TAIWANESE JOURNAL OF MATHEMATICS
Vol. 11, No. 5, pp. 1315-1325, December 2007
This paper is available online at http://www.math.nthu.edu.tw/tjm/

INEQUALITIES FOR L_{p} CENTROID BODY

Jun Yuan, Lingzhi Zhao and Gangsong Leng

Abstract

In this paper, we first establish the Brunn-Minkowski type inequalities for the volume of the L_{p} centroid body and its polar body with respect to the normalized L_{p} radial addition. Furthermore, we prove some properties for operator Γ_{-p} and obtain some inequalities for it.

1. Introduction

The setting for this paper is n-dimensional Euclidean space \mathbb{R}^{n}. Let \mathcal{K}^{n} denote the set of convex bodies (compact, convex subsets with non-empty interiors) and \mathcal{K}_{o}^{n} denote the subset of \mathcal{K}^{n} that consists of convex bodies with the origin in their interiors. Let S^{n-1} denote the unit sphere in \mathbb{R}^{n}. If $K \in \mathcal{K}^{n}$, then the support function of $K, h_{K}=h(K, \cdot): S^{n-1} \rightarrow \mathbb{R}$, is defined by

$$
\begin{equation*}
h(K, u)=\max \{u \cdot x: x \in K\}, \quad u \in S^{n-1} \tag{1.1}
\end{equation*}
$$

where $u \cdot x$ denotes the standard inner product of u and x.
For each compact star-shaped about the origin $K \subset \mathbb{R}^{n}$, denote by $V(K)$ its n-dimensional volume. The centroid body ΓK of K is the origin-symmetric convex body whose support function is given by(see [13])

$$
\begin{equation*}
h(\Gamma K, u)=\frac{1}{V(K)} \int_{K}|u \cdot x| d x \tag{1.2}
\end{equation*}
$$

where the integration is with respect to Lebesgue measure on \mathbb{R}^{n}.
Centroid body was attributed by Blaschke and Dupin (see [3, 14]), it was defined and investigated by Petty [13]. More results regarding centroid body see [1, 3-4, 13-15].

[^0]Recently, Lutwak, Yang and Zhang based on the classical centroid body, first introduced the notion of L_{p} centroid body (see [7, 11]) as follows: For each compact star-shaped about the origin K in \mathbb{R}^{n} and for real number $p \geq 1$, the L_{p} centroid body of $K, \Gamma_{p} K$, is the convex body, whose support function is defined by

$$
\begin{equation*}
h_{\Gamma_{p} K}^{p}(u)=\frac{1}{c_{n, p} V(K)} \int_{K}|u \cdot x|^{p} d x, \tag{1.3}
\end{equation*}
$$

where

$$
c_{n, p}=\frac{\omega_{n+p}}{\omega_{2} \omega_{n} \omega_{p-1}}
$$

and ω_{n} denotes the n-dimensional volume of the unit ball B_{n} in \mathbb{R}^{n}, namely

$$
\omega_{n}=\pi^{\frac{n}{2}} / \Gamma\left(1+\frac{n}{2}\right)
$$

For L_{p} centroid body, Lutwak, Yang and Zhang made a series of studies and had obtained many results(see [7-12]). The aim of this paper is to study it further. For reader's convenience, we try to make the paper self-contained. This paper, except for the introduction, is divided into three sections. In Section 2, we recall some basics about convex bodies, star bodies, L_{p} mixed volume and L_{p} dual mixed volume.

In Section 3, we establish the Brunn-Minkowski type inequalities (Theorem 3.1) for the volume of the L_{p} centroid body and its polar body with respect to the normalized L_{p} radial addition. Thus, this work may be seen as a complementarity of L_{p} Brunn-Minkowski theory- often called the Brunn-Minkowski-Firey theory. Furthermore, the isolate forms of L_{p} Busemann-Petty centroid inequality is obtained.

For $K \in \mathcal{K}_{o}^{n}$ and real $p>0$, in [12], Lutwak, Yang and Zhang introduced a new star body $\Gamma_{-p} K$. In Section 4, we establish the monotonicity of this new star body.

2. Notation and Preliminary Works

For a compact subset L of \mathbb{R}^{n}, with the origin in its interior, star-shaped with respect to the origin, the radial function $\rho(L, \cdot): S^{n-1} \rightarrow \mathbb{R}$, is defined by

$$
\begin{equation*}
\rho(L, u)=\rho_{L}(u)=\max \{\lambda: \lambda u \in L\} . \tag{2.1}
\end{equation*}
$$

If $\rho(L, \cdot)$ is continuous and positive, L will be called a star body.
Let φ_{o}^{n} denote the set of star bodies in \mathbb{R}^{n}. Two star bodies $K, L \in \varphi_{o}^{n}$ are said to be dilatate (of each other) if $\rho(K, u) / \rho(L, u)$ is independent of $u \in S^{n-1}$.

For $K \in \mathcal{K}_{o}^{n}$, the polar body K^{*} of K, with respect to the origin, is defined by

$$
\begin{equation*}
K^{*}=\left\{x \in \mathbb{R}^{n} \mid x \cdot y \leq 1, y \in K\right\} \tag{2.2}
\end{equation*}
$$

If $K \in \mathcal{K}_{o}^{n}$, then it follows from the definitions of support and radial functions, and the definition of polar body, that

$$
\begin{equation*}
h_{K^{*}}=1 / \rho_{K} \quad \text { and } \quad \rho_{K^{*}}=1 / h_{K} \tag{2.3}
\end{equation*}
$$

For $p \geq 1, K, L \in \mathcal{K}^{n}$ and $\varepsilon>0$, the Firey L_{p}-combination $K+{ }_{p} \varepsilon \cdot L$ is defined as the convex body whose support function is given by(see $[5,6]$)

$$
\begin{equation*}
h\left(K+_{p} \varepsilon \cdot L, \cdot\right)^{p}=h(K, \cdot)^{p}+\varepsilon h(L, \cdot)^{p} . \tag{2.4}
\end{equation*}
$$

For $p \geq 1$, the L_{p} mixed volume, $V_{p}(K, L)$, of the K and L is defined by[5]:

$$
\begin{equation*}
\frac{n}{p} V_{p}(K, L)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{V\left(K+_{p} \varepsilon \cdot L\right)-V(K)}{\varepsilon} \tag{2.5}
\end{equation*}
$$

This limit exists was demonstrated in [5]. It was shown that corresponding to each origin-symmetric convex body K, there is a positive Borel measure, $S_{p}(K, \cdot)$, on S^{n-1} such that

$$
\begin{equation*}
V_{p}(K, Q)=\frac{1}{n} \int_{S^{n-1}} h_{Q}(v)^{p} d S_{p}(K, v) \tag{2.6}
\end{equation*}
$$

for each $Q \in \mathcal{K}^{n}$. The measure $S_{p}(K, \cdot)$ called the L_{p}-surface area measure of K. It turns out that the measure $S_{p}(K, \cdot)$ is absolutely continuous with respect to the surface area measure $S(K, \cdot)$ of K, and has Radon-Nikodym derivative

$$
\frac{d S_{p}(K, \cdot)}{d S(K, \cdot)}=h(K, \cdot)^{1-p}
$$

For $K, L \in \varphi_{o}^{n}$, and $\varepsilon>0$, the L_{p}-harmonic radial combination $K \widetilde{+}_{-p} \varepsilon \cdot L$ is the star body defined by(see [5])

$$
\begin{equation*}
\rho\left(K \widetilde{+}_{-p} \varepsilon \cdot L, \cdot\right)^{-p}=\rho(K, \cdot)^{-p}+\varepsilon \rho(L, \cdot)^{-p} \tag{2.7}
\end{equation*}
$$

While this addition and scalar multiplication are obviously dependent on p. The L_{p} dual mixed volume, $\widetilde{V}_{-p}(K, L)$, of the K and L is defined by(see [5])

$$
\begin{equation*}
\frac{n}{-p} \tilde{V}_{-p}(K, L)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{V\left(K \tilde{+}_{-p} \varepsilon \cdot L\right)-V(K)}{\varepsilon} \tag{2.8}
\end{equation*}
$$

The definition above and the polar coordinate formula for volume give the following integral representation of $\widetilde{V}_{-p}(K, L)$

$$
\begin{equation*}
\widetilde{V}_{-p}(K, L)=\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n+p}(v) \rho_{L}^{-p}(v) d S(v) \tag{2.9}
\end{equation*}
$$

where the integration is with respect to spherical Lebesgue measure S on S^{n-1}.
From the formula (2.6), it follows immediately that for each $K \in \mathcal{K}^{n}$,

$$
\begin{equation*}
V_{p}(K, K)=V(K) . \tag{2.10}
\end{equation*}
$$

From the formula (2.9), it follows immediately that for each $K \in \varphi_{o}^{n}$,

$$
\begin{equation*}
\tilde{V}_{-p}(K, K)=V(K) . \tag{2.11}
\end{equation*}
$$

We shall require two basic inequalities regarding the L_{p} mixed volume and the L_{p} dual mixed volumes. The L_{p} analog of the classical Minkowski inequality states that for $K, L \in \mathcal{K}_{o}^{n}$ and $p \geq 1$

$$
\begin{equation*}
V_{p}(K, L) \geq V(K)^{\frac{n-p}{n}} V(L)^{\frac{p}{n}}, \tag{2.12}
\end{equation*}
$$

equality holds when $p=1$ if and only if K and L are homothetic, when $p>1$ if and only if K is a dilatate of L. The L_{p} Minkowski inequality was established in [5] by using the Minkowski inequality. The basic inequality for L_{p} dual mixed volumes is that for $K, L \in \varphi_{o}^{n}$ and $p \geq 1$

$$
\begin{equation*}
\widetilde{V}_{-p}(K, L) \geq V(K)^{\frac{n+p}{n}} V(L)^{-\frac{p}{n}}, \tag{2.13}
\end{equation*}
$$

with equality if and only if K is a dilatate of L. This inequality is an immediate consequence of the Hölder inequality and the integral representation (2.9).

For $K \in \mathcal{K}_{o}^{n}$ and real $p>0$, Lutwak, Yang and Zhang introduced a new star body $\Gamma_{-p} K$, whose radial function, for $u \in S^{n-1}$ is given by[12]:

$$
\begin{equation*}
\rho_{\Gamma_{-p} K}^{-p}(u)=\frac{1}{V(K)} \int_{S^{n-1}}|u \cdot v|^{p} d S_{p}(K, v) . \tag{2.14}
\end{equation*}
$$

Note for $p \geq 1$ the body $\Gamma_{-p} K$ is a convex body.

3. Inequalities for L_{p} Centroid Body

Let $K, L \in \varphi_{o}^{n}$ and $p \geq 1$. We introduce the normalized L_{p} radial addition of K and $L, K \overline{+}_{p} L$. First define $\xi>0$ by

$$
\begin{equation*}
\xi^{1 /(n+p)}=\frac{1}{n} \int_{S^{n-1}}\left[V(K)^{-1} \rho(K, u)^{n+p}+V(L)^{-1} \rho(L, u)^{n+p}\right]^{n /(n+p)} d S(u) . \tag{3.1}
\end{equation*}
$$

The body $K \bar{\Psi}_{p} L \in \varphi_{o}^{n}$ is defined as the body whose radial function is given by

$$
\begin{equation*}
\xi^{-1} \rho\left(K \overline{+}_{p} L, \cdot\right)^{n+p}=V(K)^{-1} \rho(K, \cdot)^{n+p}+V(L)^{-1} \rho(L, \cdot)^{n+p} . \tag{3.2}
\end{equation*}
$$

In this section, we establish the Brunn-Minkowski type inequalities for the volume of the L_{p} centroid body and its polar body with respect to the normalized L_{p} radial addition.

Theorem 3.1. Let $K, L \in \varphi_{o}^{n}$ and $p \geq 1$. Then

$$
\begin{gather*}
V\left(\Gamma_{p}\left(K \overline{+}_{p} L\right)\right)^{\frac{p}{n}} \geq V\left(\Gamma_{p} K\right)^{\frac{p}{n}}+V\left(\Gamma_{p} L\right)^{\frac{p}{n}}, \tag{3.3}\\
V\left(\Gamma_{p}^{*}\left(K \bar{干}_{p} L\right)\right)^{-\frac{p}{n}} \geq V\left(\Gamma_{p}^{*} K\right)^{-\frac{p}{n}}+V\left(\Gamma_{p}^{*} L\right)^{-\frac{p}{n}}, \tag{3.4}
\end{gather*}
$$

the equality in (3.3) holds when $p=1$ if and only if $\Gamma_{p} K$ and $\Gamma_{p} L$ are homothetic, when $p>1$ if and only if $\Gamma_{p} K$ is a dilatate of $\Gamma_{p} L$. The equality in (3.4) holds if and only if $\Gamma_{p} K$ is a dilatate of $\Gamma_{p} L$.

Proof. By (3.1), (3.2) and the polar coordinate formula for volume, we can get $\xi=V\left(K \overline{+}_{p} L\right)$. Hence from (3.2), we obtain

$$
\begin{equation*}
\frac{\rho\left(K \overline{+}_{p} L, \cdot\right)^{n+p}}{V\left(K \overline{+}_{p} L\right)}=\frac{\rho(K, \cdot)^{n+p}}{V(K)}+\frac{\rho(L, \cdot)^{n+p}}{V(L)} . \tag{3.5}
\end{equation*}
$$

Using polar coordinates, (1.3) can be written as an integral over S^{n-1}

$$
\begin{equation*}
h_{\Gamma_{p} K}^{p}(u)=\frac{1}{(n+p) c_{n, p} V(K)} \int_{S^{n-1}}|u \cdot v|^{p} \rho_{K}(v)^{n+p} d S(v) . \tag{3.6}
\end{equation*}
$$

Then from (3.5) and (3.6), we have

$$
\begin{aligned}
h_{\Gamma_{p}\left(K \bar{q}_{p} L\right)}^{p}(u) & =\frac{1}{(n+p) c_{n, p} V\left(K \bar{\mp}_{p} L\right)} \int_{S^{n-1}}|u \cdot v|^{p} \rho_{K \bar{p}_{p}} L(v)^{n+p} d S(v) \\
& =h_{\Gamma_{p} K}^{p}(u)+h_{\Gamma_{p} L}^{p}(u) .
\end{aligned}
$$

Combine with the formula (2.6) and the L_{p}-Minkowski inequality (2.12), for any $Q \in \mathcal{K}_{o}^{n}$, it follows immediately

$$
\begin{aligned}
V_{p}\left(Q, \Gamma_{p}\left(K \mp_{p} L\right)\right) & =V_{p}\left(Q, \Gamma_{p} K\right)+V_{p}\left(Q, \Gamma_{p} L\right) \\
& \geq V(Q)^{\frac{n-p}{n}}\left[V\left(\Gamma_{p} K\right)^{\frac{p}{n}}+V\left(\Gamma_{p} L\right)^{\frac{p}{n}}\right] .
\end{aligned}
$$

equality holds when $p=1$ if and only if $\Gamma_{p} K$ and $\Gamma_{p} L$ are homothetic, when $p>1$ if and only if $\Gamma_{p} K$ is a dilatate of $\Gamma_{p} L$.

Now letting $Q=\Gamma_{p}\left(K \mp_{p} L\right)$ in the above inequality, according to (2.9), then (3.3) follows.

Furthermore, by (2.3) and the Minkowski integral inequality, we get

$$
\begin{aligned}
V\left(\Gamma_{p}^{*}\left(K \overline{+}_{p} L\right)\right)^{-\frac{p}{n}} & =\left[\frac{1}{n} \int_{S^{n-1}} h_{\Gamma_{p}\left(K \mp_{p} L\right)}^{-n}(u) d u\right]^{-\frac{p}{n}} \\
& =\left[\frac{1}{n} \int_{S^{n-1}}\left(h_{\Gamma_{p} K}^{p}(u)+h_{\Gamma_{p} L}^{p}(u)\right)^{-\frac{n}{p}} d u\right]^{-\frac{p}{n}} \\
& \geq\left[\frac{1}{n} \int_{S^{n-1}} h_{\Gamma_{p} K}^{-n}(u) d u\right]^{-\frac{p}{n}}+\left[\frac{1}{n} \int_{S^{n-1}} h_{\Gamma_{p} L}^{-n}(u) d u\right]^{-\frac{p}{n}} \\
& =V\left(\Gamma_{p}^{*} K\right)^{-\frac{p}{n}}+V\left(\Gamma_{p}^{*} L\right)^{-\frac{p}{n}}
\end{aligned}
$$

By the equality condition of Minkowski integral inequality, the equality in (3.4) holds if and only if $\Gamma_{p} K$ is a dilatate of $\Gamma_{p} L$.

Remark 1. If $p=1, K \overline{+}_{1} L$ is just the harmonic Blaschke linear combination of K and $L, K \hat{+} L$. Then we have the following corollary.

Corollary 3.2. Let $K, L \in \varphi_{o}^{n}$. Then

$$
\begin{gather*}
V(\Gamma(K \hat{+} L))^{\frac{1}{n}} \geq V(\Gamma K)^{\frac{1}{n}}+V(\Gamma L)^{\frac{1}{n}} \tag{3.7}\\
V\left(\Gamma^{*}(K \hat{+} L)\right)^{-\frac{1}{n}} \geq V\left(\Gamma^{*} K\right)^{-\frac{1}{n}}+V\left(\Gamma^{*} L\right)^{-\frac{1}{n}}, \tag{3.8}
\end{gather*}
$$

the equality in (3.7) holds if and only if $\Gamma_{p} K$ and $\Gamma_{p} L$ are homothetic, the equality in (3.8) holds if and only if $\Gamma_{p} K$ is a dilatate of $\Gamma_{p} L$.

In [11] and [7], Lutwak, Yang and Zhang conjectured and proved the following L_{p} Busemann-Petty centroid inequality, respectively: Let $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$. Then

$$
\begin{equation*}
V\left(\Gamma_{p} K\right) \geq V(K) \tag{3.9}
\end{equation*}
$$

with equality if and only if K is an ellipsoid centered at the origin.
The following theorem give an isolate forms of (3.9).
Theorem 3.3. Let $K \in \mathcal{K}_{o}^{n}$ and $p \geq 1$. Then

$$
\begin{equation*}
V\left(\Gamma_{p} K\right) \geq\left[(n+p) c_{n, p}\right]^{\frac{n}{p}} V\left(\Gamma_{-p} \Gamma_{p} K\right) \geq V(K) . \tag{3.10}
\end{equation*}
$$

Equality on the left-hand side holds if and only if $\Gamma_{p} K$ is an ellipsoid centered at the origin and equality on the right-hand side holds if and only if K is a dilatate of $\Gamma_{-p} \Gamma_{p} K$.

To prove the theorem 3.3, we first introduce the following lemma:
Lemma 3.4. Let $K, L \in \mathcal{K}_{o}^{n}$ and $p \geq 1$. Then

$$
\begin{equation*}
(n+p) c_{n, p} \frac{V_{p}\left(L, \Gamma_{p} K\right)}{V(L)}=\frac{\widetilde{V}_{-p}\left(K, \Gamma_{-p} L\right)}{V(K)} \tag{3.11}
\end{equation*}
$$

Proof. From the integral representation (2.9), definition (2.14), Fubini's theorem, definition (1.3), and the integral representation (2.6), it follows that

$$
\begin{aligned}
\widetilde{V}_{-p}\left(L, \Gamma_{-p} K\right) & =\frac{1}{n} \int_{S^{n-1}} \rho_{K}^{n+p}(v) \rho_{\Gamma_{-p} L}^{-p}(v) d S(v) \\
& =\frac{1}{n V(L)} \int_{S^{n-1}} \rho_{K}^{n+p}(v) \int_{S^{n-1}}|u \cdot v|^{p} d S_{p}(L, v) d S(v) \\
& =\frac{1}{n V(L)} \int_{S^{n-1}} \int_{S^{n-1}}|u \cdot v|^{p} \rho_{K}^{n+p}(v) d S(v) d S_{p}(L, v) \\
& =\frac{(n+p) c_{n, p} V(K)}{n V(L)} \int_{S^{n-1}} h_{\Gamma_{p} K}^{p}(v) d S_{p}(L, v) \\
& =\frac{(n+p) c_{n, p} V(K)}{V(L)} V_{p}\left(L, \Gamma_{p} K\right)
\end{aligned}
$$

Remark 2. Identity (3.11) for $p=2$ can be found in [13].
Proof of Theorem 3.3. Taking $K=\Gamma_{-p} L$ in Lemma 3.4 and using (2.11), (2.12), (3.9), we obtain

$$
\begin{equation*}
V(L) \geq\left[(n+p) c_{n, p}\right]^{\frac{n}{p}} V\left(\Gamma_{p} \Gamma_{-p} L\right) \geq\left[(n+p) c_{n, p}\right]^{\frac{n}{p}} V\left(\Gamma_{-p} L\right) \tag{3.12}
\end{equation*}
$$

Equality on the left-hand side holds if and only if L is a dilatate of $\Gamma_{p} \Gamma_{-p} L$ and equality on the right-hand side holds if and only if $\Gamma_{-p} L$ is an ellipsoid centered at the origin.

Taking $L=\Gamma_{p} K$ in Lemma 3.4 and using (2.10), (2.13), we obtain

$$
\begin{equation*}
V(K) \leq\left[(n+p) c_{n, p}\right]^{\frac{n}{p}} V\left(\Gamma_{-p} \Gamma_{p} K\right) \tag{3.13}
\end{equation*}
$$

equality holds if and only if K is a dilatate of $\Gamma_{-p} \Gamma_{p} K$.
Putting $L=\Gamma_{p} K$ in (3.12) and combining with (3.13), we get (3.10) and the equality condition of it.

4. The Monotonicity for Operator Γ_{-p}

For $p \geq 1$, let Z_{-p}^{*} denote the class of centered convex bodies that is the range of the operator Γ_{-p}^{*} on \mathcal{K}_{o}^{n}; i.e. $Z_{-p}^{*}=\left\{\Gamma_{-p}^{*} K: K \in \mathcal{K}_{o}^{n}\right\}$. In this section, we establish the monotonicity of operator $\Gamma_{-p}(p \geq 1)$. our main result is the following theorem:

Theorem 4.1. Let $K, L \in \mathcal{K}_{o}^{n}$ and $p \geq 1$. If $\Gamma_{-p} K \subseteq \Gamma_{-p} L$, then

$$
\begin{equation*}
\frac{V_{p}(K, Q)}{V(K)} \geq \frac{V_{p}(L, Q)}{V(L)} \tag{4.1}
\end{equation*}
$$

for all $Q \in \mathcal{Z}_{-p}^{*}$.
Proof. According to the integral representation (2.6), definition (2.14), (2.3) and Fubini's theorem, we immediately get

$$
\begin{equation*}
\frac{V_{p}\left(K, \Gamma_{-p}^{*} L\right)}{V(K)}=\frac{V_{p}\left(L, \Gamma_{-p}^{*} K\right)}{V(L)} . \tag{4.2}
\end{equation*}
$$

Since $Q \in \mathcal{Z}_{-p}^{*}$, then exists a $M \in \mathcal{K}_{o}^{n}$, such that $Q=\Gamma_{-p}^{*} M$. Hence from (4.2), we have

$$
\begin{equation*}
\frac{V_{p}(K, Q)}{V(K)}=\frac{V_{p}\left(K, \Gamma_{-p}^{*} M\right)}{V(K)}=\frac{V_{p}\left(M, \Gamma_{-p}^{*} K\right)}{V(M)} \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{V_{p}(L, Q)}{V(L)}=\frac{V_{p}\left(M, \Gamma_{-p}^{*} L\right)}{V(M)} \tag{4.4}
\end{equation*}
$$

Since $\Gamma_{-p} K \subseteq \Gamma_{-p} L$, then $\Gamma_{-p}^{*} K \supseteq \Gamma_{-p}^{*} L$. That is

$$
h_{\Gamma_{-p}^{*} K}(u) \geq h_{\Gamma_{-p}^{*} L}(u), \text { for all } u \in S^{n-1} .
$$

According to (2.5), we have that

$$
V_{p}\left(M, \Gamma_{-p}^{*} K\right) \geq V_{p}\left(M, \Gamma_{-p}^{*} L\right),
$$

associated with (4.3) and (4.4), we obtain (4.1).
Remark 3. Theorem 4.1 is a dual of the following monotonicity of L_{p} centroid body, which was proved by Grinberg and Zhang in [2]:

Theorem 4.1*. Let $K, L \in \varphi_{o}^{n}$ and $p \geq 1$. If $\Gamma_{p} K \subseteq \Gamma_{p} L$, then

$$
\frac{\widetilde{V}_{-p}(K, Q)}{V(K)} \leq \frac{\tilde{V}_{-p}(L, Q)}{V(L)}
$$

for all $Q \in \mathcal{L}_{p}$.
Theorem 4.2. Let $K, L \in \mathcal{K}_{o}^{n}$ and $p \geq 1$. If for all $Q \in \mathcal{K}_{o}^{n}, V_{p}(K, Q) \leq$ $V_{p}(L, Q)$, then

$$
\begin{equation*}
\frac{V\left(\Gamma_{-p} K\right)^{\frac{p}{n}}}{V(K)} \geq \frac{V\left(\Gamma_{-p} L\right)^{\frac{p}{n}}}{V(L)} \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\frac{V\left(\Gamma_{-p}^{*} K\right)^{-\frac{p}{n}}}{V(K)} \geq \frac{V\left(\Gamma_{-p}^{*} L\right)^{-\frac{p}{n}}}{V(L)} \tag{4.6}
\end{equation*}
$$

equality holds when $p=1$ if and only if K is a translate of L, when $p>1$ if and only if $K=L$.

Proof. (i) Since $p \geq 1, V_{p}(K, Q) \leq V_{p}(L, Q)$ for all $Q \in \mathcal{K}_{o}^{n}$, taking $Q=\Gamma_{p} M$ for any convex body $M \in \mathcal{K}^{n}$, we have

$$
\begin{equation*}
V_{p}\left(K, \Gamma_{p} M\right) \leq V_{p}\left(L, \Gamma_{p} M\right) \tag{4.7}
\end{equation*}
$$

equality holds when $p=1$ if and only if K is a translate of L, when $p>1$ if and only if $K=L$.

According to Lemma 3.4, we have

$$
\begin{equation*}
V(K) \widetilde{V}_{-p}\left(M, \Gamma_{-p} K\right) \leq V(L) \widetilde{V}_{-p}\left(M, \Gamma_{-p} L\right) \tag{4.8}
\end{equation*}
$$

Taking $M=\Gamma_{-p} L$ and using (2.11), (2.13), we obtain

$$
\begin{equation*}
\frac{V\left(\Gamma_{-p} K\right)^{\frac{p}{n}}}{V(K)} \geq \frac{V\left(\Gamma_{-p} L\right)^{\frac{p}{n}}}{V(L)} \tag{4.9}
\end{equation*}
$$

with equality if and only if $\Gamma_{-p} K$ is a dilatate of $\Gamma_{-p} L$.
We know that inequality (4.7) and (4.8) are equivalent by Lemma 3.4, but with equality if and only if K is a translate of $L(p=1)$ and if and only if $K=L(p>1)$ both implies the equality holds in (4.9). Then we get the equality condition of (4.5).
(ii) Since $V_{p}(K, Q) \leq V_{p}(L, Q)$, here taking $Q=\Gamma_{-p}^{*} M$ for any convex body $M \in \mathcal{K}_{o}^{n}$, we have

$$
\begin{equation*}
V_{p}\left(K, \Gamma_{-p}^{*} M\right) \leq V_{p}\left(L, \Gamma_{-p}^{*} M\right) \tag{4.10}
\end{equation*}
$$

equality holds when $p=1$ if and only if K is a translate of L, when $p>1$ if and only if $K=L$.

Associated with inequality (4.10) and equality (4.2), we get that

$$
V(K) V_{p}\left(M, \Gamma_{-p}^{*} K\right) \leq V(L) V_{p}\left(M, \Gamma_{-p}^{*} L\right)
$$

Taking $M=\Gamma_{-p}^{*} L$ and using (2.12), we obtain that

$$
\begin{equation*}
\frac{V\left(\Gamma_{-p}^{*} K\right)^{-\frac{p}{n}}}{V(K)} \geq \frac{V\left(\Gamma_{-p}^{*} L\right)^{-\frac{p}{n}}}{V(L)} \tag{4.11}
\end{equation*}
$$

with equality if and only if $\Gamma_{p}^{*} K$ is a dilatate of $\Gamma_{p}^{*} L$.
According to the case of equality holds in (4.10) and (4.11), we know that the equality in (4.6) holds when $p=1$ if and only if K is a translate of L, when $p>1$ if and only if $K=L$.

Acknowledgment

The authors are most grateful to the referee for his valuable suggestions.

References

1. R. J. Gardner, Geometric Tomography, Cambridge Univ. Press, Cambridge, 1995.
2. E. Grinberg, G.Y.Zhang, Convolutions, Transforms, and Convex Bodies, Proc. London Math. Soc., 78 (1999), 77-115.
3. K. Leichtwei β, Affine Geometry of Convex Bodies, J. A. Barth, Heidelberg, 1998.
4. E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math. Soc., 60 (1990), 365-391.
5. E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131-150.
6. E. Lutwak, The Brunn-Minkowski-Firey theory II: Affine and Geominimal Surface Areas, Adv. Math., 118 (1996), 244-294.
7. E. Lutwak, D. Yang and G. Y. Zhang, L_{p} affine isoperimetric inequalities, J. Differential Geom., 56 (2000), 111-132.
8. E. Lutwak, D. Yang and G. Y. Zhang, On the L_{p}-Minkowski problem, Tran. Amer. Math., 356 (2004), 4359-4370.
9. E. Lutwak, D. Yang and G. Y. Zhang, The Cramer-Rao inequality for star bodies, Duke. Math. J., 112 (2002), 59-81.
10. E. Lutwak, D. Yang and G. Y. Zhang, A new ellipsoid associated with convex bodies, Duke. Math. J., 104 (2000), 375-390.
11. E. Lutwak and G. Y. Zhang, Blaschke-Santalo inequalities, J. Differential Geom., 47 (1997), 1-16.
12. E. Lutwak, D. Yang and G. Y. Zhang, L_{p} John Ellipsoids, Proc. London Math. Soc., 90 (2005), 497-520.
13. C. M. Petty, Centroid surface, Pacific J. Math., 11 (1961), 1535-1547.
14. R. Schneider, Convex Bodies: The Brunn-Minkowski theory, Cambridge Univ. Press, Cambridge, 1993.
15. G. Y. Zhang, Centered bodies and dual mixed volumes, Tran. Amer. Math., 345 (1994), 777-801.

Jun Yuan
School of Mathematics and Computer Science,
Nanjing Normal University,
Nanjing 210097,
P. R. China
E-mail: yuanjun_math@126.com
Lingzhi Zhao
Department of Mathematics,
Nanjing Xiaozhuang University,
Nanjing 211171,
P. R. China
E-mail: lzzhao@126.com
Gangsong Leng
Department of Mathematics,
Shanghai University,
Shanghai, 200444,
P. R. China
E-mail: gleng@staff.shu.edu.cn

[^0]: Received September 13, 2005, accepted March 7, 2006.
 Communicated by Bor-Luh Lin.
 2000 Mathematics Subject Classification: 52A40, 52A20.
 Key words and phrases: L_{p} mixed volume, L_{p} dual mixed volume, L_{p} centroid body, Inequality. Supported in part by the National Natural Science Foundation of China. (Grant No. 10671117).

