GENERALIZED JORDAN TRIPLE (θ, ϕ)-DERIVATIONS ON SEMIPRIME RINGS

Cheng-Kai Liu and Wen-Kwei Shiue

Abstract

Let R be a 2 -torsion free semiprime ring. In this paper we will show that every Jordan triple (θ, ϕ)-derivation on R is a (θ, ϕ)-derivation. Also every Jordan triple left centralizer on R is a left centralizer. As a consequence, every generalized Jordan triple (θ, ϕ)-derivation on R is a generalized (θ, ϕ) derivation. This result gives an affirmative answer to the question posed by Wu and Lu in [14].

0. Introduction and Results

Throughout this paper R will denote an associative ring with center $Z(R)$. For any $x, y \in R$, we denote the commutator $[x, y]=x y-y x$. A ring R is said to be 2 -torsion free whenever $2 x=0$, with $x \in R$, implies $x=0$. Recall that R is said to be semiprime if $x R x=0$ implies $x=0$ and R is said to be prime if $x R y=0$ implies that $x=0$ or $y=0$. A mapping $\delta: R \rightarrow R$ is called additive if $\delta(x+y)=\delta(x)+\delta(y)$ for all $x, y \in R$. Let θ, ϕ be automorphisms of R and let 1 denote the identity mapping of R. An additive mapping $\delta: R \rightarrow R$ is called a (θ, ϕ)-derivation of R if $\delta(x y)=\delta(x) \theta(y)+\phi(x) \delta(y)$ for all $x, y \in R$. An additive mapping $\delta: R \rightarrow R$ is called a Jordan (θ, ϕ)-derivation of R if $\delta\left(x^{2}\right)=\delta(x) \theta(x)+\phi(x) \delta(x)$ for all $x \in R$. An additive mapping $\delta: R \rightarrow R$ is called a Jordan triple (θ, ϕ)-derivation of R if

$$
\delta(x y x)=\delta(x) \theta(y) \theta(x)+\phi(x) \delta(y) \theta(x)+\phi(x) \phi(y) \delta(x)
$$

for all $x, y \in R$. Obviously, every (θ, ϕ)-derivation is a Jordan (θ, ϕ)-derivation. In view of [7, Proposition 3] every Jordan (θ, ϕ)-derivation is a Jordan triple (θ, ϕ) derivation. For brevity, (1,1)-derivations are simply called derivations. A famous

[^0]result of Herstein [10] states that every Jordan derivation on a 2-torsion free prime ring is a derivation. Later Bresar [4] showed that the same result is true in semiprime rings. Since every Jordan derivation is also a Jordan triple derivation, furthermore Bresar [5] proved that every Jordan triple derivation on a 2-torsion free semiprime ring is a derivation. Recently, the above results have been extended to Jordan (θ, ϕ) derivations on prime rings by Bresar and Vukman [7]. In the present paper we will generalize these results to semiprime rings and prove the following:

Theorem 1. Let R be a 2-torsion free semiprime ring and let θ, ϕ be automorphisms of R. If $\delta: R \rightarrow R$ is a Jordan triple (θ, ϕ)-derivation, then δ is a (θ, ϕ)-derivation.

Corollary 1. Let R be a 2-torsion free semiprime ring and let θ, ϕ be automorphisms of R. Then every Jordan (θ, ϕ)-derivation of R is a $\theta, \phi)$-derivation.

An additive mapping $T: R \rightarrow R$ is called a left (right) centralizer of R if $T(x y)=T(x) y(T(x y)=x T(y))$ for all $x, y \in R$. An additive mapping $T: R \rightarrow R$ is called a Jordan left (right) centralizer of R if $T\left(x^{2}\right)=T(x) x$ $\left(T\left(x^{2}\right)=x T(x)\right)$ for all $x \in R$. An additive mapping $T: R \rightarrow R$ is called a Jordan triple left (right) centralizer of R if $T(x y x)=T(x) y x(T(x y x)=x y T(x))$ for all $x, y \in R$. In [15], Zalar proved that every Jordan left (right) centralizer on a 2-torsion free semiprime ring is a left (right) centralizer. It is easy to see that every Jordan left (right) centralizer is also a Jordan triple left (right) centralizer. We now generalize Zalar's result as follows.

Theorem 2. Let R be a 2-torsion free semiprime ring. If $T: R \rightarrow R$ is a Jordan triple left (right) centralizer, then T is a left (right) centralizer.

An additive mapping $F: R \rightarrow R$ is called a generalized (θ, ϕ)-derivation of R if there exists a (θ, ϕ)-derivation δ of R such that $F(x y)=F(x) \theta(y)+\phi(x) \delta(y)$ for all $x, y \in R$ (see [11,13]). As usual, generalized (1,1)-derivations are called generalized derivations. Motivated by the concept of generalized derivations, Wu and Lu [14] initiated the study of generalized Jordan derivations and generalized Jordan triple derivations. An additive mapping $F: R \rightarrow R$ is called a generalized Jordan (θ, ϕ)-derivation of R if there exists a $\operatorname{Jordan}(\theta, \phi)$-derivation δ of R such that $F\left(x^{2}\right)=\delta(x) \theta(x)+\phi(x) \delta(x)$ for all $x \in R$. An additive mapping $F: R \rightarrow R$ is called a generalized Jordan triple (θ, ϕ)-derivation of R if there exists a Jordan triple (θ, ϕ)-derivation δ of R such that

$$
F(x y x)=F(x) \theta(y) \theta(x)+\phi(x) \delta(y) \theta(x)+\phi(x) \phi(y) \delta(x)
$$

for all $x, y \in R$. Moreover, δ is called the relating Jordan triple (θ, ϕ)-derivation of F. In [14], Wu and Lu proved that every generalized Jordan derivation on a prime
ring is a generalized derivation. Recently Ashraf et al. [1,2] extended this result to generalized Jordan (θ, ϕ)-derivations on Lie ideals of prime rings. Now applying Theorem 1 and 2, we can solve the conjecture raised by Wu and Lu in [14, page 608 and 611].

Theorem 3. Let R be a 2-torsion free semiprime ring and let θ, ϕ be automorphisms of R. If $F: R \rightarrow R$ is a generalized Jordan triple (θ, ϕ)-derivation, then F is a generalized (θ, ϕ)-derivation.

Proof. Let δ be the relating Jordan triple (θ, ϕ)-derivation of F satisfying (\dagger). By Theorem $1, \delta$ must be a (θ, ϕ)-derivation. Set $G=F-\delta$. Then in view of (\dagger) and ($\dagger \dagger$), we have $G(x y x)=G(x) \theta(y) \theta(x)$. So $\theta^{-1} G$ becomes a Jordan triple left centralizer. Applying Theorem 2 yields that $\theta^{-1} G(x y)=\theta^{-1} G(x) y$ for all $x, y \in R$. That is, $G(x y)=G(x) \theta(y)$. Then $F(x y)=\delta(x y)+F(x) \theta(y)-$ $\delta(x) \theta(y)=F(x) \theta(y)+\phi(x) \delta(y)$, implying that F is a generalized (θ, ϕ)-derivation.

Since every generalized Jordan (θ, ϕ)-derivation is also a generalized Jordan triple (θ, ϕ)-derivation [1, Lemma 2.1], we immediately obtain

Corollary 2. Let R be a 2 -torsion free semiprime ring and let θ, ϕ be automorphisms of R. Then every generalized Jordan (θ, ϕ)-derivation of R is a generalized (θ, ϕ)-derivation.

By using the fact that every linear (θ, ϕ)-derivation on a semisimple Banach algebra is continuous, now we can extend [4, Theorem 6] to generalized (θ, ϕ) derivations.

Theorem 4. Let A be a complex semisimple Banach algebra and let θ, ϕ be linear automorphisms of A. If $F: A \rightarrow A$ is a linear generalized Jordan triple (θ, ϕ)-derivation and δ is the relating linear Jordan triple (θ, ϕ)-derivation of F, then F is continuous.

Proof. By Theorem 3, F is a generalized (θ, ϕ)-derivation. Since θ and ϕ are continuous [12], it follows from [8, Corollary 4.3] that δ is continuous. Set $G=F-\delta$. Then $\theta^{-1} G$ becomes a left centralizer. Hence $\theta^{-1} G$ is continuous by [15, Corollary 1.5] and so G is continuous as well. This implies that F is continuous, as desired.

Corollary 3. Let A be a complex semisimple Banach algebra and let θ, ϕ be linear automorphisms of A. Then every linear generalized Jordan (θ, ϕ)-derivation is continuous.

1. Preliminaries

Throughout this section we shall denote by δ a Jordan triple ($1, \phi$)-derivation of a ring R. Then

$$
\begin{equation*}
\delta(a b a)=\delta(a) b a+\phi(a) \delta(b) a+\phi(a) \phi(b) \delta(a) \tag{1}
\end{equation*}
$$

for all $a, b \in R$. Replacing a with $a+c$ in (1), we obtain that

$$
\begin{align*}
\delta(a b c+c b a)= & \delta(a) b c+\phi(a) \delta(b) c+\phi(a) \phi(b) \delta(c) \tag{2}\\
& +\delta(c) b a+\phi(c) \delta(b) a+\phi(c) \phi(b) \delta(a)
\end{align*}
$$

for all $a, b, c \in R$. A direct expansion by using (1) yields that

$$
\begin{aligned}
\delta(a b c x c b a)= & \delta(a(b(c x c) b) a) \\
= & \delta(a) b c x c b a+\phi(a) \delta(b(c x c) b) a+\phi(a) \phi(b c x c b) \delta(a) \\
= & \delta(a) b c x c b a+\phi(a)(\delta(b) c x c b+\phi(b) \delta(c x c) b \\
& +\phi(b) \phi(c x c) \delta(b)) a+\phi(a) \phi(b c x c b) \delta(a) \\
= & \delta(a) b c x c b a+\phi(a) \delta(b) c x c b a+\phi(a) \phi(b) \delta(c) x c b a \\
& +\phi(a) \phi(b) \phi(c) \delta(x) c b a+\phi(a) \phi(b) \phi(c) \phi(x) \delta(c) b a \\
& +\phi(a) \phi(b) \phi(c x c) \delta(b) a+\phi(a) \phi(b c x c b) \delta(a) .
\end{aligned}
$$

Following Bresar [5], we write $A(a, b, c)=\delta(a b c)-\delta(a) b c-\phi(a) \delta(b) c-\phi(a) \phi(b) \delta(c)$ and $B(a, b, c)=a b c-c b a$. In view of (2) we have $A(a, b, c)+A(c, b, a)=0$. We begin with some lemmas which will be used in the sequel.

Lemma 1.1. Let R be a ring and δ a Jordan triple $(1, \phi)$-derivation of R. Then

$$
A(a, b, c) x B(a, b, c)+\phi(B(a, b, c)) \phi(x) A(a, b, c)=0
$$

for all $a, b, c, x \in R$.
Proof. Consider $W=\delta(a b c x c b a+c b a x a b c)$. Use (2) to obtain that

$$
\begin{aligned}
W= & \delta((a b c) x(c b a)+(c b a) x(a b c)) \\
= & \delta(a b c) x c b a+\phi(a b c) \delta(x) c b a+\phi(a b c) \phi(x) \delta(c b a) \\
& +\delta(c b a) x a b c+\phi(c b a) \delta(x) a b c+\phi(c b a) \phi(x) \delta(a b c) .
\end{aligned}
$$

On the other hand, in view of (3)

$$
\begin{aligned}
W= & \delta((a(b(c x c) b) a)+(c(b(a x a) b) c)) \\
= & \delta(a) b c x c b a+\phi(a) \delta(b) c x c b a+\phi(a) \phi(b) \delta(c) x c b a \\
& +\phi(a) \phi(b) \phi(c) \delta(x) c b a+\phi(a) \phi(b) \phi(c) \phi(x) \delta(c) b a \\
& +\phi(a) \phi(b) \phi(c x c) \delta(b) a+\phi(a) \phi(b c x c b) \delta(a) \\
& +\delta(c) b a x a b c+\phi(c) \delta(b) a x a b c+\phi(c) \phi(b) \delta(a) x a b c \\
& +\phi(c) \phi(b) \phi(a) \delta(x) a b c+\phi(c) \phi(b) \phi(a) \phi(x) \delta(a) b c \\
& +\phi(c) \phi(b) \phi(a x a) \delta(b) c+\phi(c) \phi(b a x a b) \delta(c) .
\end{aligned}
$$

Comparing the above two equations, we see that
$A(a, b, c) x c b a+\phi(a b c) \phi(x) A(c, b, a)+A(c, b, a) x a b c+\phi(c b a) \phi(x) A(a, b, c)=0$
for all $a, b, c \in R$. Recall that $A(c, b, a)=-A(a, b, c)$. Thus $A(a, b, c) x B(a, b, c)+$ $\phi(B(a, b, c)) \phi(x) A(a, b, c)=0$, as asserted.

Lemma 1.2. Let R be a semiprime ring and let R_{i} be additive subgroups of R for $i=1, \cdots, n$, where n is a positive integer. If $H, K: R^{n}=R \times \cdots \times R \rightarrow R$ are n-additive mappings such that $H\left(a_{1}, \cdots, a_{n}\right) x K\left(a_{1}, \cdots, a_{n}\right)=0$ for all $a_{i} \in R_{i}$ and $x \in R$, then $H\left(a_{1}, \cdots, a_{n}\right) x K\left(b_{1}, \cdots, b_{n}\right)=0$ for all $a_{i}, b_{i} \in R_{i}$ and $x \in R$.

Proof. Replacing a_{1} with $a_{1}+b_{1}$ and using the additivity of H and K, we have
$H\left(a_{1}, a_{2}, \cdots, a_{n}\right) x K\left(b_{1}, a_{2}, \cdots, a_{n}\right)+H\left(b_{1}, a_{2}, \cdots, a_{n}\right) x K\left(a_{1}, a_{2}, \cdots, a_{n}\right)=0$,
for all $x \in R$. Next replacing x with $x K\left(b_{1}, a_{2}, \cdots, a_{n}\right) y H\left(a_{1}, a_{2}, \cdots, a_{n}\right) x$, it follows $H\left(a_{1}, a_{2}, \cdots, a_{n}\right) x K\left(b_{1}, a_{2}, \cdots, a_{n}\right) y H\left(a_{1}, a_{2}, \cdots, a_{n}\right) x K\left(b_{1}, a_{2}, \cdots\right.$, $\left.a_{n}\right)=0$ for all $x, y \in R$. By semiprimeness of $R, H\left(a_{1}, a_{2}, \cdots, a_{n}\right) x K\left(b_{1}, a_{2}, \cdots\right.$, $\left.a_{n}\right)=0$ for all $x \in R$. Replacing a_{i} with $a_{i}+b_{i}$ for $i \geq 2$ and continuing the same process as above, we will obtain the assertion of this lemma.

For an arbitrary ring R, we set $S=\{\alpha \in Z(R) \mid \alpha R \subseteq Z(R)\}$. Obviously, S is an ideal of R and $\alpha b c=c b \alpha$ for all $\alpha \in S$ and $b, c \in R$.

Lemma 1.3. Let R be a semiprime ring and $a \in R$. If axy $=y x a$ for all $x, y \in R$, then $a \in S$.

Proof. Let $x, y, z, w \in R$. Then $a(w z) y x=y x(w z) a=y a(w z) x=$ $y(z w a) x=(y z w a) x=a w y z x$. By semiprimeness of $R, a w z y=a w y z$. Thus $a w[z, y]=0$ for all $w, z, y \in R$. Hence $a y w[a, y]=y a w[a, y]=0$. In particular, $[a, y] w[a, y]=0$ for all $y, w \in R$. Since R is semiprime, $[a, y]=0$ for all $y \in R$. This implies that $a \in Z(R)$. So now $a x y=y x a=y a x$ for all $x, y \in R$. Thus $a x \in Z(R)$ for all $x \in R$, as asserted.

We let $Q=Q_{s}(R)$ be the symmetric Martindale ring of quotients of a semiprime ring R. The center of Q denoted by C is called the extended centroid of R (see [3, chapter 2]). An element $\varepsilon \in C$ is called a central idempotent if $\varepsilon^{2}=\varepsilon$. The following lemma is a special case of [9, Theorem 3.1] and we state its form needed here.

Lemma 1.4. Let R be a semiprime ring and let ϕ be an automorphism of R. If $a, b, c, d \in R$ and axb $=c \phi(x) d$ for all $x \in R$, then there exist central idempotents
$\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5} \in C$ and an invertible element $q \in Q$ such that $\varepsilon_{i} \varepsilon_{j}=0$ for $i \neq j$, $\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}=1_{Q}$ and

$$
\begin{aligned}
& \varepsilon_{1} \phi(x)=\varepsilon_{1} q x q^{-1}, \varepsilon_{1} a=\varepsilon_{1} c q, \varepsilon_{1} b=\varepsilon_{1} q^{-1} d \\
& \varepsilon_{2} b=\varepsilon_{2} d=\varepsilon_{3} b=\varepsilon_{3} c=\varepsilon_{4} a=\varepsilon_{4} d=\varepsilon_{5} a=\varepsilon_{5} c=0
\end{aligned}
$$

for all $x \in R$.
Corollary 1.5. Let R be a 2-torsion free semiprime ring and ϕ an automorphism of R. If $a, b \in R$ and $a x b+\phi(b) \phi(x) a=0$ for all $x \in R$, then $a x b=0$ for all $x \in R$.

Proof. In view of Lemma 1.4, there exist central idempotents $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5} \in$ C and an invertible element $q \in Q$ such that $\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}=1_{Q}$ and $\varepsilon_{1} \phi(x)=\varepsilon_{1} q x q^{-1}, \varepsilon_{1} a=\varepsilon_{1} \phi(b) q, \varepsilon_{1} b=-\varepsilon_{1} q^{-1} a, \varepsilon_{2} b=\varepsilon_{3} b=\varepsilon_{4} a=\varepsilon_{5} a=0$. So $\varepsilon_{1} a=-q\left(-\varepsilon_{1} q^{-1} a\right)=-q \varepsilon_{1} b=-\varepsilon_{1} q b$ and $\varepsilon_{1} a=\varepsilon_{1} \phi(b) q=\varepsilon_{1} q b q^{-1} q=$ $\varepsilon_{1} q b$. Hence $2 \varepsilon_{1} a=0$. Since R is 2 -torsion free, $\varepsilon_{1} a=0$ and then $\varepsilon_{1} a x b=0$. So it is easy to see that $a x b=\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\right) a x b=0$, as desired.

Corollary 1.6. Let R be a semiprime ring and ϕ an automorphism of R. If $\alpha \in Z(R), b \in R$ and $(\phi(\alpha x)-\alpha x) b=0$ for all $x \in R$, then $(\phi(x)-x) \alpha b=0$ for all $x \in R$.

Proof. By assumption, $-\alpha x b+\phi(\alpha) \phi(x) b=0$. In view of Lemma 1.4, there exist central idempotents $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5} \in C$ and an invertible element $q \in Q$ such that $\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}=1_{Q}$ and $\varepsilon_{1} \phi(x)=\varepsilon_{1} q x q^{-1}, \varepsilon_{2} b=\varepsilon_{3} b=\varepsilon_{4} b=\varepsilon_{5} \alpha=0$. In particular, $\varepsilon_{1} \phi(\alpha)=\varepsilon_{1} q \alpha q^{-1}=\varepsilon_{1} \alpha$. Thus $0=\varepsilon_{1}(-\alpha x b+\phi(\alpha) \phi(x) b)=$ $\varepsilon_{1}(-x+\phi(x)) \alpha b$. So $(\phi(x)-x) \alpha b=\left(\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}+\varepsilon_{4}+\varepsilon_{5}\right)(\phi(x)-x) \alpha b=0$, as desired.

2. Proof of Theorem 1

Proof. Since $\theta^{-1} \delta$ is a Jordan triple $\left(1, \theta^{-1} \phi\right)$-derivation, replacing δ by $\theta^{-1} \delta$ we may assume that δ is a Jordan triple $(1, \phi)$-derivation. Then we have $A(a, b, c) x B(a, b, c)+\phi(B(a, b, c)) \phi(x) A(a, b, c)=0$ for all $a, b, c, x \in R$ by Lemma 1.1. It follows from Corollary 1.5 that $A(a, b, c) x B(a, b, c)=0$ for all $a, b, c, x \in R$. Thus by Lemma 1.2 $A(a, b, c) x B(r, s, t)=0$ for all $a, b, c, r, s, t, x \in$ R. For $a, b, c, x, r, s \in R$, we have

$$
\begin{aligned}
& B(A(a, b, c), r, s) x B(A(a, b, c), r, s) \\
= & (A(a, b, c) r s-s r A(a, b, c)) x B(A(a, b, c), r, s) \\
= & A(a, b, c) r s x B(A(a, b, c), r, s)-s r A(a, b, c) x B(A(a, b, c), r, s)=0
\end{aligned}
$$

By semiprimeness of $R, B(A(a, b, c), r, s)=A(a, b, c) r s-s r A(a, b, c)=0$ for all $a, b, c, r, s \in R$. In light of Lemma 1.3, we see that $A(a, b, c) \in S$ for all $a, b, c \in R$. Let $\alpha \in S$ and $b, c \in R$. Then $\alpha, \alpha b, \alpha c \in Z(R)$ and $c b \alpha=c(\alpha b)=\alpha b c$. Similarly, $\delta(c) b \alpha=\alpha b \delta(c)$ and $\alpha \delta(b) c=c \delta(b) \alpha(\dagger \dagger \dagger)$. Consider $W=\delta(\alpha b c x c b \alpha)$. Use (3) to obtain

$$
\begin{aligned}
W=\delta(\alpha(b(c x c) b) \alpha)= & \delta(\alpha) b c x c b \alpha+\phi(\alpha) \delta(b) c x c b \alpha+\phi(\alpha) \phi(b) \delta(c) x c b \alpha \\
& +\phi(\alpha) \phi(b) \phi(c) \delta(x) c b \alpha+\phi(\alpha) \phi(b) \phi(c) \phi(x) \delta(c) b \alpha \\
& +\phi(\alpha) \phi(b) \phi(c x c) \delta(b) \alpha+\phi(\alpha) \phi(b c x c b) \delta(\alpha)
\end{aligned}
$$

On the other hand, using (1) we have

$$
W=\delta((\alpha b c) x(\alpha b c))=\delta(\alpha b c) x \alpha b c+\phi(\alpha b c) \delta(x) \alpha b c+\phi(\alpha b c) \phi(x) \delta(\alpha b c)
$$

Comparing the above two equations and noticing that $c b \alpha=\alpha b c$, we see that

$$
\phi(\alpha b c) \phi(x) A(c, b, \alpha)+A(\alpha, b, c) x \alpha b c=0
$$

Recall that $A(c, b, \alpha)=-A(\alpha, b, c)$ and $\alpha b c \in Z(R)$. So

$$
\phi(\alpha b c) \phi(x) A(\alpha, b, c)-A(\alpha, b, c) x \alpha b c=0
$$

for all $\alpha \in S$ and $b, c, x \in R$. In view of Corollary 1.6, $(\phi(x)-x) \alpha b c A(\alpha, b, c)=0$. Multiplying y form the right hand side, we have $(\phi(x)-x) \alpha b c y A(\alpha, b, c)=0$ since $A(\alpha, b, c) \in Z(R)$. Thus it follows from Lemma 1.2 that $(\phi(x)-x) \beta$ sty $A(\alpha, b, c)=$ 0 for all $\alpha, \beta \in S$ and $b, c, s, t, y \in R$. Replace β by $A(\alpha, b, c)$ to yield that $(\phi(x)-$ x) $A(\alpha, b, c)^{2}=0$ for all $x \in R$. Note that $A(\alpha, b, c)[x, y]=[A(\alpha, b, c) x, y]=0$. This implies that $A(\alpha, b, c)[R, R]=0$. Thus

$$
\begin{aligned}
& 2 A(\alpha, b, c)^{3} \\
= & A(\alpha, b, c)^{2}(A(\alpha, b, c)-A(c, b, \alpha)) \\
= & A(\alpha, b, c)^{2}(\delta(\alpha b c)-\delta(\alpha) b c-\phi(\alpha) \delta(b) c-\phi(\alpha) \phi(b) \delta(c) \\
& -\delta(c b \alpha)+\delta(c) b \alpha+\phi(c) \delta(b) \alpha+\phi(c) \phi(b) \delta(\alpha)) \\
= & A(\alpha, b, c)^{2}(-\delta(\alpha) b c-\phi(\alpha) \delta(b) c-\phi(\alpha) \phi(b) \delta(c) \\
& +\delta(c) b \alpha+\phi(c) \delta(b) \alpha+\phi(c) \phi(b) \delta(\alpha)) \\
= & A(\alpha, b, c)^{2}(\delta(\alpha)(\phi(b c)-b c)-\delta(\alpha)(\phi(b) \phi(c)-\phi(c) \phi(b)) \\
& +(\phi(c b) \delta(\alpha)-\delta(\alpha) \phi(c b))-(\phi(\alpha)-\alpha) \delta(b) c \\
& +(\phi(c)-c) \delta(b) \alpha+(\alpha b-\phi(\alpha b)) \delta(c))(b y(\dagger \dagger \dagger)) \\
= & A(\alpha, b, c)^{2}(\delta(\alpha)(\phi(b c)-b c)-\delta(\alpha)[\phi(b), \phi(c)]+[\phi(c b), \delta(\alpha)] \\
& -(\phi(\alpha)-\alpha) \delta(b) c+(\phi(c)-c) \delta(b) \alpha+(\alpha b-\phi(\alpha b)) \delta(c))=0 .
\end{aligned}
$$

It is easy to see that $Z(R)$ does not contain nonzero nilpotent elements. So it follows that $A(\alpha, b, c)=0$ for all $\alpha \in S$ and $b, c \in R$. That is,

$$
\begin{equation*}
\delta(\alpha b c)-\delta(\alpha) b c-\phi(\alpha) \delta(b) c-\phi(\alpha) \phi(b) \delta(c)=0 \tag{4}
\end{equation*}
$$

Note that if $\alpha \in S$, then $\alpha R \subseteq S$ and $\phi(\alpha), \phi^{-1}(\alpha) \in S$. Let $\alpha \in S$ and $x, b, c \in R$.
Applying (4) we obtain that

$$
\delta(\alpha x a b c)=\delta(\alpha) x a b c+\phi(\alpha) \delta(x) a b c+\phi(\alpha) \phi(x) \delta(a b c)
$$

and

$$
\begin{aligned}
& \delta((\alpha x a) b c) \\
= & \delta(\alpha x a) b c+\phi(\alpha x a) \delta(b) c+\phi(\alpha x a) \phi(b) \delta(c) \\
= & (\delta(\alpha) x a+\phi(\alpha) \delta(x) a+\phi(\alpha) \phi(x) \delta(a)) b c+\phi(\alpha x a) \delta(b) c+\phi(\alpha x a) \phi(b) \delta(c) .
\end{aligned}
$$

Comparing the above two equations, $\phi(\alpha) \phi(x) A(a, b, c)=0$ for all $\alpha \in S$ and $a, b, c \in R$. Replacing α by $\phi^{-1}(A(a, b, c))$, we see that $A(a, b, c) \phi(x) A(a, b, c)=$ 0 . By semiprimeness of $R, A(a, b, c)=0$ for all $a, b, c \in R$. That is $\delta(a b c)=$ $\delta(a) b c+\phi(a) \delta(b) c+\phi(a) \phi(b) \delta(c)$ for all $a, b, c \in R$. Consider $W=\delta(a b x a b)$. Then

$$
\begin{aligned}
W & =\delta(a(b x a) b) \\
& =\delta(a) b x a b+\phi(a) \delta(b x a) b+\phi(a) \phi(b x a) \delta(b) \\
& =\delta(a) b x a b+\phi(a)(\delta(b) x a+\phi(b) \delta(x) a+\phi(b) \phi(x) \delta(a)) b+\phi(a) \phi(b x a) \delta(b) .
\end{aligned}
$$

On the other hand,

$$
W=\delta((a b) x(a b))=\delta(a b) x a b+\phi(a b) \delta(x) a b+\phi(a b) \phi(x) \delta(a b)
$$

Comparing the above two equations, we have

$$
(\delta(a b)-\phi(a) \delta(b)-\delta(a) b) x a b+\phi(a b) \phi(x)(\delta(a b)-\phi(a) \delta(b)-\delta(a) b)=0
$$

By Corollary 1.5, $(\delta(a b)-\phi(a) \delta(b)-\delta(a) b) x a b=0$. Thus it follows from Lemma 1.2 that $(\delta(a b)-\phi(a) \delta(b)-\delta(a) b) x c d=0$ for all $a, b, c, d, x \in R$. By semiprimeness of $R, \delta(a b)-\phi(a) \delta(b)-\delta(a) b=0$, as desired.

3. Proof of Theorem 2

Proof. Proof. Suppose T is a Jordan triple left centralizer. We write $A(a, b, c)=$ $T(a b c)-T(a) b c$ and $B(a, b, c)=a b c-b c a$. By assumption, $T(a b a)=T(a) b a$ for
all $a, b \in R$. Replacing a by $a+c$, we see that $T(a b c+c b a)=T(a) b c+T(c) b a$. Consider $W=T(a b c x c b a+c b a x a b c)$. Then

$$
W=T((a b c) x(c b a)+(c b a) x(a b c))=T(a b c) x c b a+T(c b a) x a b c
$$

On the other hand,

$$
W=T((a(b(c x c) b) a)+(c(b(a x a) b) c))=T(a) b c x c b a+T(c) b a x a b c
$$

So $A(a, b, c) x c b a+A(c, b, a) x a b c=0$ for all $a, b, c, x \in R$. Recall that $A(c, b, a)=$ $-A(a, b, c)$. Thus $A(a, b, c) x B(a, b, c)=0$. By Lemma 1.2, $A(a, b, c) x B(r, s, t)=$ 0 for all $a, b, c, r, s, t, x \in R$. For $a, b, c, x, r, s \in R$, we have

$$
\begin{aligned}
& B(A(a, b, c), r, s) x B(A(a, b, c), r, s) \\
= & (A(a, b, c) r s-s r A(a, b, c)) x B(A(a, b, c), r, s) \\
= & A(a, b, c) r s x B(A(a, b, c), r, s)-s r A(a, b, c) x B(A(a, b, c), r, s)=0
\end{aligned}
$$

By semiprimeness of $R, B(A(a, b, c), r, s)=A(a, b, c) r s-s r A(a, b, c)=0$ for all $a, b, c, r, s \in R$. In light of Lemma 1.3, we see that $A(a, b, c) \in S$ for all $a, b, c \in R$. Let $\alpha \in S$ and $b, c \in R$. Consider $W=T(\alpha b c x c b \alpha)$. Then $T(\alpha) b c x c b \alpha=$ $T(\alpha(b(c x c) b) \alpha)=W=T((\alpha b c) x(\alpha b c))=T(\alpha b c) x \alpha b c$. Thus $A(\alpha, b, c) x \alpha b c=$ 0 . By Lemma 1.2, $A(\alpha, b, c) x \beta s t=0$ for all $\alpha, \beta \in S$ and $b, c, s, t, x \in R$. Since $A(\alpha, b, c) \in S$, we have $A(\alpha, b, c)^{2} x s t=0$. By semiprimeness of $R, A(\alpha, b, c)^{2}=$ 0 . Recall that $Z(R)$ contains no nonzero nilpotent elements. Hence $A(\alpha, b, c)=0$. In particular, $A(c, b, \alpha)=0$. That is, $T(c b \alpha)=T(c) b \alpha$ for all $b, c \in R$ and $\alpha \in S$.

Let $a, b, c \in R$ and $\alpha=A(a, b, c)$. Then

$$
T(a b c) \alpha^{2}=T((a b c) \alpha \alpha)=T\left(a(b c)\left(\alpha^{2}\right)\right)=T(a) b c \alpha^{2}
$$

Hence $\alpha^{3}=(T(a b c)-T(a) b c) \alpha^{2}=0$. Thus $\alpha=0$. This means that $T(a b c)=$ $T(a) b c$ for all $a, b, c \in R$. Now we have $T(a) b x a b=T(a b x a b)=T(a b) x a b$. Then $(T(a b)-T(a) b) x a b=0$. By Lemma 1.2, $(T(a b)-T(a) b) x s t=0$ for all $a, b, x, s, t \in R$. By semiprimeness of $R, T(a b)-T(a) b=0$, as desired.

Acknowledgment

The authors are thankful to the referee for her/his useful suggestions and comments.

References

1. M. Ashraf and Wafa S.M. Al-Shammakh, On generalized (θ, ϕ)-derivations in rings, Int. J. Math. Game Theory and Algebra, 12 (2002), 295-300.
2. M. Ashraf, A. Ali and S. Ali, On Lie ideals and generalized (θ, ϕ)-Jordan derivations on prime rings, Comm. Algebra, 32 (2004), 2977-2985.
3. K. I. Beidar, W. S. Martindale 3rd and A.V. Mikhalev, "Rings with Generalized Identities", Marcel Dekker, Inc., New York-Basel-Hong Kong, 1996.
4. M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104 (1988), 1003-1006.
5. M. Brešar, Jordan mappings of semiprime rings, J. Algebra, 127 (1989), 218-228.
6. M. Brešar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc., 37 (1988), 321-322.
7. M. Brešar and J. Vukman, Jordan (θ, ϕ)-derivations, Glasnik Math., 46 (1991), 1317.
8. M. Brešar and A. R. Villena, The noncommutative Singer-Wermer conjecture and ϕ-derivations, J. London Math. Soc., 66 (2002), 710-720.
9. D. Eremita, A functional identity with an automorphism in semiprime rings, Algebra Colloq., 8 (2001), 301-306.
10. I. N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110.
11. B. Hvala, Generalized derivations in rings, Comm. Algebra, 26 (1998), 1147-1166.
12. B.E. Johnson, The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc., 73 (1967), 537-539.
13. T.-K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27 (1999), 4057-4073.
14. Jing Wu and Shijie Lu, Generalized Jordan derivations of prime rings and standard operator algebras, Taiwanese J. Math., 7 (2003), 605-613.
15. B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolinae, 32 (1991), 609-614.

Cheng-Kai Liu
Department of Mathematics,
National Changhua University of Education,
Changhua 500,
Taiwan
E-mail: ckliu@cc.ncue.edu.tw
Wen-Kwei Shiue
Department of Computer Science, Dahan Institute of Technology,
Hualien 971, Taiwan
E-mail: wkxue@yahoo.com.tw

[^0]: Received October 5, 2005, accepted January 23, 2006.
 Communicated by Wen-Fong Ke.
 2000 Mathematics Subject Classification: 16W25, 16R50, 16N60, 16 U80.
 Key words and phrases: Generalized (θ, ϕ)-derivation, Generalized Jordan (θ, ϕ)-derivation, Generalized Jordan triple (θ, ϕ)-derivation.
 Corresponding author: Cheng-Kai Liu.

