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INEQUALITIES FOR Lp CENTROID BODY

Jun Yuan, Lingzhi Zhao and Gangsong Leng

Abstract. In this paper, we first establish the Brunn-Minkowski type inequal-
ities for the volume of the Lp centroid body and its polar body with respect
to the normalized Lp radial addition. Furthermore, we prove some properties
for operator Γ−p and obtain some inequalities for it.

1. INTRODUCTION

The setting for this paper is n-dimensional Euclidean space R
n. Let Kn denote

the set of convex bodies (compact, convex subsets with non-empty interiors) and
Kn

o denote the subset of Kn that consists of convex bodies with the origin in their
interiors. Let Sn−1 denote the unit sphere in R

n. If K ∈ Kn, then the support
function of K, hK = h(K, ·) : Sn−1 → R, is defined by

(1.1) h(K, u) = max{u · x : x ∈ K}, u ∈ Sn−1

where u · x denotes the standard inner product of u and x.
For each compact star-shaped about the origin K ⊂ R

n, denote by V (K) its
n-dimensional volume. The centroid body ΓK of K is the origin-symmetric convex
body whose support function is given by(see [13])

(1.2) h(ΓK, u) =
1

V (K)

∫
K
| u · x |dx,

where the integration is with respect to Lebesgue measure on R
n.

Centroid body was attributed by Blaschke and Dupin (see [3, 14]), it was defined
and investigated by Petty [13]. More results regarding centroid body see [1, 3-4,
13-15].
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Recently, Lutwak, Yang and Zhang based on the classical centroid body, first
introduced the notion of Lp centroid body(see [7, 11]) as follows: For each compact
star-shaped about the origin K in R

n and for real number p ≥ 1, the Lp centroid
body of K, ΓpK, is the convex body, whose support function is defined by

(1.3) hp
ΓpK(u) =

1
cn,pV (K)

∫
K
|u · x|pdx,

where
cn,p =

ωn+p

ω2ωnωp−1
,

and ωn denotes the n-dimensional volume of the unit ball Bn in R
n, namely

ωn = π
n
2 /Γ(1 +

n

2
).

For Lp centroid body, Lutwak, Yang and Zhang made a series of studies and
had obtained many results(see [7-12]). The aim of this paper is to study it further.
For reader’s convenience, we try to make the paper self-contained. This paper,
except for the introduction, is divided into three sections. In Section 2, we recall
some basics about convex bodies, star bodies, Lp mixed volume and Lp dual mixed
volume.

In Section 3, we establish the Brunn-Minkowski type inequalities (Theorem
3.1) for the volume of the Lp centroid body and its polar body with respect to
the normalized Lp radial addition. Thus, this work may be seen as a complemen-
tarity of Lp Brunn-Minkowski theory— often called the Brunn-Minkowski-Firey
theory. Furthermore, the isolate forms of Lp Busemann−Petty centroid inequality
is obtained.

For K ∈ Kn
o and real p > 0, in [12], Lutwak, Yang and Zhang introduced a

new star body Γ−pK. In Section 4, we establish the monotonicity of this new star
body.

2. NOTATION AND PRELIMINARY WORKS

For a compact subset L of R
n, with the origin in its interior, star-shaped with

respect to the origin, the radial function ρ(L, ·) : Sn−1 → R, is defined by

(2.1) ρ(L, u) = ρL(u) = max{λ : λu ∈ L}.

If ρ(L, ·) is continuous and positive, L will be called a star body.
Let ϕn

o denote the set of star bodies in R
n. Two star bodies K, L ∈ ϕn

o are said
to be dilatate (of each other) if ρ(K, u)/ρ(L, u) is independent of u ∈ Sn−1 .
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For K ∈ Kn
o , the polar body K∗ of K , with respect to the origin, is defined by

(2.2) K∗ = {x ∈ R
n|x · y ≤ 1, y ∈ K}.

If K ∈ Kn
o , then it follows from the definitions of support and radial functions,

and the definition of polar body, that
hK∗ = 1/ρK and ρK∗ = 1/hK .

(2.3)
For p ≥ 1, K, L ∈ Kn and ε > 0, the Firey Lp-combination K +p ε · L is

defined as the convex body whose support function is given by(see [5,6])

(2.4) h(K +p ε · L, ·)p = h(K, ·)p + εh(L, ·)p.

For p ≥ 1, the Lp mixed volume, Vp(K, L), of the K and L is defined by[5]:

(2.5)
n

p
Vp(K, L) = lim

ε→0+

V (K +p ε · L)− V (K)
ε

.

This limit exists was demonstrated in [5]. It was shown that corresponding to each
origin-symmetric convex body K, there is a positive Borel measure, Sp(K, ·), on
Sn−1 such that

(2.6) Vp(K, Q) =
1
n

∫
Sn−1

hQ(v)pdSp(K, v).

for each Q ∈ Kn. The measure Sp(K, ·) called the Lp-surface area measure of K.
It turns out that the measure Sp(K, ·) is absolutely continuous with respect to the
surface area measure S(K, ·) of K, and has Radon-Nikodym derivative

dSp(K, ·)
dS(K, ·) = h(K, ·)1−p.

For K, L ∈ ϕn
o , and ε > 0, the Lp-harmonic radial combination K+̃−pε · L is

the star body defined by(see [5])

(2.7) ρ(K+̃−pε · L, ·)−p = ρ(K, ·)−p + ερ(L, ·)−p.

While this addition and scalar multiplication are obviously dependent on p. The Lp

dual mixed volume, Ṽ−p(K, L), of the K and L is defined by(see [5])

(2.8)
n

−p
Ṽ−p(K, L) = lim

ε→0+

V (K+̃−pε · L) − V (K)
ε

.

The definition above and the polar coordinate formula for volume give the following
integral representation of Ṽ−p(K, L)

(2.9) Ṽ−p(K, L) =
1
n

∫
Sn−1

ρ
n+p
K (v)ρ−p

L (v)dS(v),
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where the integration is with respect to spherical Lebesgue measure S on Sn−1.
From the formula (2.6), it follows immediately that for each K ∈ Kn,

(2.10) Vp(K, K) = V (K).

From the formula (2.9), it follows immediately that for each K ∈ ϕn
o ,

(2.11) Ṽ−p(K, K) = V (K).

We shall require two basic inequalities regarding the Lp mixed volume and the
Lp dual mixed volumes. The Lp analog of the classical Minkowski inequality states
that for K, L ∈ Kn

o and p ≥ 1

(2.12) Vp(K, L) ≥ V (K)
n−p

n V (L)
p
n ,

equality holds when p = 1 if and only if K and L are homothetic, when p > 1
if and only if K is a dilatate of L. The Lp Minkowski inequality was established
in [5] by using the Minkowski inequality. The basic inequality for Lp dual mixed
volumes is that for K, L ∈ ϕn

o and p ≥ 1

(2.13) Ṽ−p(K, L) ≥ V (K)
n+p

n V (L)−
p
n ,

with equality if and only if K is a dilatate of L. This inequality is an immediate
consequence of the Hölder inequality and the integral representation (2.9).

For K ∈ Kn
o and real p > 0, Lutwak, Yang and Zhang introduced a new star

body Γ−pK, whose radial function, for u ∈ Sn−1 is given by[12]:

(2.14) ρ−p
Γ−pK(u) =

1
V (K)

∫
Sn−1

|u · v|pdSp(K, v).

Note for p ≥ 1 the body Γ−pK is a convex body.

3. INEQUALITIES FOR Lp CENTROID BODY

Let K, L ∈ ϕn
o and p ≥ 1. We introduce the normalized Lp radial addition of

K and L, K+̄pL. First define ξ > 0 by

(3.1) ξ1/(n+p) =
1
n

∫
Sn−1

[V (K)−1ρ(K, u)n+p+V (L)−1ρ(L, u)n+p]n/(n+p)dS(u).

The body K+̄pL ∈ ϕn
o is defined as the body whose radial function is given by

(3.2) ξ−1ρ(K+̄pL, ·)n+p = V (K)−1ρ(K, ·)n+p + V (L)−1ρ(L, ·)n+p.
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In this section, we establish the Brunn-Minkowski type inequalities for the vol-
ume of the Lp centroid body and its polar body with respect to the normalized Lp

radial addition.

Theorem 3.1. Let K, L ∈ ϕn
o and p ≥ 1. Then

(3.3) V (Γp(K+̄pL))
p
n ≥ V (ΓpK)

p
n + V (ΓpL)

p
n ,

(3.4) V (Γ∗
p(K+̄pL))−

p
n ≥ V (Γ∗

pK)−
p
n + V (Γ∗

pL)−
p
n ,

the equality in (3.3) holds when p = 1 if and only if Γ pK and ΓpL are homothetic,
when p > 1 if and only if ΓpK is a dilatate of ΓpL. The equality in (3.4) holds if
and only if ΓpK is a dilatate of ΓpL.

Proof. By (3.1), (3.2) and the polar coordinate formula for volume, we can get
ξ = V (K+̄pL). Hence from (3.2), we obtain

(3.5)
ρ(K+̄pL, ·)n+p

V (K+̄pL)
=

ρ(K, ·)n+p

V (K)
+

ρ(L, ·)n+p

V (L)
.

Using polar coordinates, (1.3) can be written as an integral over Sn−1

(3.6) hp
ΓpK(u) =

1
(n + p)cn,pV (K)

∫
Sn−1

|u · v|pρK(v)n+pdS(v).

Then from (3.5) and (3.6), we have

hp
Γp(K+̄pL)(u) =

1
(n + p)cn,pV (K+̄pL)

∫
Sn−1

|u · v|pρK+̄pL(v)n+pdS(v)

= hp
ΓpK(u) + hp

ΓpL(u).

Combine with the formula (2.6) and the Lp-Minkowski inequality (2.12), for
any Q ∈ Kn

o , it follows immediately

Vp(Q, Γp(K+̄pL)) = Vp(Q, ΓpK) + Vp(Q, ΓpL)

≥ V (Q)
n−p

n [V (ΓpK)
p
n + V (ΓpL)

p
n ].

equality holds when p = 1 if and only if ΓpK and ΓpL are homothetic, when p > 1
if and only if ΓpK is a dilatate of ΓpL.

Now letting Q = Γp(K+̄pL) in the above inequality, according to (2.9), then
(3.3) follows.
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Furthermore, by (2.3) and the Minkowski integral inequality, we get

V (Γ∗
p(K+̄pL))−

p
n =

[
1
n

∫
Sn−1

h−n
Γp(K+̄pL)

(u)du

]− p
n

=
[

1
n

∫
Sn−1

(hp
ΓpK(u) + h

p
ΓpL(u))−

n
p du

]− p
n

≥
[

1
n

∫
Sn−1

h−n
ΓpK(u)du

]− p
n

+
[

1
n

∫
Sn−1

h−n
ΓpL(u)du

]− p
n

= V (Γ∗
pK)−

p
n + V (Γ∗

pL)−
p
n .

By the equality condition of Minkowski integral inequality, the equality in (3.4)
holds if and only if ΓpK is a dilatate of ΓpL.

Remark 1. If p = 1, K+̄1L is just the harmonic Blaschke linear combination
of K and L, K+̂L. Then we have the following corollary.

Corollary 3.2. Let K, L ∈ ϕn
o . Then

(3.7) V (Γ(K+̂L))
1
n ≥ V (ΓK)

1
n + V (ΓL)

1
n ,

(3.8) V (Γ∗(K+̂L))−
1
n ≥ V (Γ∗K)−

1
n + V (Γ∗L)−

1
n ,

the equality in (3.7) holds if and only if Γ pK and ΓpL are homothetic, the equality
in (3.8) holds if and only if ΓpK is a dilatate of ΓpL.

In [11] and [7], Lutwak, Yang and Zhang conjectured and proved the following
Lp Busemann-Petty centroid inequality, respectively: Let K ∈ Kn

o and p ≥ 1. Then

(3.9) V (ΓpK) ≥ V (K),

with equality if and only if K is an ellipsoid centered at the origin.

The following theorem give an isolate forms of (3.9).

Theorem 3.3. Let K ∈ Kn
o and p ≥ 1. Then

(3.10) V (ΓpK) ≥ [(n + p)cn,p]
n
p V (Γ−pΓpK) ≥ V (K).

Equality on the left-hand side holds if and only if Γ pK is an ellipsoid centered at
the origin and equality on the right-hand side holds if and only if K is a dilatate
of Γ−pΓpK.
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To prove the theorem 3.3, we first introduce the following lemma:

Lemma 3.4. Let K, L ∈ Kn
o and p ≥ 1. Then

(3.11) (n + p)cn,p
Vp(L, ΓpK)

V (L)
=

Ṽ−p(K, Γ−pL)
V (K)

.

Proof. From the integral representation (2.9), definition (2.14), Fubini’s theo-
rem, definition (1.3), and the integral representation (2.6), it follows that

Ṽ−p(L, Γ−pK) =
1
n

∫
Sn−1

ρn+p
K (v)ρ−p

Γ−pL(v)dS(v)

=
1

nV (L)

∫
Sn−1

ρn+p
K (v)

∫
Sn−1

| u · v |p dSp(L, v)dS(v)

=
1

nV (L)

∫
Sn−1

∫
Sn−1

| u · v |p ρn+p
K (v)dS(v)dSp(L, v)

=
(n + p)cn,pV (K)

nV (L)

∫
Sn−1

hp
ΓpK(v)dSp(L, v)

=
(n + p)cn,pV (K)

V (L)
Vp(L, ΓpK).

Remark 2. Identity (3.11) for p = 2 can be found in [13].

Proof of Theorem 3.3. Taking K = Γ−pL in Lemma 3.4 and using (2.11),
(2.12), (3.9), we obtain

(3.12) V (L) ≥ [(n + p)cn,p]
n
p V (ΓpΓ−pL) ≥ [(n + p)cn,p]

n
p V (Γ−pL).

Equality on the left-hand side holds if and only if L is a dilatate of ΓpΓ−pL and
equality on the right-hand side holds if and only if Γ−pL is an ellipsoid centered at
the origin.

Taking L = ΓpK in Lemma 3.4 and using (2.10), (2.13), we obtain

(3.13) V (K) ≤ [(n + p)cn,p]
n
p V (Γ−pΓpK),

equality holds if and only if K is a dilatate of Γ−pΓpK .
Putting L = ΓpK in (3.12) and combining with (3.13), we get (3.10) and the

equality condition of it.
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4. THE MONOTONICITY FOR OPERATOR Γ−p

For p ≥ 1, let Z∗−p denote the class of centered convex bodies that is the range
of the operator Γ∗−p on Kn

o ; i.e. Z∗−p = {Γ∗−pK : K ∈ Kn
o}. In this section, we

establish the monotonicity of operator Γ−p(p ≥ 1). our main result is the following
theorem:

Theorem 4.1. Let K, L ∈ Kn
o and p ≥ 1. If Γ−pK ⊆ Γ−pL, then

(4.1)
Vp(K, Q)

V (K)
≥ Vp(L, Q)

V (L)
,

for all Q ∈ Z ∗−p.

Proof. According to the integral representation (2.6), definition (2.14), (2.3)
and Fubini’s theorem, we immediately get

(4.2)
Vp(K, Γ∗−pL)

V (K)
=

Vp(L, Γ∗−pK)
V (L)

.

Since Q ∈ Z∗−p, then exists a M ∈ Kn
o , such that Q = Γ∗−pM . Hence from

(4.2), we have

(4.3)
Vp(K, Q)

V (K)
=

Vp(K, Γ∗−pM)
V (K)

=
Vp(M, Γ∗−pK)

V (M)
,

and

(4.4)
Vp(L, Q)

V (L)
=

Vp(M, Γ∗−pL)
V (M)

Since Γ−pK ⊆ Γ−pL, then Γ∗−pK ⊇ Γ∗−pL. That is

hΓ∗
−pK(u) ≥ hΓ∗

−pL(u), for all u ∈ Sn−1.

According to (2.5), we have that

Vp(M, Γ∗
−pK) ≥ Vp(M, Γ∗

−pL),

associated with (4.3) and (4.4), we obtain (4.1).

Remark 3. Theorem 4.1 is a dual of the following monotonicity of Lp centroid
body, which was proved by Grinberg and Zhang in [2]:
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Theorem 4.1∗. Let K, L ∈ ϕn
o and p ≥ 1. If ΓpK ⊆ ΓpL, then

Ṽ−p(K, Q)
V (K)

≤ Ṽ−p(L, Q)
V (L)

,

for all Q ∈ Lp.

Theorem 4.2. Let K, L ∈ Kn
o and p ≥ 1. If for all Q ∈ Kn

o , Vp(K, Q) ≤
Vp(L, Q), then

(i)

(4.5)
V (Γ−pK)

p
n

V (K)
≥ V (Γ−pL)

p
n

V (L)
,

(ii)

(4.6)
V (Γ∗−pK)−

p
n

V (K)
≥ V (Γ∗−pL)−

p
n

V (L)
,

equality holds when p = 1 if and only if K is a translate of L, when p > 1 if and
only if K = L.

Proof. (i) Since p ≥ 1, Vp(K, Q) ≤ Vp(L, Q) for all Q ∈ Kn
o , taking Q = ΓpM

for any convex body M ∈ Kn, we have

(4.7) Vp(K, ΓpM) ≤ Vp(L, ΓpM),

equality holds when p = 1 if and only if K is a translate of L, when p > 1 if and
only if K = L.

According to Lemma 3.4, we have

(4.8) V (K)Ṽ−p(M, Γ−pK) ≤ V (L)Ṽ−p(M, Γ−pL).

Taking M = Γ−pL and using (2.11), (2.13), we obtain

(4.9)
V (Γ−pK)

p
n

V (K)
≥ V (Γ−pL)

p
n

V (L)
,

with equality if and only if Γ−pK is a dilatate of Γ−pL.
We know that inequality (4.7) and (4.8) are equivalent by Lemma 3.4, but with

equality if and only if K is a translate of L (p = 1) and if and only if K = L(p > 1)
both implies the equality holds in (4.9). Then we get the equality condition of (4.5).

(ii) Since Vp(K, Q) ≤ Vp(L, Q), here taking Q = Γ∗−pM for any convex body
M ∈ Kn

o , we have

(4.10) Vp(K, Γ∗
−pM) ≤ Vp(L, Γ∗

−pM),
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equality holds when p = 1 if and only if K is a translate of L, when p > 1 if and
only if K = L.

Associated with inequality (4.10) and equality (4.2), we get that

V (K)Vp(M, Γ∗
−pK) ≤ V (L)Vp(M, Γ∗

−pL).

Taking M = Γ∗−pL and using (2.12), we obtain that

(4.11)
V (Γ∗−pK)−

p
n

V (K)
≥ V (Γ∗−pL)−

p
n

V (L)
,

with equality if and only if Γ∗
pK is a dilatate of Γ∗

pL.
According to the case of equality holds in (4.10) and (4.11), we know that the

equality in (4.6) holds when p = 1 if and only if K is a translate of L, when p > 1
if and only if K = L.
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