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GENERALIZED JORDAN TRIPLE (θ, φ)-DERIVATIONS
ON SEMIPRIME RINGS

Cheng-Kai Liu and Wen-Kwei Shiue

Abstract. Let R be a 2-torsion free semiprime ring. In this paper we will
show that every Jordan triple (θ, φ)-derivation on R is a (θ, φ)-derivation. Also
every Jordan triple left centralizer on R is a left centralizer. As a consequence,
every generalized Jordan triple (θ, φ)-derivation on R is a generalized (θ, φ)-
derivation. This result gives an affirmative answer to the question posed by
Wu and Lu in [14].

0. INTRODUCTION AND RESULTS

Throughout this paper R will denote an associative ring with center Z(R). For
any x, y ∈ R, we denote the commutator [x, y] = xy − yx. A ring R is said to
be 2-torsion free whenever 2x = 0, with x ∈ R, implies x = 0. Recall that R

is said to be semiprime if xRx = 0 implies x = 0 and R is said to be prime if
xRy = 0 implies that x = 0 or y = 0. A mapping δ : R → R is called additive
if δ(x + y) = δ(x) + δ(y) for all x, y ∈ R. Let θ, φ be automorphisms of R
and let 1 denote the identity mapping of R. An additive mapping δ : R → R is
called a (θ, φ)-derivation of R if δ(xy) = δ(x)θ(y) + φ(x)δ(y) for all x, y ∈ R.
An additive mapping δ : R → R is called a Jordan (θ, φ)-derivation of R if
δ(x2) = δ(x)θ(x) + φ(x)δ(x) for all x ∈ R. An additive mapping δ : R → R is
called a Jordan triple (θ, φ)-derivation of R if

(†) δ(xyx) = δ(x)θ(y)θ(x) + φ(x)δ(y)θ(x) + φ(x)φ(y)δ(x)

for all x, y ∈ R. Obviously, every (θ, φ)-derivation is a Jordan (θ, φ)-derivation. In
view of [7, Proposition 3] every Jordan (θ, φ)-derivation is a Jordan triple (θ, φ)-
derivation. For brevity, (1, 1)-derivations are simply called derivations. A famous
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result of Herstein [10] states that every Jordan derivation on a 2-torsion free prime
ring is a derivation. Later Bresar [4] showed that the same result is true in semiprime
rings. Since every Jordan derivation is also a Jordan triple derivation, furthermore
Bresar [5] proved that every Jordan triple derivation on a 2-torsion free semiprime
ring is a derivation. Recently, the above results have been extended to Jordan (θ, φ)-
derivations on prime rings by Bresar and Vukman [7]. In the present paper we will
generalize these results to semiprime rings and prove the following:

Theorem 1. Let R be a 2-torsion free semiprime ring and let θ, φ be auto-
morphisms of R. If δ : R → R is a Jordan triple (θ, φ)-derivation, then δ is a
(θ, φ)-derivation.

Corollary 1. Let R be a 2-torsion free semiprime ring and let θ, φ be auto-
morphisms of R. Then every Jordan (θ, φ)-derivation of R is a (θ, φ)-derivation.

An additive mapping T : R → R is called a left (right) centralizer of R
if T (xy) = T (x)y (T (xy) = xT (y)) for all x, y ∈ R. An additive mapping
T : R → R is called a Jordan left (right) centralizer of R if T (x2) = T (x)x
(T (x2) = xT (x)) for all x ∈ R. An additive mapping T : R → R is called a
Jordan triple left (right) centralizer of R if T (xyx) = T (x)yx (T (xyx) = xyT (x))
for all x, y ∈ R. In [15], Zalar proved that every Jordan left (right) centralizer on a
2-torsion free semiprime ring is a left (right) centralizer. It is easy to see that every
Jordan left (right) centralizer is also a Jordan triple left (right) centralizer. We now
generalize Zalar’s result as follows.

Theorem 2. Let R be a 2-torsion free semiprime ring. If T : R → R is a
Jordan triple left (right) centralizer, then T is a left (right) centralizer.

An additive mapping F : R → R is called a generalized (θ, φ)-derivation of R

if there exists a (θ, φ)-derivation δ of R such that F (xy) = F (x)θ(y) + φ(x)δ(y)
for all x, y ∈ R (see [11,13]). As usual, generalized (1, 1)-derivations are called
generalized derivations. Motivated by the concept of generalized derivations, Wu
and Lu [14] initiated the study of generalized Jordan derivations and generalized
Jordan triple derivations. An additive mapping F : R → R is called a generalized
Jordan (θ, φ)-derivation of R if there exists a Jordan (θ, φ)-derivation δ of R such
that F (x2) = δ(x)θ(x)+φ(x)δ(x) for all x ∈ R. An additive mapping F : R → R
is called a generalized Jordan triple (θ, φ)-derivation of R if there exists a Jordan
triple (θ, φ)-derivation δ of R such that

(††) F (xyx) = F (x)θ(y)θ(x) + φ(x)δ(y)θ(x) + φ(x)φ(y)δ(x)

for all x, y ∈ R. Moreover, δ is called the relating Jordan triple (θ, φ)-derivation of
F . In [14], Wu and Lu proved that every generalized Jordan derivation on a prime
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ring is a generalized derivation. Recently Ashraf et al. [1,2] extended this result to
generalized Jordan (θ, φ)-derivations on Lie ideals of prime rings. Now applying
Theorem 1 and 2, we can solve the conjecture raised by Wu and Lu in [14, page
608 and 611].

Theorem 3. Let R be a 2-torsion free semiprime ring and let θ, φ be auto-
morphisms of R. If F : R → R is a generalized Jordan triple (θ, φ)-derivation,
then F is a generalized (θ, φ)-derivation.

Proof. Let δ be the relating Jordan triple (θ, φ)-derivation of F satisfying (†).
By Theorem 1, δ must be a (θ, φ)-derivation. Set G = F − δ. Then in view
of (†) and (††), we have G(xyx) = G(x)θ(y)θ(x). So θ−1G becomes a Jordan
triple left centralizer. Applying Theorem 2 yields that θ−1G(xy) = θ−1G(x)y for
all x, y ∈ R. That is, G(xy) = G(x)θ(y). Then F (xy) = δ(xy) + F (x)θ(y) −
δ(x)θ(y) = F (x)θ(y)+φ(x)δ(y), implying that F is a generalized (θ, φ)-derivation.

Since every generalized Jordan (θ, φ)-derivation is also a generalized Jordan
triple (θ, φ)-derivation [1, Lemma 2.1], we immediately obtain

Corollary 2. Let R be a 2-torsion free semiprime ring and let θ, φ be automor-
phisms of R. Then every generalized Jordan (θ, φ)-derivation of R is a generalized
(θ, φ)-derivation.

By using the fact that every linear (θ, φ)-derivation on a semisimple Banach
algebra is continuous, now we can extend [4, Theorem 6] to generalized (θ, φ)-
derivations.

Theorem 4. Let A be a complex semisimple Banach algebra and let θ, φ be
linear automorphisms of A. If F : A → A is a linear generalized Jordan triple
(θ, φ)-derivation and δ is the relating linear Jordan triple (θ, φ)-derivation of F ,
then F is continuous.

Proof. By Theorem 3, F is a generalized (θ, φ)-derivation. Since θ and φ

are continuous [12], it follows from [8, Corollary 4.3] that δ is continuous. Set
G = F − δ. Then θ−1G becomes a left centralizer. Hence θ−1G is continuous
by [15, Corollary 1.5] and so G is continuous as well. This implies that F is
continuous, as desired.

Corollary 3. Let A be a complex semisimple Banach algebra and let θ, φ be
linear automorphisms of A. Then every linear generalized Jordan (θ, φ)-derivation
is continuous.

1. PRELIMINARIES

Throughout this section we shall denote by δ a Jordan triple (1, φ)-derivation
of a ring R. Then
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(1) δ(aba) = δ(a)ba + φ(a)δ(b)a + φ(a)φ(b)δ(a)

for all a, b ∈ R. Replacing a with a + c in (1), we obtain that

(2)
δ(abc + cba) = δ(a)bc + φ(a)δ(b)c + φ(a)φ(b)δ(c)

+δ(c)ba + φ(c)δ(b)a + φ(c)φ(b)δ(a),

for all a, b, c ∈ R. A direct expansion by using (1) yields that

(3)

δ(abcxcba) = δ(a(b(cxc)b)a)

= δ(a)bcxcba + φ(a)δ(b(cxc)b)a+ φ(a)φ(bcxcb)δ(a)

= δ(a)bcxcba + φ(a)
(
δ(b)cxcb+ φ(b)δ(cxc)b

+φ(b)φ(cxc)δ(b)
)
a + φ(a)φ(bcxcb)δ(a)

= δ(a)bcxcba + φ(a)δ(b)cxcba + φ(a)φ(b)δ(c)xcba

+φ(a)φ(b)φ(c)δ(x)cba+ φ(a)φ(b)φ(c)φ(x)δ(c)ba

+φ(a)φ(b)φ(cxc)δ(b)a+ φ(a)φ(bcxcb)δ(a).

Following Bresar [5], we write A(a, b, c)=δ(abc)−δ(a)bc−φ(a)δ(b)c−φ(a)φ(b)δ(c)
and B(a, b, c) = abc− cba. In view of (2) we have A(a, b, c)+ A(c, b, a) = 0. We
begin with some lemmas which will be used in the sequel.

Lemma 1.1. Let R be a ring and δ a Jordan triple (1, φ)-derivation of R.
Then

A(a, b, c)xB(a, b, c)+ φ(B(a, b, c))φ(x)A(a, b, c) = 0

for all a, b, c, x ∈ R.

Proof. Consider W = δ(abcxcba + cbaxabc). Use (2) to obtain that

W = δ((abc)x(cba)+ (cba)x(abc))

= δ(abc)xcba + φ(abc)δ(x)cba+ φ(abc)φ(x)δ(cba)

+δ(cba)xabc + φ(cba)δ(x)abc+ φ(cba)φ(x)δ(abc).

On the other hand, in view of (3)

W = δ((a(b(cxc)b)a)+ (c(b(axa)b)c))

= δ(a)bcxcba + φ(a)δ(b)cxcba + φ(a)φ(b)δ(c)xcba

+φ(a)φ(b)φ(c)δ(x)cba+ φ(a)φ(b)φ(c)φ(x)δ(c)ba

+φ(a)φ(b)φ(cxc)δ(b)a+ φ(a)φ(bcxcb)δ(a)

+δ(c)baxabc + φ(c)δ(b)axabc + φ(c)φ(b)δ(a)xabc

+φ(c)φ(b)φ(a)δ(x)abc+ φ(c)φ(b)φ(a)φ(x)δ(a)bc

+φ(c)φ(b)φ(axa)δ(b)c+ φ(c)φ(baxab)δ(c).
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Comparing the above two equations, we see that

A(a, b, c)xcba+ φ(abc)φ(x)A(c, b, a)+ A(c, b, a)xabc+ φ(cba)φ(x)A(a, b, c) = 0

for all a, b, c ∈ R. Recall that A(c, b, a) = −A(a, b, c). Thus A(a, b, c)xB(a, b, c)+
φ(B(a, b, c))φ(x)A(a, b, c) = 0, as asserted.

Lemma 1.2. Let R be a semiprime ring and let R i be additive subgroups of R

for i = 1, · · · , n, where n is a positive integer. If H, K : Rn = R×· · ·×R → R are
n-additive mappings such that H(a 1, · · · , an)xK(a1, · · · , an) = 0 for all ai ∈ Ri

and x ∈ R, then H(a1, · · · , an)xK(b1, · · · , bn) = 0 for all ai, bi ∈ Ri and x ∈ R.

Proof. Replacing a1 with a1 + b1 and using the additivity of H and K , we
have

H(a1, a2, · · · , an)xK(b1, a2, · · · , an)+H(b1, a2, · · · , an)xK(a1, a2, · · · , an) = 0,

for all x ∈ R. Next replacing x with xK(b1, a2, · · · , an)yH(a1, a2, · · · , an)x, it
follows H(a1, a2, · · · , an)xK(b1, a2, · · · , an)yH(a1, a2, · · · , an) xK(b1, a2, · · · ,

an) = 0 for all x, y ∈ R. By semiprimeness of R, H(a1, a2, · · · , an)xK(b1, a2, · · · ,
an) = 0 for all x ∈ R. Replacing ai with ai + bi for i ≥ 2 and continuing the same
process as above, we will obtain the assertion of this lemma.

For an arbitrary ring R, we set S = {α ∈ Z(R) | αR ⊆ Z(R)}. Obviously, S
is an ideal of R and αbc = cbα for all α ∈ S and b, c ∈ R.

Lemma 1.3. Let R be a semiprime ring and a ∈ R. If axy = yxa for all
x, y ∈ R, then a ∈ S.

Proof. Let x, y, z, w ∈ R. Then a(wz)yx = yx(wz)a = ya(wz)x =
y(zwa)x = (yzwa)x = awyzx. By semiprimeness of R, awzy = awyz. Thus
aw[z, y] = 0 for all w, z, y ∈ R. Hence ayw[a, y] = yaw[a, y] = 0. In particular,
[a, y]w[a, y] = 0 for all y, w ∈ R. Since R is semiprime, [a, y] = 0 for all y ∈ R.
This implies that a ∈ Z(R). So now axy = yxa = yax for all x, y ∈ R. Thus
ax ∈ Z(R) for all x ∈ R, as asserted.

We let Q = Qs(R) be the symmetric Martindale ring of quotients of a semiprime
ring R. The center of Q denoted by C is called the extended centroid of R (see
[3, chapter 2]). An element ε ∈ C is called a central idempotent if ε2 = ε. The
following lemma is a special case of [9, Theorem 3.1] and we state its form needed
here.

Lemma 1.4. Let R be a semiprime ring and let φ be an automorphism of R. If
a, b, c, d ∈ R and axb = cφ(x)d for all x ∈ R, then there exist central idempotents
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ε1, ε2, ε3, ε4, ε5 ∈ C and an invertible element q ∈ Q such that ε iεj = 0 for i �= j,
ε1 + ε2 + ε3 + ε4 + ε5 = 1Q and

ε1φ(x) = ε1qxq−1, ε1a = ε1cq, ε1b = ε1q
−1d

ε2b = ε2d = ε3b = ε3c = ε4a = ε4d = ε5a = ε5c = 0

for all x ∈ R.

Corollary 1.5. Let R be a 2-torsion free semiprime ring and φ an automor-
phism of R. If a, b ∈ R and axb + φ(b)φ(x)a = 0 for all x ∈ R, then axb = 0 for
all x ∈ R.

Proof. In view of Lemma 1.4, there exist central idempotents ε1, ε2, ε3, ε4, ε5 ∈
C and an invertible element q ∈ Q such that ε1 + ε2 + ε3 + ε4 + ε5 = 1Q and
ε1φ(x) = ε1qxq−1, ε1a = ε1φ(b)q, ε1b = −ε1q

−1a, ε2b = ε3b = ε4a = ε5a = 0.
So ε1a = −q(−ε1q

−1a) = −qε1b = −ε1qb and ε1a = ε1φ(b)q = ε1qbq
−1q =

ε1qb. Hence 2ε1a = 0. Since R is 2-torsion free, ε1a = 0 and then ε1axb = 0. So
it is easy to see that axb = (ε1 + ε2 + ε3 + ε4 + ε5)axb = 0, as desired.

Corollary 1.6. Let R be a semiprime ring and φ an automorphism of R. If
α ∈ Z(R), b ∈ R and (φ(αx) − αx)b = 0 for all x ∈ R, then (φ(x) − x)αb = 0
for all x ∈ R.

Proof. By assumption, −αxb + φ(α)φ(x)b = 0. In view of Lemma 1.4, there
exist central idempotents ε1, ε2, ε3, ε4, ε5 ∈ C and an invertible element q ∈ Q such
that ε1+ε2+ε3+ε4+ε5 = 1Q and ε1φ(x) = ε1qxq−1, ε2b = ε3b = ε4b = ε5α = 0.
In particular, ε1φ(α) = ε1qαq−1 = ε1α. Thus 0 = ε1(−αxb + φ(α)φ(x)b) =
ε1(−x + φ(x))αb. So (φ(x)− x)αb = (ε1 + ε2 + ε3 + ε4 + ε5)(φ(x)− x)αb = 0,
as desired.

2. PROOF OF THEOREM 1

Proof. Since θ−1δ is a Jordan triple (1, θ−1φ)-derivation, replacing δ by
θ−1δ we may assume that δ is a Jordan triple (1, φ)-derivation. Then we have
A(a, b, c)xB(a, b, c) + φ(B(a, b, c))φ(x)A(a, b, c) = 0 for all a, b, c, x ∈ R by
Lemma 1.1. It follows from Corollary 1.5 that A(a, b, c)xB(a, b, c) = 0 for all
a, b, c, x ∈ R. Thus by Lemma 1.2 A(a, b, c)xB(r, s, t) = 0 for all a, b, c, r, s, t, x∈
R. For a, b, c, x, r, s ∈ R, we have

B(A(a, b, c), r, s)xB(A(a, b, c), r, s)

=
(
A(a, b, c)rs− srA(a, b, c)

)
xB(A(a, b, c), r, s)

= A(a, b, c)rsxB(A(a, b, c), r, s)− srA(a, b, c)xB(A(a, b, c), r, s) = 0
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By semiprimeness of R, B(A(a, b, c), r, s) = A(a, b, c)rs− srA(a, b, c) = 0 for all
a, b, c, r, s ∈ R. In light of Lemma 1.3, we see that A(a, b, c) ∈ S for all a, b, c ∈ R.
Let α ∈ S and b, c ∈ R. Then α, αb, αc ∈ Z(R) and cbα = c(αb) = αbc. Similarly,
δ(c)bα = αbδ(c) and αδ(b)c = cδ(b)α († † †). Consider W = δ(αbcxcbα). Use
(3) to obtain

W = δ(α(b(cxc)b)α) = δ(α)bcxcbα + φ(α)δ(b)cxcbα + φ(α)φ(b)δ(c)xcbα

+φ(α)φ(b)φ(c)δ(x)cbα + φ(α)φ(b)φ(c)φ(x)δ(c)bα

+φ(α)φ(b)φ(cxc)δ(b)α + φ(α)φ(bcxcb)δ(α).

On the other hand, using (1) we have

W = δ((αbc)x(αbc)) = δ(αbc)xαbc + φ(αbc)δ(x)αbc+ φ(αbc)φ(x)δ(αbc).

Comparing the above two equations and noticing that cbα = αbc, we see that

φ(αbc)φ(x)A(c, b, α)+ A(α, b, c)xαbc = 0.

Recall that A(c, b, α) = −A(α, b, c) and αbc ∈ Z(R). So

φ(αbc)φ(x)A(α, b, c)− A(α, b, c)xαbc = 0,

for all α ∈ S and b, c, x ∈ R. In view of Corollary 1.6, (φ(x)−x)αbcA(α, b, c) = 0.
Multiplying y form the right hand side, we have (φ(x)−x)αbcyA(α, b, c) = 0 since
A(α, b, c) ∈ Z(R). Thus it follows from Lemma 1.2 that (φ(x)−x)βstyA(α, b, c) =
0 for all α, β ∈ S and b, c, s, t, y ∈ R. Replace β by A(α, b, c) to yield that (φ(x)−
x)A(α, b, c)2 = 0 for all x ∈ R. Note that A(α, b, c)[x, y] = [A(α, b, c)x, y] = 0.
This implies that A(α, b, c)[R, R] = 0. Thus

2A(α, b, c)3

= A(α, b, c)2
(
A(α, b, c)− A(c, b, α)

)

= A(α, b, c)2
(
δ(αbc)− δ(α)bc− φ(α)δ(b)c− φ(α)φ(b)δ(c)

−δ(cbα) + δ(c)bα + φ(c)δ(b)α + φ(c)φ(b)δ(α)
)

= A(α, b, c)2
( − δ(α)bc− φ(α)δ(b)c− φ(α)φ(b)δ(c)

+δ(c)bα + φ(c)δ(b)α + φ(c)φ(b)δ(α)
)

= A(α, b, c)2
(
δ(α)(φ(bc)− bc)− δ(α)(φ(b)φ(c)− φ(c)φ(b))

+(φ(cb)δ(α)− δ(α)φ(cb))− (φ(α) − α)δ(b)c

+(φ(c) − c)δ(b)α + (αb − φ(αb))δ(c)
)

(by († † †))
= A(α, b, c)2

(
δ(α)(φ(bc)− bc)− δ(α)[φ(b), φ(c)]+ [φ(cb), δ(α)]

−(φ(α) − α)δ(b)c + (φ(c)− c)δ(b)α + (αb − φ(αb))δ(c)
)

= 0.
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It is easy to see that Z(R) does not contain nonzero nilpotent elements. So it follows
that A(α, b, c) = 0 for all α ∈ S and b, c ∈ R. That is,

(4) δ(αbc)− δ(α)bc− φ(α)δ(b)c− φ(α)φ(b)δ(c) = 0.

Note that if α ∈ S, then αR ⊆ S and φ(α), φ−1(α) ∈ S. Let α ∈ S and x, b, c ∈ R.
Applying (4) we obtain that

δ(αxabc) = δ(α)xabc + φ(α)δ(x)abc + φ(α)φ(x)δ(abc)

and

δ((αxa)bc)

= δ(αxa)bc + φ(αxa)δ(b)c + φ(αxa)φ(b)δ(c)

=
(
δ(α)xa+φ(α)δ(x)a +φ(α)φ(x)δ(a)

)
bc+φ(αxa)δ(b)c+φ(αxa)φ(b)δ(c).

Comparing the above two equations, φ(α)φ(x)A(a, b, c) = 0 for all α ∈ S and
a, b, c ∈ R. Replacing α by φ−1(A(a, b, c)), we see that A(a, b, c)φ(x)A(a, b, c) =
0. By semiprimeness of R, A(a, b, c) = 0 for all a, b, c ∈ R. That is δ(abc) =
δ(a)bc + φ(a)δ(b)c + φ(a)φ(b)δ(c) for all a, b, c ∈ R. Consider W = δ(abxab).
Then

W = δ(a(bxa)b)

= δ(a)bxab + φ(a)δ(bxa)b + φ(a)φ(bxa)δ(b)

= δ(a)bxab+φ(a)
(
δ(b)xa+φ(b)δ(x)a+φ(b)φ(x)δ(a)

)
b+φ(a)φ(bxa)δ(b).

On the other hand,

W = δ((ab)x(ab)) = δ(ab)xab + φ(ab)δ(x)ab + φ(ab)φ(x)δ(ab).

Comparing the above two equations, we have

(δ(ab)− φ(a)δ(b)− δ(a)b)xab + φ(ab)φ(x)(δ(ab)− φ(a)δ(b)− δ(a)b) = 0.

By Corollary 1.5, (δ(ab)−φ(a)δ(b)−δ(a)b)xab = 0. Thus it follows from Lemma
1.2 that (δ(ab)−φ(a)δ(b)− δ(a)b)xcd = 0 for all a, b, c, d, x ∈ R. By semiprime-
ness of R, δ(ab)− φ(a)δ(b)− δ(a)b = 0, as desired.

3. PROOF OF THEOREM 2

Proof. Proof. Suppose T is a Jordan triple left centralizer. We write A(a, b, c) =
T (abc)−T (a)bc and B(a, b, c) = abc−bca. By assumption, T (aba) = T (a)ba for
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all a, b ∈ R. Replacing a by a + c, we see that T (abc + cba) = T (a)bc + T (c)ba.
Consider W = T (abcxcba + cbaxabc). Then

W = T ((abc)x(cba)+ (cba)x(abc)) = T (abc)xcba+ T (cba)xabc.

On the other hand,

W = T ((a(b(cxc)b)a)+ (c(b(axa)b)c)) = T (a)bcxcba + T (c)baxabc.

So A(a, b, c)xcba+A(c, b, a)xabc = 0 for all a, b, c, x ∈ R. Recall that A(c, b, a) =
−A(a, b, c). Thus A(a, b, c)xB(a, b, c) = 0. By Lemma 1.2, A(a, b, c)xB(r, s, t) =
0 for all a, b, c, r, s, t, x∈ R. For a, b, c, x, r, s ∈ R, we have

B(A(a, b, c), r, s)xB(A(a, b, c), r, s)

=
(
A(a, b, c)rs− srA(a, b, c)

)
xB(A(a, b, c), r, s)

= A(a, b, c)rsxB(A(a, b, c), r, s)− srA(a, b, c)xB(A(a, b, c), r, s) = 0

By semiprimeness of R, B(A(a, b, c), r, s) = A(a, b, c)rs− srA(a, b, c) = 0 for all
a, b, c, r, s ∈ R. In light of Lemma 1.3, we see that A(a, b, c) ∈ S for all a, b, c ∈ R.
Let α ∈ S and b, c ∈ R. Consider W = T (αbcxcbα). Then T (α)bcxcbα =
T (α(b(cxc)b)α) = W = T ((αbc)x(αbc)) = T (αbc)xαbc. Thus A(α, b, c)xαbc =
0. By Lemma 1.2, A(α, b, c)xβst = 0 for all α, β ∈ S and b, c, s, t, x ∈ R. Since
A(α, b, c) ∈ S, we have A(α, b, c)2xst = 0. By semiprimeness of R, A(α, b, c)2 =
0. Recall that Z(R) contains no nonzero nilpotent elements. Hence A(α, b, c) = 0.
In particular, A(c, b, α) = 0. That is, T (cbα) = T (c)bα for all b, c ∈ R and α ∈ S.

Let a, b, c ∈ R and α = A(a, b, c). Then

T (abc)α2 = T ((abc)αα) = T (a(bc)(α2)) = T (a)bcα2.

Hence α3 = (T (abc)− T (a)bc)α2 = 0. Thus α = 0. This means that T (abc) =
T (a)bc for all a, b, c ∈ R. Now we have T (a)bxab = T (abxab) = T (ab)xab.
Then (T (ab) − T (a)b)xab = 0. By Lemma 1.2, (T (ab) − T (a)b)xst = 0 for all
a, b, x, s, t ∈ R. By semiprimeness of R, T (ab)− T (a)b = 0, as desired.
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