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CHARACTERIZATIONS OF ALMOST CONVERGENT SEQUENCES
IN A HILBERT SPACE OR IN Lp(T )

Chang-Pao Chen and Meng-Kuang Kuo

Abstract. In [Acta Math. 80(1948),167-190], G. G. Lorentz characterized
almost convergent sequences in R (or in C) in terms of the concept of uniform
convergence of the de la Vallée-Poussin means. In this paper, we give a
further study on such kind of convergence for any Hilbert space or Lp(T ),
where 1 ≤ p ≤ ∞. Two new Cauchy forms for almost convergence are
established. We prove that any of them is equivalent to the one established
by Miller and Orhan. We use these forms to characterize almost convergent
sequences in the aforementioned spaces in terms of coefficients.

1. INTRODUCTION

Let (X, ‖·‖) be a Hilbert space or (Lp(T ), ‖·‖p), and fn ∈ X , where 1 ≤ p ≤ ∞
and T = (−π, π]. We say that {fn}∞n=0 is weakly almost convergent to f ∈ X , if
the following statement is true:

(1.1) L({λ(fn)}) = λ(f) for all Banach limits L and for all λ ∈ X∗,

where X∗ denotes the dual space of X . This concept was introduced in [7, p. 169]
by G. G. Lorentz for the scalar fields R or C, and extended to general X by Deeds
[3] and Kurtz [5, p. 494]. In [7], Lorentz used “almost convergent” instead of
“weakly almost convergent”. It is known (see e.g. [7, Theorem 1] or [6, Theorem
3.2(d)]) that (1.1) ⇐⇒ (1.2) ⇐= (1.3), where

(1.2) lim
N→∞

{
sup
n≥0

∣∣∣∣λ
(

1
N

n+N−1∑
k=n

fk − f

)∣∣∣∣
}

= 0 for all λ ∈ X∗,

Received August 15, 2005, accepted November 10, 2005.
Communicated by Sen-Yen Shaw.
2000 Mathematics Subject Classification: Primary 40A30, 40G99, 46B15.
Key words and phrases: Almost convergent sequences, Uniform convergence of de la Valĺee-Poussin
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(1.3) lim
N→∞

{
sup
n≥0

∥∥∥∥ 1
N

n+N−1∑
k=n

fk − f

∥∥∥∥
}

= 0.

In general, (1.1) and (1.2) are weaker than (1.3). But they are equivalent when
{fn}∞n=0 is relatively compact (cf. [5, Theorem 2.1.3]). Condition (1.3) is analogous
to the definition of the mean values which are used in the theory of almost periodic
functions, (cf. [7, Eq. (11)] or [2, Eq. (1.31)]). This definition involves the de la
Vallée-Poussin means 1

N

∑n+N−1
k=n fk (n ≥ 0; N ≥ 1) and is related to the method

(C, 1) of the arithmetic means. It describes a uniform convergence property. When
(1.3) is true, we shall say that {fn}∞n=0 is almost convergent to f .

In [7, §3], Lorentz used (1.3) to find several examples of almost convergent
sequences for X = R or C. These include almost periodic sequences. In this paper,
we try to characterize almost convergent sequences in X from the following two
directions. In §2, we use a weak form of (1.3) to derive two new Cauchy forms of
(1.3). These forms allow us to examine the almost convergence property of {fn}∞n=0

directly from the behavior of the differences of its de la Vallée-Poussin means,
without investigating the existence problem of the limit f . They are equivalent to the
one appeared in [8, Theorem 2.5]. In §3-§4, we characterize the almost convergence
property from the viewpoint of coefficients. More precisely, we shall use (1.3) and
the aforementioned Cauchy forms to characterize those matrices A = (cn,k)n,k≥0

for which the sequences

(1.4) fn =
∞∑

k=0

cn,kφk (n ≥ 0)

are almost convergent in X , where {φn}∞n=0 is a given set in X such that the
associated Parseval formula or the Hausdorff-Young inequality holds. We state our
results for the case that X is a Hilbert space or Lp(T ), where 1 ≤ p ≤ ∞. For
p = 2, these matrices have been completely characterized. As for p �= 2, certain type
of necessary conditions are found. However, it is unsolved for sufficient conditions.
The details are given in §4.

Throughout this paper, �p(Ω) denotes the space of all complex sequences {cn}n∈Ω

with the property:
(∑

n∈Ω |cn|p
)1/p

< ∞. For the case that Ω is the set of all

nonnegative integers, we write �p instead of �p(Ω).

2. CAUCHY FORMS OF (1.3)

We know that supn≥0(∗) ≥ supn≥N (∗). Hence, (2.1) is a weak form of (1.3),



Characterizations of Almost Convergent Sequences in a Hilbert Space or in Lp(T ) 1211

and so (1.3) =⇒ (2.1), where

(2.1) lim
N→∞

{
sup
n≥N

∥∥∥∥ 1
N

n+N−1∑
k=n

fk − f

∥∥∥∥
}

= 0.

It is clear that (2.1) describes the behavior of the de la Vallée-Poussin means
Vn,N ({fk}) from the terms with indices n ≥ N , where

(2.2) Vn,N ({fk}) =
fn + fn+1 + · · ·+ fn+N−1

N
(n ≥ 0; N ≥ 1).

With no ambiguity, we write Vn,N in the place of Vn,N({fk}). From

sup
n≥N

‖fn‖ ≤ N

(
sup
n≥N

‖Vn,N‖ +
N − 1

N
sup
n≥N

‖Vn+1,N−1‖
)

,

we see that if (2.1) is satisfied, then supn≥0 ‖fn‖ < ∞. With this help, we get the
following equivalence.

Lemma 2.1. We have (1.3) ⇐⇒ (2.1).

Proof. For completeness, we introduce the following proof, which is given in
[4]. Let N ≥ 1, M ≥ 1, and � be the non-negative integer such that �M ≤ N <
(� + 1)M . We have

(2.3)
‖Vn,N‖ ≤ 1

N

M−1∑
k=n

‖fk‖ +
M

N

�−1∑
u=1

‖VuM,M‖+
1
N

n+N−1∑
k=�M

‖fk‖

≤ 3M

N

(
sup
k≥0

‖fk‖
)

+
(�− 1)M

N
sup

m≥M
‖Vm,M‖ (n<M),

(2.4)
‖Vn,N‖ ≤ M

N

�−1∑
u=0

‖Vn+uM,M‖ +
1
N

n+N−1∑
k=n+�M

‖fk‖

≤ �M

N
sup
m≥n

‖Vm,M‖ +
M

N

(
sup
k≥n

‖fk‖
)

(n ≥ M),

so (2.3)− (2.4) together yields

(2.5) sup
n≥0

‖Vn,N‖ ≤ 3M

N

(
sup
k≥0

‖fk‖
)

+ sup
m≥M

‖Vm,M‖ (N ≥ 1, M ≥ 1).

Consider the replacement of fn by fn − f . Then the desired result follows.
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Lemma 2.1 is important in the establishment of Cauchy criterions given below.
Consider the following three Cauchy forms of (1.3):

(2.6) lim
min(M,N)→∞

{
sup

m≥M,n≥N

∥∥∥∥fm+· · ·+fm+M−1

M
− fn+· · ·+fn+N−1

N

∥∥∥∥
}

=0,

(2.7) lim
N→∞

{
sup

m,n≥N

∥∥∥∥fm + · · ·+ fm+N−1

N
− fn + · · ·+ fn+N−1

N

∥∥∥∥
}

= 0,

(2.8) lim
N→∞

{
sup

m,n≥0

∥∥∥∥fm + · · ·+ fm+N−1

N
− fn + · · ·+ fn+N−1

N

∥∥∥∥
}

= 0.

In [8, Theorem 2.5], Miller and Orhan have proved that (2.6) ⇐⇒ (1.3). In the
following, we prove that any of (2.7)− (2.8) is equivalent to (1.3).

Theorem 2.2. Let fn ∈ X . Then (1.3) holds for some f ∈ X if and only if
(2.7) (or (2.8) ) is true.

Proof. First, we prove (2.6) ⇐⇒ (2.7). Obviously, (2.6) =⇒ (2.7). For
m ≥ M ≥ 1, we have

(2.9) ‖Vm,M − VMN,MN‖ ≤ 1
N

2N−1∑
�=N

‖Vm,M − VM�,M‖

≤ sup
m∗,m′≥M

‖Vm∗,M − Vm′,M‖.

Analogously, for n ≥ N ≥ 1,

(2.10) ‖Vn,N − VMN,MN‖ ≤ sup
n∗,n′≥N

‖Vn∗,N − Vn′,N‖.

Putting (2.9)− (2.10) together yields

sup
m≥M,n≥N

‖Vm,M − Vn,N‖ ≤ sup
m∗ ,m′≥M

‖Vm∗,M − Vm′,M‖

+ sup
n∗ ,n′≥N

‖Vn∗,N − Vn′,N‖,

and so (2.7) =⇒ (2.6). Therefore, (2.6) ⇐⇒ (2.7). From

sup
m,n≥0

‖Vm,N − Vn,N‖ ≤ sup
m≥0

‖Vm,N − f‖ + sup
n≥0

‖Vn,N − f‖,
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we obtain the implication: (1.3) =⇒ (2.8). It is clear that (2.8) =⇒ (2.7). By [8,
Theorem 2.5], we know that (2.7) ⇐⇒ (2.6) ⇐⇒ (1.3). Hence, (2.8) ⇐⇒ (1.3).
This completes the proof.

Theorem 2.2 enables us to examine the almost convergence property of the
sequence {fn}∞n=0 directly from the behavior of the differences of its de la Vallée-
Poussin means. This method does not involve the existence of the limit f .

3. CHARACTERIZATION FROM THE VIEWPOINT OF COEFFICIENTS

Let {φn}∞n=0 be an orthonormal set in a Hilbert space (X, ‖ · ‖), and A =
(cn,k)n,k≥0, fn be related by (1.4). We know that fn ∈ X if and only if

∑∞
k=0 |cn,k|2 <

∞. Moreover, it follows from the Parseval formula that
∥∥∥∥ 1

N

n+N−1∑
�=n

f� − f

∥∥∥∥2

=
∥∥∥∥

∞∑
k=0

(
1
N

N−1∑
�=0

cn+�,k − ck

)
φk

∥∥∥∥2

=
∞∑

k=0

∣∣∣∣ 1
N

N−1∑
�=0

cn+�,k − ck

∣∣∣∣
2

,

where f =
∑∞

k=0 ckφk. Putting these with (1.3) together yields the following result.

Theorem 3.1. Let X, φn, cn,k, and fn be given as above. Then {fn}∞n=0 is an
almost convergent sequence in X if and only if the following two assertions hold:

(i)
∑∞

k=0 |cn,k|2 < ∞ for each n ≥ 0,
(ii) there exists a sequence {cn}∞n=0 ∈ �2 such that

(3.1) lim
N→∞

{
sup
n≥0

( ∞∑
k=0

∣∣∣∣ 1
N

N−1∑
�=0

cn+�,k − ck

∣∣∣∣2
)}

= 0.

It is clear that (3.1) reduces to (1.3), if cn,k∗ = fn, ck∗ = f , and cn,k = ck = 0
for k �= k∗, where k∗ ≥ 0 is given. Hence, (3.1) is an infinite dimensional version
of (1.3). In particular, for each k∗ ≥ 0, {cn,k∗}∞n=0 is almost convergent to ck∗ .
This can be derived from the inequality:

(
sup
n≥0

∣∣∣∣ 1
N

n+N−1∑
�=n

c�,k∗ − ck∗

∣∣∣∣
)2

≤ sup
n≥0

( ∞∑
k=0

∣∣∣∣ 1
N

N−1∑
�=0

cn+�,k − ck

∣∣∣∣
2)

.

It should be noticed that the reverse implication is false, in general. Consider the
matrix: cn,k = (−1)n−k for n ≥ k ≥ 0, and 0 otherwise. For this matrix, Theorem
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3.1(i) is true and {cn,k∗}∞n=0 is almost convergent to 0 for each k∗ ≥ 0. However,

for n ≥ 0 and odd N , we have
∞∑

k=0

∣∣∣∣ 1
N

N−1∑
�=0

cn+�,k

∣∣∣∣2 =
(n + 1) + (N − 1)/2

N 2
, and

so (3.1) fails for the case ck = 0.

Set ρk,N = supn≥0

∣∣∣∣ 1
N

∑N−1
�=0 cn+�,k − ck

∣∣∣∣. It is clear that (3.2) =⇒ (3.1):

(3.2)
∞∑

k=0

ρ2
k,N = o(1) as N → ∞.

Hence, Theorem 3.1 can apply to those matrices which satisfy (3.2). For the case
that cn,k = ck for k ≤ n and 0 otherwise, we have ρk,N = min(k,N)

N |ck|, and so (3.2)
holds if and only if

∑∞
k=0(

min(k,N)
N )2|ck|2 = o(1) as N → ∞, or equivalently,

{ck}∞k=0 ∈ �2. In this case, the sequence defined by fn =
∑n

k=0 ckφk (n ≥ 0)
is almost convergent in X . Another example is given as follows: cn,k = 0 for all
k > k0, and {cn,k}∞n=0 is almost convergent in C for each k ≤ k0, where k0 is a
fixed integer. In this case, the sequence defined by fn =

∑k0
k=0 cn,kφk (n ≥ 0) is

almost convergent in X .
We know that (L2(T ), ‖ · ‖2) is a Hilbert space and {eint}∞n=−∞ forms an

orthonormal basis for L2(T ). Rewrite {eikt}∞k=−∞ as {φn}∞n=0 in the order: k =
0, 1,−1, 2,−2, · · · . Let {fn}∞n=0 be the corresponding sequence defined by (1.4),
in symbol,

(3.3) fn(t) =
∞∑

k=−∞
cn,keikt (n ≥ 0; t ∈ T ).

Applying Theorem 3.1 to this case, we get the following characterization of almost
convergent sequences in L2(T ).

Corollary 3.2. Let cn,k and fn be related by (3.3). Then {fn}∞n=0 is an almost
convergent sequence in L2(T ) if and only if the following two assertions hold:

(i)
∑∞

k=−∞ |cn,k|2 < ∞ for each n ≥ 0,
(ii) there exists a sequence {cn}∞n=−∞ ∈ �2(Z) such that

(3.4) lim
N→∞

{
sup
n≥0

( ∞∑
k=−∞

∣∣∣∣ 1
N

N−1∑
�=0

cn+�,k − ck

∣∣∣∣2
)}

= 0.

The above corollary indicates that under (i), (3.4) characterizes the almost
convergent sequences in L2(T ). We point out that this condition can not be used
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as a tool to determine whether a sequence is norm convergent. Let us illustrate this
by the example: fn(t) = eint =

∑∞
k=−∞ cn,ke

ikt, where cn,k = 1 for k = n and 0
otherwise. Obviously,

∑∞
k=−∞ |cn,k|2 < ∞ for all n ≥ 0. Moreover,

sup
n≥0

( ∞∑
k=−∞

∣∣∣∣ 1
N

N−1∑
�=0

cn+�,k − 0
∣∣∣∣
2)

=
1
N

−→ 0 as N → ∞.

This shows that (3.4) holds for the case ck = 0. By Corollary 3.2, we conclude
that {fn}∞n=0 is almost convergent in L2(T ). However, it is clear that this sequence
is not norm convergent in L2(T ).

In Theorem 3.1(ii) and Corollary 3.2(ii), we assume the existence of the sequence
{cn}. This difficulty can be removed by applying the Cauchy criterions established
in Theorem 2.2. The details are given below. Let fn and φn be related by (1.4). It
follows from the Parseval formula that∥∥∥∥fm + · · ·+ fm+N−1

N
− fn + · · ·+ fn+N−1

N

∥∥∥∥
=

∥∥∥∥
∞∑

k=0

(
1
N

N−1∑
�=0

(cm+�,k − cn+�,k)
)

φk

∥∥∥∥ =
{ ∞∑

k=0

∣∣∣∣ 1
N

N−1∑
�=0

(cm+�,k − cn+�,k)
∣∣∣∣
2}1/2

.

Applying Theorem 2.2 to the case (2.8), we get the following characterization of
almost convergent sequences in a Hilbert space (X, ‖ · ‖).

Theorem 3.3. Let X, φn, cn,k, and fn be defined as in Theorem 3.1. Then
{fn}∞n=0 is an almost convergent sequence in X if and only if

∑∞
k=0 |cn,k|2 < ∞

for all n ≥ 0 and (3.5) holds:

(3.5) lim
N→∞

{
sup

m,n≥0

( ∞∑
k=0

∣∣∣∣ 1
N

N−1∑
�=0

(cm+�,k − cn+�,k)
∣∣∣∣2

)}
= 0.

Take the particular case: X = L2(T ) and {φn}∞n=0 = {eikt}∞k=−∞ . Then
Theorem 3.3 can be rewritten in the following form.

Corollary 3.4. Let cn,k and fn be related by (3.3). Then {fn}∞n=0 is an almost
convergent sequence in L2(T ) if and only if

∑∞
k=−∞ |cn,k|2 < ∞ for all n ≥ 0

and (3.6) holds:

(3.6) lim
N→∞

{
sup

m,n≥0

( ∞∑
k=−∞

∣∣∣∣ 1
N

N−1∑
�=0

(cm+�,k − cn+�,k)
∣∣∣∣2

)}
= 0.
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Corollary 3.4 is different from Corollary 3.2 at the point of the existence of the
sequence {cn}∞n=−∞ . Condition (3.6) allows us to check the almost convergence
property of a given sequence in L2(T ) directly from the behavior of the differences
of their coefficients.

4. EXTENSIONS OF §3 TO THE CASE Lp(T )

In Theorem 3.1 through Corollary 3.4, X is assumed to be a Hilbert space. A
natural question arises: can they be extended to Banach spaces X? For X = Lp(T ),
1 ≤ p ≤ 2, the Hausdorff-Young inequality, (see [9, Vol. II, p. 101]), implies that
if fn ∈ X , then

∑∞
k=−∞ |cn,k|q < ∞, where 1/p+1/q = 1 and cn,k, fn are related

by (3.3). Moreover,

(4.1)

∥∥∥∥ 1
N

n+N−1∑
k=n

fk − f

∥∥∥∥
p

=
∥∥∥∥

∞∑
k=−∞

(
1
N

N−1∑
�=0

cn+�,k − ck

)
eikt

∥∥∥∥
p

≥
{ ∞∑

k=−∞

∣∣∣∣ 1
N

N−1∑
�=0

cn+�,k − ck

∣∣∣∣
q}1/q

,

where f =
∑∞

k=−∞ cke
ikt. With the help of (1.3), we get the following result,

which extends the “only if” part of Corollary 3.2.

Theorem 4.1. Let 1 ≤ p ≤ 2, 1/p+1/q = 1, and cn,k, fn be related by (3.3).
If {fn}∞n=0 is an almost convergent sequence in Lp(T ), then

∑∞
k=−∞ |cn,k|q < ∞

for all n ≥ 0, and there exists a sequence {cn}∞n=−∞ ∈ �q(Z) such that

(4.2) lim
N→∞

{
sup
n≥0

( ∞∑
k=−∞

∣∣∣∣ 1
N

N−1∑
�=0

cn+�,k − ck

∣∣∣∣
q)}

= 0.

The converse of Theorem 4.1 is false for the case 1 ≤ p < 2. Consider the
following example:

(4.3) cn,k =




1
2
√

�
(|k| = 2�, 1 ≤ � ≤ n),

0 otherwise.

Obviously,
∑∞

k=−∞ |cn,k|q < ∞ for all n ≥ 0, where 1/p+1/q = 1. Set ck = 1
2
√

�

for |k| = 2� with � = 1, 2, · · · , and ck = 0 otherwise. We have
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sup
n≥0

( ∞∑
k=−∞

∣∣∣∣ 1
N

N−1∑
�=0

cn+�,k − ck

∣∣∣∣
q)

= 21−q

( ∞∑
�=1

∣∣∣∣min(�, N )
N
√

�

∣∣∣∣
q)

≤ 21−q

(
N−q

∫ N

0
xq/2dx +

∞∑
�≥N

�−q/2

)

−→ 0 as N → ∞,

because q > 2. Hence, (4.2) is satisfied. However, by [1, Vol. I, p.223], we know
that the sequence {fn}∞n=0, defined by fn =

∑∞
k=−∞ cn,keikt =

∑n
�=1

cos 2�t√
�

is
not an almost convergent sequence in Lp(T ), otherwise,

∑∞
n=1

cos 2nt√
n

is a Fourier
series, which gives us a contradiction.

Let 2 < p ≤ ∞ and 1/p + 1/p∗ = 1. Then 1 ≤ p∗ < 2 < p. By the Hölder

inequality, we get
∥∥∥∥ 1
N

n+N−1∑
k=n

fk − f

∥∥∥∥
p∗

≤
∥∥∥∥ 1
N

n+N−1∑
k=n

fk − f

∥∥∥∥
p

. Putting this with

(1.3) together, we infer that if {fn}∞n=0 is almost convergent to f in Lp(T ), then it
is also almost convergent to f in Lp∗(T ). Applying Theorem 4.1 to p∗ instead of
p, we obtain the following result.

Theorem 4.2. Let 2 < p ≤ ∞ and cn,k, fn be related by (3.3). If {fn}∞n=0 is
an almost convergent sequence in Lp(T ), then

∑∞
k=−∞ |cn,k|p < ∞ for all n ≥ 0,

and there exists a sequence {cn}∞n=−∞ ∈ �p(Z) such that

(4.4) lim
N→∞

{
sup
n≥0

( ∞∑
k=−∞

∣∣∣∣ 1
N

N−1∑
�=0

cn+�,k − ck

∣∣∣∣p
)}

= 0.

The matrix defined by (4.3) shows that the converse of Theorem 4.2 is false, in
general. Replace (4.1) by∥∥∥∥fm + · · ·+ fm+N−1

N
− fn + · · ·+ fn+N−1

N

∥∥∥∥
p

≥
( ∞∑

k=−∞

∣∣∣∣ 1
N

N−1∑
�=0

(cm+�,k − cn+�,k)
∣∣∣∣
q)1/q

.

Then the Hausdorff-Young inequality and Theorem 2.2 lead us to the following
substitute for Theorem 4.1.

Theorem 4.3. Let 1 ≤ p ≤ 2, 1/p+1/q = 1, and cn,k, fn be related by (3.3).
If {fn}∞n=0 is an almost convergent sequence in Lp(T ), then

∑∞
k=−∞ |cn,k|q < ∞

for all n ≥ 0, and
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(4.5) lim
N→∞

{
sup

m,n≥0

( ∞∑
k=−∞

∣∣∣∣ 1
N

N−1∑
�=0

(cm+�,k − cn+�,k)
∣∣∣∣q

)}
= 0.

Theorem 4.3 extends the “only if” part of Corollary 3.4 from p = 2 to 1 ≤ p ≤ 2.
Let {cn,k}n,k≥0 be the matrix defined by (4.3). By Minkowski’s inequality and the
definition of cn,k, we know that

sup
m,n≥0

( ∞∑
k=−∞

∣∣∣∣ 1
N

N−1∑
�=0

(cm+�,k − cn+�,k)
∣∣∣∣
q)1/q

≤ sup
m>n≥0

1
N

N−1∑
�=0

( ∞∑
k=−∞

|cm+�,k − cn+�,k|q
)1/q

≤ 1
N

N−1∑
�=0

(
2

∞∑
�∗=�+1

(
1

2
√

�∗
)q

)1/q

−→ 0 as N → ∞,

where q > 2. This shows that (4.5) is satisfied. As the argument behind Theorem
4.1 indicates, the corresponding sequence {fn}∞n=0 is not an almost convergent
sequence in Lp(T ), so the converse of Theorem 4.3 is false for the case 1 ≤ p < 2.

Following the argument before Theorem 4.2, we see that Theorem 4.3 has the
following consequence .

Theorem 4.4. Let 2 < p≤∞ and cn,k,fn be related by (3.3). If {fn}∞n=0 is an
almost convergent sequence in Lp(T ), then

∑∞
k=−∞ |cn,k|p <∞ for all n≥0, and

(4.6) lim
N→∞

{
sup

m,n≥0

( ∞∑
k=−∞

∣∣∣∣ 1
N

N−1∑
�=0

(cm+�,k − cn+�,k)
∣∣∣∣
p)}

= 0.

The converse of Theorem 4.4 is false, in general, (see (4.3) for a counterex-
ample). As Theorems 4.1 through 4.4 show, (4.2) and (4.4)− (4.6) are necessary
conditions for the almost convergence of the sequence {fn}∞n=0 defined by (3.3).
In Corollaries 3.2 and 3.4, we have proved that these are sufficient conditions for
the case p = 2. However, the preceding arguments indicate that they are not the
case for p �= 2. Hence, we might look for replacements of (4.2) and (4.4)− (4.6)
for p �= 2. This problem is open.

ACKNOWLEDGMENT

We are grateful to the referee for pointing out the reference [6]. We also express
our gratitude to him for his valuable comments in developing the final version of
this paper.



Characterizations of Almost Convergent Sequences in a Hilbert Space or in Lp(T ) 1219

REFERENCES

1. N. K. Bary, A Treatise on Trigonometric Series, Vols. I & II. Pergamon Press, New
York, 1964.

2. C. Corduneanu, Almost periodic functions, Wiley, New York, 1968. Reprinted,
Chelsea, New York, 1989.

3. Deeds, Summability of vector sequences, Studia Math. 30 (1968), 361-372.

4. M.-K. Kuo, Characterization of w-almost convergent double sequences and their
related properties, PhD. dissertation, National Tsing Hua University, 2004.

5. J. C. Kurtz, Almost convergent vector sequences, T̂ohoku Math. J., 22(2) (1970),
493-498.

6. Y.-C. Li and S.-Y. Shaw, Generalized limits and a mean ergodic theorem, Studia
Math., 121 (1996), 207-219.

7. G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math., 80
(1948), 167-190.

8. H. I. Miller and C. Orhan, On almost convergent and statistically convergent subse-
quences, Acta Math. Hungar., 93(1-2) (2001), 135-151.

9. A. Zygmund, Trigonometric Series, Vols. I & II, 2nd ed., Cambridge University
Press, New York, 1968.

Chang-Pao Chen and Meng-Kuang Kuo
Department of Mathematics,
National Tsing Hua University,
Hsinchu, Taiwan 300,
Republic of China
E-mail: cpchen@math.nthu.edu.tw


