =

(
‖AG‖2 +

nα′

g′
√

1 + g′2

)
G+

nα′

g′
ηn+1,
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where

(4.10) ‖AG‖2 =
(n− 1)g′2

t2(1 + g′2)
+

g′′2

(1 + g′2)3

and

(4.11) nα′ = − (n− 1)g′′

t(1 + g′2)3/2
− g′′′

(1 + g′2)3/2
+

(n− 1)g′

t2
√

1 + g′2
+

3g′g′′2

(1 + g′2)5/2
.

Suppose that M has pointwise 1-type Gauss map of the second kind. Then, by
definition, the vector C in (1.1) is nonzero and by Lemma 4.1 C = (0, . . . , 0, c) =
cηn+1. Therefore the equations (1.1) and (4.9) imply that

(4.12) ‖AG‖2 +
nα′

g′
√

1 + g′2
= f and

nα′

g′
= cf.

Eliminating f in (4.12) and, using (4.10) and (4.11) we obtain

(4.13)

(n− 1)g′′(1 + g′2)2t+ g′′′(1 + g′2)2t2

−(n− 1)g′(1 + g′2)3 − 3g′g′′2(1 + g′2)t2

= c
√

1 + g′2{g′′′(1 + g′2)t2 + (n− 1)g′′(1 + g′2)t

−4g′g′′2t2 − (n − 1)g′(1 + g′2)3}.

Suppose that M is a hypersurface of revolution of polynomial kind, that is, g(t)
is a polynomial in t. For n = 2, in [8], it was shown that the polynomial g(t) that
satisfies (4.13) has degree 1. Following the method used in [8], it is easily seen
that g(t) = at+ b, a, b ∈ R, a �= 0 is the only solution of (4.13) for n ≥ 2. Also,
applying (4.13) we have c = 1√

1+a2
. So the parametrization of M reduces to

(4.14) x(u1, . . . , un−1, t) = tY (u1, . . . , un−1) + (at+ b)ηn+1, a �= 0,

which is the right n-cone.
As a result we have the following.

Theorem 4.4. A hypersurface of revolution of polynomial kind in a Euclidean
space En+1 has pointwise 1-type Gauss map of the second kind if and only if it is
a right n-cone.

Let M be a hypersurface of revolution of rational kind, that is, g(t) is a rational
function in t. In [8], it was proven that there is no rational function g(t), except
polynomial, which satisfies the equation (4.13) for n = 2. Following [8], one can
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see that the equation (4.13) does not have any rational solution, except polynomial,
for n ≥ 2 because the factor n − 1 appeared in some terms of the equation (4.13)
does not change the method used in [8]. Therefore we can state the following.

Theorem 4.5. There do not exist rational hypersurface of revolution, except
polynomial kind, in a Euclidean space E n+1 with pointwise 1-type Gauss map of
the second kind.

We finally prove the following theorem:

Theorem 4.6. A rational hypersurface of revolution of Euclidean space E n+1

has pointwise 1-type Gauss map if and only if it is an open portion of a hyperplane,
a generalized cylinder, or a right n-cone.

Proof. LetM be a hypersurface of revolution parameterized by (2.3). If ϕ = ϕ0

is constant, then the hypersurface is an open portion of the generalized cylinder
Sn−1(ϕ0)×R. When ϕ is not constant, we can consider the parametrization given
by (4.7) for the hypersurface of revolution. The hypersurface of revolution has
constant mean curvature if and only if g = g(t) is a solution of the differential
equation

(4.15) g′′ +
(n− 1)(1 + g′2)g′

t
+ nα(1 + g′2)3/2 = 0,

for some constant α. Following the solution of the differential equation (4.15) for
n = 2 given in [8], we can obtain the solution of (4.15) as

(4.16) g(t) =
∫

a− αtn√
t2(n−1) − (a− αtn)2

dt+ c1,

where a and c1 are constant. If a = α = 0, g is constant. Then, the hyper-
surfaces is an open portion of a hyperplane. If a �= 0 and α = 0, that is, M
is a minimal hypersurface of revolution which is called a generalized catenoid for
n > 2, [14], then (4.16) implies that g(t) can be expressed in terms of elliptic
functions and it is not of rational kind. For example, if n = 2, then (4.16) gives
g(t) = a cosh−1(t/a) + c1, and the surface is a catenoid. If a = 0, α �= 0, then
from (4.16) we have g(t) =

√
1 − α2t2/α. In this case, the hypersurface M is an

n-sphere which is not rational kind. If a, α �= 0, then (4.16) implies that g(t) can
be expressed in terms elliptic functions. Thus, g(t) is not a rational function of t.

If M is a rational hypersurface of revolution with pointwise 1-type Gauss map of
the second kind, then M is an open portion of a right n-cone according to Theorem
4.4 and 4.5.

The converse is followed by Corollary 3.3 and Example 4.3.
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