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ON NONLOCAL BOUNDARY VALUE PROBLEMS
FOR HYPERBOLIC-PARABOLIC EQUATIONS

Allaberen Ashyralyev and Yildirim Ozdemir

Abstract. The nonlocal boundary value problem for hyperbolic-parabolic
equations


d2u(t)
dt2

+ Au(t) = f(t)(0 ≤ t ≤ 1), du(t)
dt

+ Au(t) = g(t)(−1 ≤ t ≤ 0),

u(−1)=
N∑

i=1

αiu (µi)+
L∑

i=1

βiu
′ (λi)+ϕ,

N∑
i=1

|αi|,
L∑

i=1

|βi| ≤ 1, 0<µi, λi≤1

for differential equation in a Hilbert space H , with the self-adjoint positive
definite operator A is considered. The stability estimates for the solution of
this problem are established. In applications, the stability estimates for the
solutions of the mixed type boundary value problems for hyperbolic-parabolic
equations are obtained.

1. INTRODUCTION

It is known that some problems in fluid mechanics (model of the motion of an
ideal fluid filling, exhibiting both viscous and non-viscous phases) and other areas
of physics and mathematical biology (taxis-diffusion-reaction model) lead to partial
differential equations of the hyperbolic-parabolic type. Methods of solutions of the
nonlocal boundary value problems for hyperbolic-parabolic differential equations
have been studied extensively by many researchers (see, e.g., [1-12, 22, 23] and the
references given therein).

In the present paper we consider the nonlocal boundary value problem
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(1.1)




d2u(t)
dt2

+ Au(t) = f(t)(0 ≤ t ≤ 1),

du(t)
dt

+ Au(t) = g(t)(−1 ≤ t ≤ 0),

u(−1) =
N∑

i=1

αiu (µi) +
L∑

i=1

βiu
′ (λi) + ϕ,

N∑
i=1

|αi|,
L∑

i=1
|βi| ≤ 1, 0 < µi, λi ≤ 1

for differential equations of mixed type in a Hilbert space H with self-adjoint
positive definite operator A.

A function u(t) is called a solution of the problem (1.1) if the following condi-
tions are satisfied:

(i) u(t) is twice continuously differentiable on the interval (0,1] and continuously
differentiable on the segment [-1,1]. The derivative at the endpoints of the
segment are understood as the appropriate unilateral derivatives.

(ii) The element u(t) belongs to D(A) for all t ∈ [−1, 1], and the function Au(t)
is continuous on the segment [-1,1].

(iii) u(t) satisfies the equations and nonlocal boundary condition (1.1).

In the paper [18] the following theorem on the stability was proved.

Theorem 1.1. Suppose that ϕ ∈ D(A) and f(t) be continuously differentiable
on [0, 1] and g(t) be continuously differentiable on [−1, 0] functions and α i =
0, i = 2, · · ·, N and βi = 0, i = 1, · · ·, L. Then there is a unique solution of the
problem (1.1) and the stability inequalities

max
−1≤t≤1

‖ u(t) ‖H≤ M [‖ ϕ ‖H

+ max
−1≤t≤0

‖ g(t) ‖H + max
0≤t≤1

‖ A−1/2f(t) ‖H ],

max
−1≤t≤1

‖ A1/2u(t) ‖H≤ M [‖ A1/2ϕ ‖H

+ ‖ g(0) ‖H +
0∫

−1

‖ g′(t) ‖H dt + max
0≤t≤1

‖ f(t) ‖H ],

max
−1≤t≤0

‖ du(t)
dt

‖H + max
0≤t≤1

‖ d2u(t)
dt2

‖H

+ max
−1≤t≤1

‖ Au(t) ‖H≤ M [‖ Aϕ ‖H + ‖ A1/2g(0) ‖H

+ ‖ f(0) ‖H + max
−1≤t≤0

‖ g′(t) ‖H +
1∫
0

‖ f ′(t) ‖H dt]

hold, where M does not depend on f(t), g(t) and ϕ.
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We have not been able to obtain the same stability estimates for the solutions

of the problem (1.1) for
L∑

i=1
|βi| �= 0. Nevertheless, in the [23, 24] the stability

estimates for the solution of the problem (1.1) in the cases αi = 0, i = 2, · · ·, N
and βi = 0, i = 2, · · ·, L under a stronger assumption than f(t) be continuously
differentiable on [0, 1] and g(t) be continuously differentiable on [−1, 0] functions
are established.

Theorem 1.2. Suppose that ϕ ∈ D(A), g(0) ∈ D(A
1
2 ), g′(0) ∈ H, f(0) ∈

D(A
1
2 ) and f ′(0) ∈ H. Let f(t) be twice continuously differentiable on [0, 1] and

g(t) be twice continuously differentiable on [−1, 0] functions. Then there is a unique
solution of the problem (1.1) and the stability inequalities

(1.2)
max

−1≤t≤1
‖u(t)‖H ≤ M

[
‖ϕ‖H + max

−1≤t≤0

∥∥A−1/2g′(t)
∥∥

H

+
∥∥A−1/2g(0)

∥∥
H

+
∥∥A−1/2f(0)

∥∥
H

+ max
0≤t≤1

∥∥A−1/2f ′(t)
∥∥

H

]
,

(1.3)
max

−1≤t≤1

∥∥du
dt

∥∥
H

+ max
−1≤t≤1

∥∥A1/2u(t)
∥∥

H
≤ M

[∥∥A1/2ϕ
∥∥

H

+ ‖g(0)‖H + max
−1≤t≤0

‖g′(t)‖H + ‖f(0)‖H + max
0≤t≤1

‖f ′(t)‖H

]
,

(1.4)

max
−1≤t≤0

∥∥du
dt

∥∥
H

+ max
0≤t≤1

∥∥∥d2u
dt2

∥∥∥
H

+ max
−1≤t≤1

‖Au(t)‖H

≤ M

[
‖Aϕ‖H +

∥∥A1/2g(0)
∥∥

H
+ ‖g′(0)‖H + max

−1≤t≤0
‖g′′(t)‖H

+
∥∥A1/2f(0)

∥∥
H

+ ‖f ′(0)‖H + max
0≤t≤1

‖f ′′(t)‖H

]

hold, where M does not depend on f(t), t ∈ [0, 1], g(t), t ∈ [−1, 0] and ϕ.

In the present paper the stability estimates for the solution of the problem (1.1)

for
N∑

i=1
|αi|,

L∑
i=1

|βi| ≤ 1, 0 < µi, λi ≤ 1 under the assumption that f(t) be twice

continuously differentiable on [0, 1] and g(t) be twice continuously differentiable
on [−1, 0] functions are established. In applications, the stability estimates for
the solutions of the mixed type boundary value problems for hyperbolic-parabolic
equations are obtained.

Finally note that the methods for numerical solutions of the nonlocal boundary
value problem (1.1) have been studied extensively (see [14-17, 19-22], and the
references therein).
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2. THE MAIN THEOREM

Let H be a Hilbert space, A be a positive definite self-adjoint operator with
A ≥ δI, where δ > δ0 > 0. Throughout this paper, {c(t), t ≥ 0} is a strongly
continuous cosine operator-function defined by the formula

c (t) =
eitA1/2

+ e−itA1/2

2
.

Then from the definition of the sine operator-function s (t)

s(t)u =

t∫
0

c(s)u ds

it follows that

s (t) = A−1/2 eitA1/2 − e−itA1/2

2i
.

For the theory of cosine operator-function we refer to [25] and [26].
Now, let us give some lemmas that will be needed below.

Lemma 2.1. The estimates hold:

(2.1) ‖c(t)‖H→H ≤ 1,
∥∥∥A1/2s(t)

∥∥∥
H→H

≤ 1,

(2.2)
∥∥Aγe−tA

∥∥
H→H

≤ t−γe−δt, t > 0, 0 ≤ γ ≤ 1, δ > 0.

Lemma 2.2. The operator

I −
N∑

i=1

αi [c (µi) − As (µi)] e−A +
L∑

i=1

βi [s (λi) + c (λi)]Ae−A

has an inverse

T =

(
I −

N∑
i=1

αi [c (µi) − As (µi)] e−A +
L∑

i=1

βi [s (λi) + c (λi)]Ae−A

)−1

and the following estimate

(2.3) ||T ||H→H ≤ M
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holds, where M does not depend on α i, βi, µi and λi.

Proof. The proof of the estimate (2.3) is based on the estimate

(2.4)

∥∥∥∥∥−
N∑

i=1

αi [c (µi) − As (µi)] e−A+
L∑

i=1

βi [s (λi) + c (λi)]Ae−A

∥∥∥∥∥
H→H

<1.

Using the definitions of c (µ) and s (µ) and positivity and self-adjointness property
of A, we obtain∥∥∥∥− N∑

i=1
αi [c (µi) − As (µi)] e−A +

L∑
i=1

βi [s (λi) + c (λi)]Ae−A

∥∥∥∥
H→H

≤ sup
δ≤ρ<∞

∣∣∣∣− N∑
i=1

αi

[
cos
(√

ρµi

)−√
ρ sin

(√
ρµi

)]
+

L∑
i=1

βi

[√
ρ sin

(√
ρλi

)
+ ρ cos

(√
ρλi

)]∣∣∣∣ e−ρ.

Since

cos
(√

ρµi

)−√
ρ sin

(√
ρµi

)
=

√
ρ + 1cos

(√
ρµi − µi0

)
,

√
ρ sin

(√
ρλi

)
+ ρ cos

(√
ρλi

)
=

√
ρ
√

ρ + 1cos
(√

ρλi − λi0

)
,

we have that∥∥∥∥− N∑
i=1

αi [c (µi) − As (µi)] e−A +
L∑

i=1
βi [s (λi) + c (λi)]Ae−A

∥∥∥∥
H→H

≤ sup
δ≤ρ<∞

[
N∑

i=1
|αi|

∣∣cos
(√

ρµi

)−√
ρ sin

(√
ρµi

)∣∣
+

L∑
i=1

|βi|
∣∣√ρ sin

(√
ρλi

)
+ ρ cos

(√
ρλi

)∣∣]e−ρ.

≤ sup
δ≤ρ<∞

[
N∑

i=1
|αi|

√
ρ + 1 +

L∑
i=1

|βi|√ρ
√

ρ + 1]e−ρ

≤ sup
0<δ0<δ≤ρ<∞

√
ρ + 1

(
1 +

√
ρ
)
e−ρ.

Since sup
0<δ0<δ≤ρ<∞

√
ρ + 1

(
1 +

√
ρ
)
e−ρ < 1, we have the estimate (2.4). Lemma

2.2 is proved.
Now, we will obtain the formula for solution of the problem (1.1). It is known

that for smooth data of the initial value problems

(2.5)

{
u′′ (t) + Au (t) = f (t) , (0 ≤ t ≤ 1) ,

u (0) = u0, u′ (0) = u′
0,
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(2.6)

{
u′ (t) + Au (t) = g (t) , (−1 ≤ t ≤ 0) ,

u (−1) = u−1,

there are unique solutions of the problems (2.5), (2.6) and the following formulas
hold:

(2.7) u (t) = c (t)u (0) + s (t) u′ (0) +
∫ t

0
s (t − y) f (y) dy, 0 ≤ t ≤ 1,

and

(2.8) u (t) = e−(t+1)Au−1 +
∫ t

−1
e−(t−y)Ag (y) dy, − 1 ≤ t ≤ 0.

Using formulas (2.7), (2.8) and equation (1.1) we can write

(2.9)
u (t) = [c (t) − As (t)]

{
e−Au−1 +

∫ 0

−1
eyAg (y) dy

}

+s (t) g (0) +
∫ t

0
s (t − y) f (y) dy.

Now, using the condition

u(−1) =
N∑

i=1

αiu (µi) +
L∑

i=1

βiu
′ (λi) + ϕ,

we obtain the operator equation

(2.10)

{
I−

N∑
i=1

αi [c (µi)−As (µi)] e−A+
L∑

i=1
βi [s (λi) + c (λi)]Ae−A

}
u−1

=
N∑

i=1

αi{[c (µi) − As (µi)]
∫ 0

−1
eyAg (y) dy

+s (µi) g (0) +
∫ µi

0
s (µi − y) f (y) dy}

+
L∑

i=1

βi{[−As (λi)− Ac (λi)]
∫ 0

−1
eyAg (y) dy

+c (λi) g (0) +
∫ λi

0
c (λi − y) f (y) dy}+ ϕ.

Since the operator

I −
N∑

i=1

αi [c (µi) − As (µi)] e−A +
L∑

i=1

βi [s (λi) + c (λi)]Ae−A
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has an inverse

T =
(

I −
N∑

i=1
αi [c (µi) − As (µi)] e−A +

L∑
i=1

βi [s (λi) + c (λi)] Ae−A

)−1

,

for the solution of the operator equation (2.10) we have the formula

(2.11)

u−1 = T

[
N∑

i=1

αi{[c (µi) − As (µi)]
∫ 0

−1
eyAg (y) dy

+s (µi) g (0) +
∫ µi

0

s (µi − y) f (y) dy}

+
L∑

i=1

βi{[−As (λi) − Ac (λi)]
∫ 0

−1
eyAg (y) dy

+c (λi) g (0) +
∫ λi

0
c (λi − y) f (y) dy}+ ϕ

]
.

Hence, for the solution of the nonlocal boundary value problem (1.1) we have the
formulas (2.8), (2.9) and (2.11).

Theorem 2.1. Suppose that ϕ ∈ D(A), g(0) ∈ D(A
1
2 ), g′(0) ∈ H, f(0) ∈

D(A
1
2 ) and f ′(0) ∈ H. Let f(t) be twice continuously differentiable on [0, 1] and

g(t) be twice continuously differentiable on [−1, 0] functions. Then there is a unique
solution of the problem (1.1) and the following stability inequalities

(2.12)
max

−1≤t≤1
‖u(t)‖H ≤ M

[
‖ϕ‖H + max

−1≤t≤0

∥∥A−1/2g′(t)
∥∥

H

+
∥∥A−1/2g(0)

∥∥
H

+
∥∥A−1/2f(0)

∥∥
H

+ max
0≤t≤1

∥∥A−1/2f ′(t)
∥∥

H

]
,

(2.13)
max

−1≤t≤1

∥∥du
dt

∥∥
H

+ max
−1≤t≤1

∥∥A1/2u(t)
∥∥

H
≤ M

[∥∥A1/2ϕ
∥∥

H

+ ‖g(0)‖H + max
−1≤t≤0

‖g′(t)‖H + ‖f(0)‖H + max
0≤t≤1

‖f ′(t)‖H

]
,

(2.14)

max
−1≤t≤0

∥∥ du
dt

∥∥
H

+ max
0≤t≤1

∥∥∥d2u
dt2

∥∥∥
H

+ max
−1≤t≤1

‖Au(t)‖H

≤ M

[
‖Aϕ‖H +

∥∥A1/2g(0)
∥∥

H
+ ‖g′(0)‖H + max

−1≤t≤0
‖g′′(t)‖H

+
∥∥A1/2f(0)

∥∥
H

+ ‖f ′(0)‖H + max
0≤t≤1

‖f ′′(t)‖H

]

hold, where M does not depend on f(t), t ∈ [0, 1], g(t), t ∈ [−1, 0] and ϕ.

Proof. First, we obtain estimate (2.12). Using formula (2.11) and an integration
by parts, we obtain
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(2.15)

u−1 = T

[
N∑

i=1

αi

{
c (µi)

[
A−1

(
g (0)− e−Ag (−1)

−
∫ 0

−1
eyAg′ (y) dy

)]
+ As (µi)

(
e−Ag (−1) +

∫ 0

−1
eyAg′ (y) dy

)

+ A−1

[
f (µi)− c (µi) f (0)−

∫ µi

0
c (µi − y) f ′ (y) dy

]}

+
L∑

i=1

βi

{
−As (λi)

(
g (0) − e−Ag (−1) −

∫ 0

−1
eyAg′ (y) dy

)

+Ac (λi)
(

e−Ag (−1) +
∫ 0

−1
eyAg′ (y) dy

)

+As (λi) f (0) +
∫ λi

0

s (λi − y) f ′ (y) dy

}
+ ϕ

]
.

Using estimates (2.3), (2.1) and (2.2), we obtain

(2.16)
‖u−1‖H ≤ M

[
‖ϕ‖H + max

−1≤t≤0

∥∥∥A−1/2g′(t)
∥∥∥

H

+
∥∥∥A−1/2g(0)

∥∥∥
H

+
∥∥∥A−1/2f(0)

∥∥∥
H

+ max
0≤t≤1

∥∥∥A−1/2f ′(t)
∥∥∥

H

]
.

Using formulas (2.8), (2.9) and an integration by parts, we obtain

(2.17)
u (t) = e−(t+1)Au−1 + A−1

(
g (t) − e−Ag (−1)

−
∫ t

−1
eyAg′ (y) dy, − 1 ≤ t ≤ 0,

)

(2.18)

u (t) = [c (t) − As (t)]
{
e−Au−1

+A−1

(
g (0) − e−Ag (−1) −

∫ 0

−1
eyAg′ (y) dy

)}
+ s (t) g (0)

+A−1

[
f (t) − c (t) f (0) −

∫ t

0
c (t − y) f ′ (y) dy, 0 ≤ t ≤ 1.

]

Using estimates (2.1) and (2.2), we obtain

‖u (t)‖H ≤M

[
‖u−1‖H + max

−1≤t≤0

∥∥∥A−1/2g′(t)
∥∥∥

H
+
∥∥∥A−1/2g(0)

∥∥∥
H

]
,−1≤t≤0,

‖u (t)‖H ≤ M

[
max
0≤t≤1

∥∥∥A−1/2f ′(t)
∥∥∥

H
+
∥∥∥A−1/2f(0)

∥∥∥
H

+ ‖u−1‖H + max
−1≤t≤0

∥∥∥A−1/2g′(t)
∥∥∥

H
+
∥∥∥A−1/2g(0)

∥∥∥
H

]
, 0 ≤ t ≤ 1.
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Then from (2.16) and the last two estimates, it follows (2.12).

Second, we obtain estimate (2.13). Applying A1/2 to the formula (2.15) and
using estimates (2.3), (2.1) and (2.2), we obtain

(2.19)

∥∥∥A1/2u−1

∥∥∥
H

≤ M

[∥∥∥A1/2ϕ
∥∥∥

H
+ max

−1≤t≤0

∥∥g′(t)∥∥
H

+ ‖g(0)‖H + ‖f(0)‖H + max
0≤t≤1

∥∥f ′(t)
∥∥

H

]
.

Applying A1/2 to the formulas (2.17), (2.18) and using estimates (2.1) and (2.2),
we obtain

∥∥∥A1/2u (t)
∥∥∥

H
≤M

[∥∥∥A1/2u−1

∥∥∥
H

+ max
−1≤t≤0

∥∥g′(t)∥∥
H

+ ‖g(0)‖H

]
, − 1≤t≤0,∥∥∥A1/2u (t)

∥∥∥
H

≤ M

[
max
0≤t≤1

∥∥f ′(t)
∥∥

H
+ ‖f(0)‖H

+
∥∥∥A1/2u−1

∥∥∥
H

+ max
−1≤t≤0

∥∥g′(t)∥∥
H

+ ‖g(0)‖H

]
, 0 ≤ t ≤ 1.

Then from (2.19) and the last two estimates, it follows (2.13).
Third, we obtain estimate (2.14). Using formula (2.15) and an integration by

parts, we obtain

u−1 = T

[
N∑

i=1

αi

{
c (µi)

[
A−1

(
g (0) − e−Ag (−1)

−A−1

[
g′ (0) − e−Ag′ (−1) −

∫ 0

−1

eyAg′′ (y) dy

])

+As (µi)
(

e−Ag (−1) + A−1

[
g′ (0) − e−Ag′ (−1)−

∫ 0

−1
eyAg′′ (y) dy

])

+A−1

[
f (µi) − c (µi) f (0) −

[
s (µi) f ′ (0)−

∫ µ

0
s (µi − y) f ′′ (y) dy

]]}

+
L∑

i=1

βi

{
−As (λi)

(
g (0) −e−Ag (−1) −A−1

[
g′ (0) −e−Ag′ (−1) −

∫ 0

−1
eyAg′′ (y) dy

])

+Ac (λi)
(

e−Ag (−1) + A−1

[
g′ (0)− e−Ag′ (−1) −

∫ 0

−1

eyAg′′ (y) dy

])

+As (λi) f (0) − A−1

[
f ′ (λi)− c (λi) f ′ (0)−

∫ λ

0
c (λi − y) f ′′ (y) dy

]}
+ ϕ

]
.
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Using estimates (2.3), (2.1) and (2.2), we obtain

(2.20)
‖Au−1‖H ≤ M

[
‖Aϕ‖H + max

−1≤t≤0
‖g′′(t)‖H + ‖g′(0)‖H

+
∥∥A1/2g(0)

∥∥
H

+
∥∥A1/2f(0)

∥∥
H

+ ‖f ′(0)‖H + max
0≤t≤1

‖f ′′(t)‖H

]
.

Using formulas (2.17), (2.18) and an integration by parts, we obtain

u (t) = e−(t+1)Au−1 + A−1
(
g (t) − e−Ag (−1)

−A−1

[
g′ (t) − e−Ag′ (−1) −

∫ t

−1

eyAg′′ (y) dy

])
, −1 ≤ t ≤ 0,

u (t) = [c (t) − As (t)]
{
e−Au−1 + A−1

(
g (0) − e−Ag (−1)

−A−1

[
g′ (0)− e−Ag′ (−1) −

∫ 0

−1
eyAg′′ (y) dy

])}
+s (t) g (0) + A−1f (t) − c (t) f (0)

−
[
s (t) f ′ (0) +

∫ t

0
s (t − y) f ′′ (y) dy

]
, 0 ≤ t ≤ 1.

Applying A to the last two formulas and using estimates (2.1) and (2.2), we obtain

‖Au (t)‖H ≤ M

[
‖Au−1‖H + max

−1≤t≤0

∥∥g′′(t)∥∥
H

+
∥∥∥A1/2g(0)

∥∥∥
H

+
∥∥g′(0)

∥∥
H

]
,

−1 ≤ t ≤ 0,

‖Au (t)‖H ≤ M

[
max
0≤t≤1

∥∥f ′′(t)
∥∥

H
+
∥∥∥A1/2f(0)

∥∥∥
H

+
∥∥f ′(0)

∥∥
H

+ ‖Au−1‖H + max
−1≤t≤0

∥∥g′′(t)∥∥
H

+
∥∥∥A1/2g(0)

∥∥∥
H

+
∥∥g′(0)

∥∥
H

]
, 0 ≤ t ≤ 1.

Then from (2.20) and the last two estimates, it follows (2.14). Theorem 2.1 is
proved.

Remark 1. Applying this approach we have not been able to establish the
same stability estimates for the solution of the problem (1.1) when an operator T is
unbounded or not exist.

3. APPLICATIONS

First, we consider the mixed problem for hyperbolic- parabolic equation
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(3.1)




vtt − (a(x)vx)x + δv = f(t, x), 0 < t < 1, 0 < x < 1,

vt − (a(x)vx)x + δv = g(t, x),−1 < t < 0, 0 < x < 1,

v(−1, x) =
N∑

i=1

αiv (µi, x) +
L∑

i=1

βivt(λi, x) + ϕ(x), 0 ≤ x ≤ 1,

N∑
i=1

|αi|,
L∑

i=1

|βi| ≤ 1, 0 < µi, λi ≤ 1,

v(t, 0) = v(t, 1), vx(t, 0) = vx(t, 1),−1 ≤ t ≤ 1,

v(0+, x) = v(0−, x), vt(0+, x) = vt(0−, x), 0 ≤ x ≤ 1.

Problem (3.1) has a unique smooth solution v(t, x) for the smooth a(x) ≥ a >
0(x ∈ (0, 1)), ϕ(x) (x ∈ [0, 1]) and f(t, x)(t ∈ [0, 1], x ∈ [0, 1]), g(t, x)(t ∈
[−1, 0], x ∈ [0, 1]) functions and δ = const > 0. This allows us to reduce the
mixed problem (3.1) to the nonlocal boundary value problem (1.1) in Hilbert space
H with a self-adjoint positive definite operator A defined by (3.1). Let us give a
number of corollaries of the abstract Theorem 2.1.

Theorem 3.1. The solutions of the nonlocal boundary value problem (3.1)
satisfy the stability estimates

max
−1≤t≤1

‖v(t)‖L2[0,1] ≤ M

[
‖f(0)‖L2[0,1] + max

0≤t≤1
‖ft(t)‖L2[0,1]

+ ‖g(0)‖L2[0,1] + max
−1≤t≤0

‖gt(t)‖L2[0,1] + ‖ϕ‖L2[0,1]

]
,

max
−1≤t≤1

‖v(t)‖W 1
2 [0,1] ≤ M

[
‖f(0)‖L2[0,1] + max

0≤t≤1
‖ft(t)‖L2[0,1]

+ ‖g(0)‖L2[0,1] + max
−1≤t≤0

‖gt(t)‖L2[0,1] + ‖ϕ‖W 1
2 [0,1]

]
,

max
−1≤t≤1

‖v(t)‖W 2
2 [0,1] + max

−1≤t≤0
‖vt(t)‖L2[0,1] + max

0≤t≤1
‖vtt(t)‖L2[0,1]

≤ M

[
‖ϕ‖W 2

2 [0,1] + ‖f(0)‖W 1
2 [0,1] + ‖ft(0)‖L2[0,1] + max

0≤t≤1
‖ftt(t)‖L2[0,1]

+ ‖g(0)‖W 1
2 [0,1] + ‖gt(0)‖L2[0,1] + max

−1≤t≤0
‖gtt(t)‖L2[0,1]

]
,

where M does not depend on f(t, x) (t ∈ [0, 1], x∈ [0, 1]), g(t, x) (t ∈ [−1, 0], x ∈
[0, 1]) and ϕ(x) (x ∈ [0, 1]).

The proof of this theorem is based on the abstract Theorem 2.1 and the symmetry
properties of the space operator generated by problem (3.1).
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Second, let Ω be the unit open cube in the n-dimensional Euclidean space
Rn (0 < xk < 1, 1 ≤ k ≤ n) with boundary S, Ω = Ω ∪ S. In [0, 1]× Ω we
consider the mixed boundary value problem for the multidimensional hyperbolic-
parabolic equation

(3.2)




vtt −
n∑

r=1
(ar(x)vxr)xr

= f(t, x), 0 ≤ t ≤ 1,

x = (x1, . . . , xn) ∈ Ω,

vt −
n∑

r=1
(ar(x)vxr)xr

= g(t, x),−1 ≤ t ≤ 0,

x = (x1, . . . , xn) ∈ Ω,

v(−1, x) =
N∑

i=1
αiv (µi, x) +

L∑
i=1

βivt(λi, x) + ϕ(x), x ∈ Ω,

N∑
i=1

|αi|,
L∑

i=1
|βi| ≤ 1, 0 < µi, λi ≤ 1,

u(t, x) = 0, x ∈ S,−1 ≤ t ≤ 1,

v(0+, x) = v(0−, x), vt(0+, x) = vt(0−, x), x ∈ Ω.

We introduce the Hilbert spaces L2(Ω) of the all integrable functions defined
on Ω, equipped with the norm

‖f‖L2(Ω) =



∫

· · ·
∫

x∈Ω

|f(x)|2dx1 · · ·dxn




1/2

.

Problem (3.2) has a unique smooth solution v(t, x) for the smooth ar(x) ≥ a > 0,
ϕ(x) (x ∈ Ω) and f(t, x) (t ∈ (0, 1), x ∈ Ω), g(t, x) (t ∈ (−1, 0), x ∈ Ω)
functions. This allows us to reduce the mixed problem (3.2) to the nonlocal boundary
value problem (1.1) in Hilbert space H with a self- adjoint positive definite operator
A defined by (3.2). Let us give a number of corollaries of the abstract Theorem
2.1.

Theorem 3.2. The solutions of the nonlocal boundary value problem (3.2)
satisfy the stability estimates

max
−1≤t≤1

‖v(t)‖L2(Ω) ≤ M

[
‖f(0)‖L2(Ω) + max

0≤t≤1
‖ft(t)‖L2(Ω)

+ ‖g(0)‖L2(Ω) + max
−1≤t≤0

‖gt(t)‖L2(Ω) + ‖ϕ‖L2(Ω)

]
,

max
−1≤t≤1

‖v(t)‖W 1
2 (Ω) ≤ M

[
‖f(0)‖L2(Ω) + max

0≤t≤1
‖ft(t)‖L2(Ω)



On Nonlocal Boundary Value Problems 1087

+ ‖g(0)‖L2(Ω) + max
−1≤t≤0

‖gt(t)‖L2(Ω) + ‖ϕ‖W 1
2 (Ω)

]
,

max
−1≤t≤1

‖v(t)‖W 2
2 (Ω) + max

−1≤t≤0
‖vt(t)‖L2(Ω) + max

0≤t≤1
‖vtt(t)‖L2(Ω)

≤ M |
[
‖ϕ‖ |W 2

2 (Ω) + ‖f(0)‖W 1
2 (Ω) + ‖ft(0)‖L2(Ω) + max

0≤t≤1
‖ftt(t)‖L2(Ω)

+ ‖g(0)‖W 1
2 (Ω) + ‖gt(0)‖L2(Ω) + max

−1≤t≤0
‖gtt(t)‖L2(Ω)

]
,

where M does not depend on f(t, x) (t∈ [0, 1], x∈ Ω), g(t, x)
(
t∈ [−1, 0], x∈ Ω]

)
and ϕ(x)

(
x ∈ Ω

)
.

The proof of this theorem is based on the abstract Theorem 2.1 and the symmetry
properties of the space operator generated by problem (3.2).
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