TAIWANESE JOURNAL OF MATHEMATICS
Vol. 11, No. 4, pp. 1063-1074, September 2007
This paper is available online at http://www.math.nthu.edu.tw/tjm/

ON CENTRALIZERS OF SEMISIMPLE H^{*}-ALGEBRAS

Joso Vukman and Irena Kosi-Ulbl

Abstract

In this paper we prove the following result. Let A be a semisimple H^{*}-algebra and let $T: A \rightarrow A$ be an additive mapping satisfying the relation $2 T\left(x^{m+n+1}\right)=x^{m} T(x) x^{n}+x^{n} T(x) x^{m}$, for all $x \in A$ and some nonnegative integers m, n such that $m+n \neq 0$. In this case T is a left and a right centralizer.

1. Introduction

Throughout, R will represent an associative ring with center $Z(R)$. Given an integer $n \geq 2$, a ring R is said to be n-torsion free, if for $x \in R, n x=0$ implies $x=0$. As usual the commutator $x y-y x$ will be denoted by $[x, y]$. Recall that a ring R is prime if for $a, b \in R, a R b=(0)$ implies that either $a=0$ or $b=0$, and is semiprime in case $a R a=(0)$ implies $a=0$. An additive mapping $T: R \rightarrow R$ is called a left (right) centralizer in case $T(x y)=T(x) y(T(x y)=x T(y))$ holds for all pairs $x, y \in R$. One of the initial papers using the concept of centralizers (also called multipliers) is due to Wendel [32] for group algebras. Helgason [6] introduced centralizers for Banach algebras. Wang [31] studied centralizers of commutative Banach algebras. Johnson [8] introduced the concept of centralizers for rings. We refer to Busby [4] for a study of so-called double centralizers in the extension of C^{*}-algebras. Akemann, Pedersen and Tomiyama [1] have studied centralizers of C^{*}-algebras. Several authors have also studied spectral properties of centralizers on Banach algebras (see [13, 14]). Johnson [9] has studied centralizers on some topological algebras. Johnson [10] has studied the continuity of centralizers on Banach algebras (see also [11]). Husain [7] has also investigated centralizers on topological algebras with particular reference to complete metrizable locally convex algebras and topological algebras with orthogonal bases. Recently, Khan,

[^0]Mohammad and Thaheem $[12,15]$ have studied centralizers and double centralizers on certain topological algebras. Centralizers have also appeared in a variety, among which we mention representation theory of Banach algebras, the study of Banach modules, Hopf algebras (see $[17,18]$), the theory of singular integrals, interpolation theory, stohastic processes, the theory of semigroups of operators, partial differential equations and the study of approximation problems (see Larsen [13] for more details). In case $T: R \rightarrow R$ is a left and a right centralizer, where R is a semiprime ring with extended centroid C, then there exists an element $\lambda \in C$ such that $T(x)=\lambda x$ for all $x \in R$ (see Theorem 2.3.2 in [3]). An additive mapping $T: R \rightarrow R$ is called a left (right) Jordan centralizer in case $T\left(x^{2}\right)=T(x) x$ ($T\left(x^{2}\right)=x T(x)$) holds for all $x \in R$. Zalar [33] has proved that any left (right) Jordan centralizer on a $2-$ torsion free semiprime ring is a left (right) centralizer. Molnár [16] has proved that in case we have an additive mapping $T: A \rightarrow A$, where A is a semisimple H^{*}-algebra, satisfying the relation $T\left(x^{3}\right)=T(x) x^{2}$ ($T\left(x^{3}\right)=x^{2} T(x)$) for all $x \in A$, then T is a left (right) centralizer. Let us recall that a semisimple H^{*}-algebra is a semisimple Banach *-algebra whose norm is a Hilbert space norm such that $\left(x, y z^{*}\right)=(x z, y)=\left(z, x^{*} y\right)$ is fulfilled for all $x, y, z \in A$ (see [2]). Vukman [21] has proved that in case there exists an additive mapping $T: R \rightarrow R$, where R is a $2-$ torsion free semiprime ring, satisfying the relation $2 T\left(x^{2}\right)=T(x) x+x T(x)$, for all $x \in R$ then T is a left and a right centralizer. For results concerning centralizers on semiprime rings operator algebras and H^{*}-algebras we refer to $[16,19-30,33]$. Let X be a real or complex Banach space and let $L(X)$ and $F(X)$ denote the algebra of all bounded linear operators on X and the ideal of all finite rank operators in $L(X)$, respectively. An algebra $A(X) \subset L(X)$ is said to be standard in case $F(X) \subset A(X)$. Let us point out that any standard algebra is prime, which is a consequence of Hahn-Banach theorem. We denote by X^{*} the dual space of a Banach space X and by I the identity operator on X.

2. The Main Results

Let us start with the following purely algebraic result proved by Vukman in [21].

Theorem A. ([21], Theorem 1). Let R be a 2 -torsion free semiprime ring and let $T: R \rightarrow R$ be an additive mapping satisfying the relation

$$
2 T\left(x^{2}\right)=T(x) x+x T(x)
$$

for all $x \in R$. In this case T is a left and a right centralizer.
Theorem A was the inspiration for the following result.

Theorem 1. Let A be a semisimple H^{*}-algebra and let $T: A \rightarrow A$ be an additive mapping satisfying the relation

$$
2 T\left(x^{m+n+1}\right)=x^{m} T(x) x^{n}+x^{n} T(x) x^{m}
$$

for all $x \in A$ and some nonnegative integers m, n such that $m+n \neq 0$. In this case T is a left and a right centralizer.

For the proof of the theorem above we need the result below which is of independent interest.

Theorem 2. Let X be a Banach space over F and let $A(X) \subset L(X)$ be a standard operator algebra. Suppose there exists an additive mapping $T: A(X) \rightarrow$ $L(X)$ satisfying the relation

$$
2 T\left(A^{m+n+1}\right)=A^{m} T(A) A^{n}+A^{n} T(A) A^{m}
$$

for all $A \in A(X)$ and some nonnegative integers m, n such that $m+n \neq 0$. In this case T is of the form $T(A)=\lambda A$, for all $A \in A(X)$ and some $\lambda \in F$.

In the proof of Theorem 2 we shall use Theorem A.
Proof of Theorem 2. We have the relation

$$
\begin{equation*}
2 T\left(A^{m+n+1}\right)=A^{m} T(A) A^{n}+A^{n} T(A) A^{m} . \tag{1}
\end{equation*}
$$

Let us first consider the restriction of T on $F(X)$. Let A be from $F(X)$ and let $P \in F(X)$, be a projection with $A P=P A=A$. From the above relation one obtains $T(P)=P T(P) P$, which gives

$$
\begin{equation*}
T(P) P=P T(P)=P T(P) P \tag{2}
\end{equation*}
$$

Putting $A+P$ for A in the relation (1), we obtain

$$
\begin{align*}
2 & \sum_{i=0}^{m+n+1}\binom{m+n+1}{i} T\left(A^{m+n+1-i} P^{i}\right) \\
= & \left(\sum_{i=0}^{m}\binom{m}{i} A^{m-i} P^{i}\right)(T(A)+B)\left(\sum_{i=0}^{n}\binom{n}{i} A^{n-i} P^{i}\right) \tag{3}\\
& +\left(\sum_{i=0}^{n}\binom{n}{i} A^{n-i} P^{i}\right)(T(A)+B)\left(\sum_{i=0}^{m}\binom{m}{i} A^{m-i} P^{i}\right),
\end{align*}
$$

where B stands for $T(P)$. Using (1) and rearranging the equation (3) in sense of collecting together terms involving equal number of factors of P we obtain:

$$
\begin{equation*}
\sum_{i=1}^{m+n} f_{i}(A, P)=0, \tag{4}
\end{equation*}
$$

where $f_{i}(A, P)$ stands for the expression of terms involving i factors of P. Replacing A by $A+2 P, A+3 P, \ldots, A+(m+n) P$ in turn in the equation (1), and expressing the resulting system of $m+n$ homogeneous equations of variables $f_{i}(A, P), i=$ $1,2, \ldots, m+n$, we see that the coefficient matrix of the system is a van der Monde matrix

$$
\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
2 & 2^{2} & \cdots & 2^{m+n} \\
\vdots & \vdots & \vdots & \vdots \\
m+n & (m+n)^{2} & \cdots & (m+n)^{m+n}
\end{array}\right]
$$

Since the determinant of the matrix is different from zero, it follows that the system has only a trivial solution.

In particular,

$$
\begin{aligned}
& f_{m+n-1}(A, P)=2\binom{m+n+1}{m+n-1} T\left(A^{2}\right)-\left[\binom{m}{m-2}\binom{n}{n}+\binom{m}{m}\binom{n}{n-2}\right] A^{2} B \\
& \quad-\left[\binom{m}{m}\binom{n}{n-2}+\binom{m}{m-2}\binom{n}{n}\right] B A^{2}-\left[\binom{m}{m-1}\binom{n}{n}+\binom{m}{m}\binom{n}{n-1}\right] A T(A) P \\
& \quad-\left[\binom{m}{m}\binom{n}{n-1}+\binom{m}{m-1}\binom{n}{n}\right] P T(A) A-2\binom{m}{m-1}\binom{n}{n-1} A B A=0,
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{m+n}(A, P)=2\binom{m+n+1}{m+n} T(A)-\left[\binom{m}{m-1}\binom{n}{n}+\binom{m}{m}\binom{n}{n-1}\right] A B \\
& \quad-\left[\binom{m}{m}\binom{n}{n-1}+\binom{m}{m-1}\binom{n}{n}\right] B A-2\binom{m}{m}\binom{n}{n} P T(A) P=0 .
\end{aligned}
$$

The above equations reduce to

$$
\begin{align*}
& 2(m+n+1)(m+n) T\left(A^{2}\right) \\
& \quad=[m(m-1)+n(n-1)] A^{2} B+[m(m-1)+n(n-1)] B A^{2} \tag{5}\\
& \quad+4 m n A B A+2(m+n) A T(A) P+2(m+n) P T(A) A
\end{align*}
$$

and
(6) $2(m+n+1) T(A)=(m+n) A B+(m+n) B A+2 P T(A) P$.

Right multiplication of the relation (6) by P gives

$$
\begin{equation*}
2(m+n+1) T(A) P=(m+n) A B+(m+n) B A+2 P T(A) P \tag{7}
\end{equation*}
$$

Similarly one obtains

$$
\begin{equation*}
2(m+n+1) P T(A)=(m+n) A B+(m+n) B A+2 P T(A) P \tag{8}
\end{equation*}
$$

Combining (7) with (8) we arrive at

$$
T(A) P=P T(A)
$$

which reduces the relations (5) to

$$
\begin{align*}
& 2(m+n+1)(m+n) T\left(A^{2}\right) \\
& \quad=[m(m-1)+n(n-1)] A^{2} B+[m(m-1)+n(n-1)] B A^{2} \tag{9}\\
& \quad+4 m n A B A+2(m+n) A T(A)+2(m+n) T(A) A
\end{align*}
$$

and the relation (7) to

$$
\begin{equation*}
2 T(A) P=A B+B A \tag{10}
\end{equation*}
$$

Combining (10) with (6) we arrive at

$$
\begin{equation*}
T(A)=T(A) P \tag{11}
\end{equation*}
$$

From the above relation one can conclude that T maps $F(X)$ into itself. According to the above relation the relation (10) reduces to

$$
\begin{equation*}
2 T(A)=A B+B A \tag{12}
\end{equation*}
$$

From the above relation we can conclude that T is linear on $F(X)$. Now applying the relation above we obtain

$$
\begin{aligned}
& 2 m n A B A=m n(A B) A+m n A(B A)=m n(2 T(A)-B A) A \\
& \quad+m n A(2 T(A)-A B)=2 m n(T(A) A+A T(A))-m n\left(A^{2} B+B A^{2}\right)
\end{aligned}
$$

We have therefore

$$
2 A B A=2(T(A) A+A T(A))-A^{2} B-B A^{2}
$$

Applying the relation (12) and the relation above in the relation (9) we obtain

$$
\begin{equation*}
2 T\left(A^{2}\right)=T(A) A+A T(A) \tag{13}
\end{equation*}
$$

Therefore we have a linear mapping $T: F(X) \rightarrow F(X)$ satisfying the relation (13) for all $A \in F(X)$. Since $F(X)$ is prime one can conclude according to Theorem A
that T is a left and also a right centralizer on $F(X)$. We intend to prove that there exists an operator $C \in L(X)$, such that

$$
\begin{equation*}
T(A)=C A, A \in F(X) \tag{14}
\end{equation*}
$$

For any fixed $x \in X$ and $f \in X^{*}$ we denote by $x \otimes f$ an operator from $F(X)$ defined by $(x \otimes f) y=f(y) x, y \in X$. For any $A \in L(X)$ we have $A(x \otimes f)=((A x) \otimes f)$. Let us choose f and y such that $f(y)=1$ and define $C x=T(x \otimes f) y$. Obviously, C is linear. Using the fact that T is a left centralizer on $F(X)$ we obtain
$(C A) x=C(A x)=T((A x) \otimes f) y=T(A(x \otimes f)) y=T(A)(x \otimes f) y=T(A) x, x \in X$.
We have therefore $T(A)=C A$ for any $A \in F(X)$. Since T is a right centralizer on $F(X)$ we obtain $C(A B)=T(A B)=A T(B)=A C B$. We have therefore $[A, C] B=0$ for any $A, B \in F(X)$ whence it follows that $[A, C]=0$ for any $A \in F(X)$. Using closed graph theorem one can easily prove that C is continuous. Since C commutes with all operators from $F(X)$ one can conclude that $C x=\lambda x$ holds for any $x \in X$ and some $\lambda \in F$, which gives together with the relation (14) that T is of the form

$$
\begin{equation*}
T(A)=\lambda A \tag{15}
\end{equation*}
$$

any $A \in F(X)$ and some $\lambda \in F$. It remains to prove that the above relation holds on $A(X)$ as well. Let us introduce $T_{1}: A(X) \rightarrow L(X)$ by $T_{1}(A)=\lambda A$ and consider $T_{0}=T-T_{1}$. The mapping T_{0} is, obviously, additive and satisfies the relation (1). Besides T_{0} vanishes on $F(X)$. Let $A \in A(X)$, let $P \in F(X)$, be a projection and $S=A+P A P-(A P+P A)$. Note that S can be written in the form $S=(I-P) A(I-P)$, where I denotes the identity operator on X. Since, obviously, $S-A \in F(X)$, we have $T_{0}(S)=T_{0}(A)$. Besides $S P=P S=0$. We have therefore the relation

$$
\begin{equation*}
2 T_{0}\left(S^{m+n+1}\right)=S^{m} T_{0}(S) S^{n}+S^{n} T_{0}(S) S^{m} \tag{16}
\end{equation*}
$$

Applying the above relation and the fact that $T_{0}(P)=0, S P=P S=0$, we obtain

$$
\begin{aligned}
& S^{m} T_{0}(S) S^{n}+S^{n} T_{0}(S) S^{m}=2 T_{0}\left(S^{m+n+1}\right)=2 T_{0}\left(S^{m+n+1}+P\right) \\
& =2 T_{0}\left((S+P)^{m+n+1}\right)=(S+P)^{m} T_{0}(S+P)(S+P)^{n} \\
& \quad+(S+P)^{n} T_{0}(S)(S+P)^{m}=\left(S^{m}+P\right) T_{0}(S)\left(S^{n}+P\right) \\
& \quad+\left(S^{n}+P\right) T_{0}(S)\left(S^{m}+P\right)=S^{m} T_{0}(S) S^{n}+P T_{0}(S) S^{n}+S^{m} T_{0}(S) P \\
& \quad+P T_{0}(S) P+S^{n} T_{0}(S) S^{m}+P T_{0}(S) S^{m}+S^{n} T_{0}(S) P+P T_{0}(S) P
\end{aligned}
$$

We have therefore

$$
\begin{equation*}
P T_{0}(A)\left(S^{m}+S^{n}\right)+\left(S^{m}+S^{n}\right) T_{0}(A) P+2 P T_{0}(A) P=0 \tag{17}
\end{equation*}
$$

Multiplying the above relation from both sides by P we arrive at

$$
\begin{equation*}
P T_{0}(A) P=0 \tag{18}
\end{equation*}
$$

which reduces the relation (17) to

$$
P T_{0}(A)\left(S^{m}+S^{n}\right)+\left(S^{m}+S^{n}\right) T_{0}(A) P=0
$$

Right multiplication of the above relation by P gives

$$
\begin{equation*}
\left(S^{m}+S^{n}\right) T_{0}(A) P=0 \tag{19}
\end{equation*}
$$

We intend to prove that

$$
\begin{equation*}
S^{m} T_{0}(A) P=0 \tag{20}
\end{equation*}
$$

In case $m=n$ there is nothing to prove according to (19). Let us therefore assume that $m \neq n$. Putting in the relation (19) $2 A$ for A we obtain

$$
\left(2^{m+1} S^{m}+2^{n+1} S^{n}\right) T_{0}(A) P=0
$$

Multiplying the relation (19) by 2^{n+1} and subtracting the relation so obtained from the above relation we obtain $\left(2^{m+1}-2^{n+1}\right) S^{m} T_{0}(A) P=0$ whence it follows the relation (20). Let us prove that

$$
\begin{equation*}
S^{m-1} T_{0}(A) P=0 \tag{21}
\end{equation*}
$$

Putting $A+B$ for A, where $B \in F(X)$, in (20) and using the fact that T_{0} vanishes on $F(X)$, we obtain

$$
\left(S_{1} S^{m-1}+S S_{1} S^{m-2}+\ldots+S^{m-1} S_{1}\right) T_{0}(A) P=0
$$

where S_{1} stands for $(I-P) B(I-P)$ (see [5]). The substitution $T_{0}(A) P B$ for B in the above relation gives because of (18)

$$
\left(T_{0}(A) P B S^{m-1}+S T_{0}(A) P B S^{m-2}+\ldots+S^{m-1} T_{0}(A) P B\right) T_{0}(A) P=0
$$

Left multiplication of the above relation by S^{m-1} and applying the relation (20) we obtain

$$
\left(S^{m-1} T_{0}(A) P\right) B\left(S^{m-1} T_{0}(A) P\right)=0
$$

for all $B \in F(X)$. Now it follows $S^{m-1} T_{0}(A) P=0$ by primeness of $F(X)$, which proves (21). Now, since (20) implies (21), one can conclude by induction that $S T_{0}(A) P=0$, which gives

$$
A T_{0}(A) P-P A T_{0}(A) P=0
$$

because of (18). Putting $A+B$ for A, where $B \in F(X)$, we obtain $0=(A+$ $B) T_{0}(A) P-P(A+B) T_{0}(A) P=B T_{0}(A) P-P B T_{0}(A) P$. We have therefore proved that $B T_{0}(A) P-P B T_{0}(A) P=0$ holds for all $A \in A(X)$ and all $B \in$ $F(X)$. The substitution $T_{0}(A) P B$ for B in the above relation gives, because of (18), $\left(T_{0}(A) P\right) B\left(T_{0}(A) P\right)=0$, for all $B \in F(X)$. Thus it follows $T_{0}(A) P=0$ by primeness of $F(X)$. Since P is an arbitrary one-dimensional projection, one can conclude that $T_{0}(A)=0$, for any $A \in A(X)$. In other words, we have proved that T is of the form $T(A)=\lambda A$, for all $A \in A(X)$ and some $\lambda \in F$. Obviously, T is linear and bounded. The proof of the theorem is complete.

Let us point out that in Theorem 2 we obtain continuity of T under purely algebraic conditions concerning the mapping T.

It should be mentioned that in the proof of Theorem 2 we used some methods similar to those used by Molnár in [16].

Proof of Theorem 1. The proof goes through using the same arguments as in the proof of Theorem in [16] with the exception that one has to use Theorem 2 instead of Lemma in [16].

Since in the formulation of the results presented in this paper we have used only algebraic concepts, it would be interesting to study the problem in a purely ring theoretical context. We conclude with the following conjecture.

Conjecture. Let $T: R \rightarrow R$ be an additive mapping, where R is a semiprime ring, and let $T: R \rightarrow R$ be an additive mapping satisfying the relation

$$
2 T\left(x^{m+n+1}\right)=x^{m} T(x) x^{n}+x^{n} T(x) x^{m}
$$

for all $x \in R$ and some nonnegative integers m, n such that $m+n \neq 0$. In this case T is a left and a right centralizer.

In case $m=0, n=1$ the conjecture above has been proved by Vukman (Theorem A). Since semisimple H^{*}-algebras are semiprime Theorem 1 proves the conjecture above in a special case. We are going to prove the conjecture above in case a semiprime ring R has the identity element.

Theorem 3. Let m, n be nonnegative integers such that $m+n \neq 0$ and let R be a $2, m+n$ and $m+n+2 m n$-torsion free semiprime ring with the identity element. Suppose that there exists an additive mapping $T: R \rightarrow R$ satisfying the relation

$$
2 T\left(x^{m+n+1}\right)=x^{m} T(x) x^{n}+x^{n} T(x) x^{m}
$$

for all $x \in R$. In this case T is of the form $T(x)=a x$ for all $x \in R$ where a is a fixed element from $Z(R)$.

Proof. We have the relation

$$
\begin{equation*}
2 T\left(x^{m+n+1}\right)=x^{m} T(x) x^{n}+x^{n} T(x) x^{m}, x \in R \tag{22}
\end{equation*}
$$

With the same approach as in the proof of Theorem 2 we obtain from the above relation

$$
\begin{align*}
& 2(m+n+1)(m+n) T\left(x^{2}\right)=\left(m(m-1)+n(n-1) x^{2} a\right. \\
& \quad+m(m-1)+n(n-1)) a x^{2}+4 \text { mnxax } \tag{23}\\
& \quad+2(m+n) x T(x)+2(m+n) T(x) x, x \in R
\end{align*}
$$

and

$$
\begin{equation*}
2 T(x)=x a+a x, x \in R \tag{24}
\end{equation*}
$$

where a stands for $T(e)$. In the procedure mentioned above we used the fact that R is $m+n$-torsion free.

According to (24) one obtains the relation

$$
\begin{equation*}
2 T\left(x^{2}\right)=x^{2} a+a x^{2}, x \in R \tag{25}
\end{equation*}
$$

Multiplying the relation (24) by x from both sides we obtain

$$
\begin{equation*}
2 T(x) x=x a x+a x^{2}, x \in R \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
2 x T(x)=x^{2} a+x a x, x \in R \tag{27}
\end{equation*}
$$

Using (25), (26) and (27) in the relation (22) we obtainafter some calculation

$$
x^{2} a+a x^{2}-2 x a x=0, x \in R
$$

since R is $m+n+2 m n$-torsion free. The above relation can be written in the form

$$
\begin{equation*}
[[a, x], x]=0, x \in R \tag{28}
\end{equation*}
$$

Putting $x+y$ for x in the above relation we obtain

$$
\begin{equation*}
[[a, x], y]+[[a, y], x]=0, x, y \in R \tag{29}
\end{equation*}
$$

Putting $x y$ for y in relation (29) we obtain because of (28) and (29):

$$
\begin{aligned}
0 & =[[a, x], x y]+[[a, x y], x] \\
& =[[a, x], x] y+x[[a, x], y]+[[a, x] y+x[a, y], x] \\
& =x[[a, x], y]+[[a, x], x] y+[a, x][y, x]+x[[a, y], x] \\
& =[a, x][y, x], x, y \in R .
\end{aligned}
$$

Thus we have

$$
[a, x][y, x]=0, x, y \in R .
$$

The substitution $y a$ for y in the above relation gives $[a, x] y[a, x]=0$, for all pairs $x, y \in R$. Let us point out that so far we have not used the assumption that R is semiprime. Since R is semiprime, it follows from the last relation that $[a, x]=0$, for all $x \in R$. In other words, $a \in Z(R)$, which reduces the relation (24) to $T(x)=a x, x \in R$, since R is 2 -torsion free. The proof of the theorem is complete.

References

1. C. A. Akemann, G. K. Pedersen and J. Tomiyama, Multipliers of C^{*}-algebras, J. Funct. Anal., 13 (1973), 277-301.
2. W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc., 57 (1945), 364-386.
3. K. I. Beidar, W. S. Martindale III and A. V. Mikhalev, Rings with generalized identities, Marcel Dekker Inc., New York, 1996.
4. R. C. Busby, Double centralizers and extension of C^{*}-algebras, Trans. Amer. Math. Soc., 132 (1968), 79-99.
5. L. O. Chung, J. Luh, Semiprime rings with nilpotent elements, Canad. Math. Bull., 24 (1981), 415-421.
6. S. Helgason, Multipliers of Banach algebras, Ann. of Math., 64 (1956), 240-254.
7. T. Husain, Multipliers of topological algebras, Dissertations Math. (Rozprawy Mat.), 285 (1989), pp. 40.
8. B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc., 14 (1964), 299-320.
9. B. E. Johnson, Centralizers on certain topological algebras, J. London Math. Soc., 39 (1964), 603-614.
10. B. E. Johnson, Continuity of centralizers on Banach algebras, J. London Math. Soc., 41 (1966), 639-640.
11. B. E. Johnson, A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math., 90 (1968), 1068-1073.
12. L. A. Khan, N. Mohammad and A. B. Thaheem, Double multipliers on topological algebras, Internat. J. Math.\& Math. Sci., 22 (1999), 629-636.
13. R. Larsen, An introduction to the Theory of Multipliers, Springer-Verlag, Berlin, 1971.
14. K. B. Laursen, Mulptipliers and local spectral theory, Functional Analysis and Operator Theory, Banach Center Publications, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1994, pp. 223-236.
15. N. Mohammad, L. A. Khan and A. B. Thaheem, On closed range multipliers on topological algebras, Scientiae Math. Japonica, 53 (2001), 89-96.
16. L. Molnár, On centralizers of an H^{*}-algebra, Publ. Math. Debrecen, 46(1-2) (1995), 89-95.
17. A. Van Daele, Multiplier Hopf algebras, Trans. Amer. Math. Soc., 342 (1994), 917-932.
18. A. Van Daele and Y. Zhang, A Survey on multiplier Hopf algebras, Hopf algebras and quantum groups (Brussels, 1998), 269-306, Lecture Notes in Oure and Appl. Mat, 209, Dekker, New York, 2000.
19. P. P. Soworotnow, Trace-class and centralizers of an H^{*}-algebras, Proc. Amer. Math. Soc., 26 (1970), 101-104.
20. P. P. Soworotnow and G. R. Giellis, Continuity and linearity of centralizers on a complemented algebra, Proc. Amer. Math. Soc., 31 (1972), 142-146.
21. J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carol., 40(3) (1999), 447-456.
22. J. Vukman, Centralizers of semiprime rings, Comment. Math. Univ. Carol., 42(2) (2001), 237-245.
23. J. Vukman, I. Kosi Ulbl, On centralizers of semiprime rings, Aequationes Math., 66 (2003), 277-283.
24. J. Vukman, I. Kosi-Ulbl, An equation related to centralizers in semiprime rings, Glasnik Mat., 38 (2003), 253-261.
25. J. Vukman, I. Kosi-Ulbl, On certain equations satisfied by centralizers in rings, Intern. Math. J., 5 (2004), 437-456.
26. J. Vukman, An equation on operator algebras and semisimple H^{*}-algebras, Glasnik Mat., 40, 60 (2005), 201-206.
27. J. Vukman, I. Kosi-Ulbl, Centralizers on rings and algebras, Bull. Austral. Math. Soc., 71 (2005), 225-234.
28. J. Vukman, I. Kosi-Ulbl, On centralizers of semiprime rings with involution, Studia Sci. Math. Hungar., 43(1) (2006), 77-83.
29. J. Vukman, I. Kosi-Ulbl, A remark on a paper of L. Molnár, Publ. Math. Debrecen, 67(3-4) (2005), 419-427.
30. J. Vukman, I. Kosi-Ulbl, On centralizers of standard operator algebras and semisimple $H *$-algebras, Acta Math. Hungar., 110(3) (2006), 217-223.
31. J. K. Wang, Multipliers of commutative Banach algebras, Pacific. J. Math., 11 (1961), 1131-1149.
32. J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251-266.
33. B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carol., 32 (1991), 609-614.

Joso Vukman and Irena Kosi-Ulbl
Department of Mathematics,
University of Maribor,
PEF, Koroska 160,
2000 Maribor,
Slovenia
E-mail: joso.vukman@uni-mb.si \& irena.kosi@uni-mb.si

[^0]: Received April 27, 2005, accepted June 21, 2005.
 Communicated by Shun-Jen Cheng.
 2000 Mathematics Subject Classification: 16W10, 46K15, 39B05.
 Key words and phrases: Prime ring, Semiprime ring, Banach space, Standard operator algebra, H^{*} Algebra, Left (right) centralizer, Left (right) Jordan centraliz.
 This research has been supported by the Research Council of Slovenia.

