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SOME SHARP UPPER BOUNDS ON THE SPECTRAL RADIUS
OF GRAPHS

Lihua Feng, Qiao Li and Xiao-Dong Zhang

Abstract. In this paper, we first give a relation between the adjacency spectral
radius and the Q-spectral radius of a graph. Then using this result, we further
give some new sharp upper bounds on the adjacency spectral radius of a graph
in terms of degrees and the average 2-degrees of vertices. Some known results
are also obtained.

1. INTRODUCTION

Let G = (V, E) be a simple graph with vertex set V and edge set E . For v ∈ V ,
the degree of v is denoted by dv, the average 2-degree of v, denoted by mv, equals
to (

∑
uv∈E(G) du)/dv. Then dvmv is the 2-degree of v. For two vertex u and v, we

use u ∼ v to mean that these two vertices are adjacent. Let A(G) be the adjacency
matrix of G and D(G) be the diagonal degree matrix of G, respectively. We call
the matrix L(G) = D(G)−A(G) the Laplacian matrix of G, while call the matrix
Q(G) = D(G) + A(G) the Q-matrix of G. We denote the largest eigenvalues of
A(G), L(G) and Q(G) by ρ(G), λ(G) and µ(G), respectively, and call them the
adjacency spectral radius, the Laplacian spectral radius, the Q-spectral radius of G,
respectively.

If X is a real symmetric matrix, its eigenvalues must be real, and the largest
one is denoted in this paper by ρ(X). It follows immediately that if G is a simple
graph, then A(G), L(G) and Q(G) are symmetric matrices, moreover A(G) and
Q(G) are irreducible nonnegative matrices.

Let K = K(G) be a vertex-edge incidence matrix of G. Thus Q(G) = D(G)+
A(G) = KKt and KtK = 2Im + A(LG), where LG is the line graph of G. Since
KKt and KtK have the same nonzero eigenvalues, we can get that

µ(G) = 2 + ρ(LG).
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For other terminologies, we follow [1] and [6].

Recently, the following results on the spectral radius were obtained:

(i) [10] Let G be a simple connected graph with n vertices, the maximum degree ∆
and the second largest degree ∆′, here ∆ �= ∆′. If there are p vertices with
degree ∆ , then

(1) ρ(G) ≤ ∆′ − 1 +
√

(∆′ + 1)2 + 4p(∆− ∆′)
2

.

The equality holds if and only if G is ∆ regular or G ∼= Kp ⊕H , the join of
the two graphs, H is a (∆′ − p) regular graph with n − p vertices.

(ii) [2] For any connected graph, we have

(2) ρ(G) ≤
√

2m− δ(n − 1) + ∆(δ − 1).

The equality holds if and only if G is regular or a star plus copies of K2 , or
a complete graph plus a regular graph with smaller degree of vertices.

(iii) [2] For any connected graph, we have

(3) ρ(G) ≤ maxu∈V

√
dumu.

The equality holds if and only if G is a regular graph or a semiregular bipartite
graph.

Recently, Shu et al. got the following relation between λ(G) and µ(G).

Lemma 1.1. [9] For a connected graph G, we have

λ(G) ≤ µ(G),

with equality if and only if G is bipartite.

This paper is organized as follows. In Section 2, we present a relation between
ρ(G) and µ(G). In Section 3, we give some sharp upper bounds on the adjacency
spectral radius by using the results included in Section 2.

2. SOME LEMMAS

Lemma 2.1. [12] Let G be a simple connected graph and L G be the line
graph of G, then the spectral radius of L G satisfies

ρ(LG) ≤ maxu∼v

(√
du(du + mu) + dv(dv + mv) − 2

)
,
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the equality holds if and only if G is regular or semiregular.

Lemma 2.2. Let G be a connected graph, then ρ(G) ≤ 1
2µ(G), and the

equality holds if and only if G is regular.

Proof. Let X = (x1, x2, ..., xn)t ∈ Rn be a unit eigenvector that belongs to
ρ(G), X ′ = (x′

1, x
′
2, ..., x

′
n) ∈ Rn be a unit eigenvector that belongs to µ(G).

First, we will show that ρ(G) ≤ 1
2µ(G) . Since

µ(G) = X
′t(D + A)X ′ =

∑
vi∼vj ,i<j

(x′
i + x′

j)
2,

while

ρ(G) = X tAX =
∑

vi∼vj ,i<j

2xixj

≤ 1
2

∑
vi∼vj ,i<j

(xi + xj)2

≤ 1
2

∑
vi∼vj ,i<j

(x′
i + x′

j)
2

=
1
2
µ(G).

So we get the desired inequality.
If the equality holds, all the inequalities above must be equalities. So we have

ρ(G) =
∑

vi∼vj ,i<j

2xixj =
1
2

∑
vi∼vj ,i<j

(xi + xj)2.

Since 2xixj ≤ x2
i + x2

j , we must have xi = xj when vi and vj are adjacent. Since
G is connected, we get that X is the multiple of all one vector. From AX = ρX ,
we get that G must be regular. Conversely, it is easy to check that when G is
regular, the equality holds.

Remark 1. Since µ(G) = ρ(D+A) = 2+ρ(LG), where LG is the line graph
of G. So this Lemma gives a relation between the spectral radius of a graph and
its line graph, namely,

ρ(G) ≤ 1
2
ρ(LG) + 1,

the equality holds if and only if G is a regular graph.
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Corollary 2.3. If G is a bipartite graph with degree sequence d 1, d2, · · · , dn.
Then

λ(G) ≥ 2

√
1
n

∑
d2

i ,

where the sum is taken over all the 1 ≤ i ≤ n. Moreover, the equality holds if and
only if G is regular bipartite.

Proof. From [5] or [11], we know ρ(G) ≥
√

1
n

∑
d2

i , and the equality holds
if and only if G is a regular graph or a semiregular bipartite graph. Together with
Lemma 1.1 and Lemma 2.2, we get the result.

Lemma 2.4. [7] Let G be a graph of order n and Q = Q(G), let P be any
polynomial, then

minv∈V (G)sv(P (Q)) ≤ P (µ) ≤ maxv∈V (G)sv(P (Q)),

where sv(X) denotes the vth row sum of a matrix X . The equality holds if and
only if the row sums of Q are equal.

Lemma 2.5. Let G be a simple graph and ∆ be the maximum degree, then

µ(G) ≤ ∆ +
√

∆2 + 8T

2
,

where T = max{dumu|u ∈ V } is the maximum 2-degree. Moreover, the equality
holds if and only if G is regular.

Proof. Since Q = D + A, by a simple calculation, we have sv(Q) = 2dv and
sv(AD) = sv(A2) =

∑
u∼v du = dvmv. Then

sv(Q2) = sv(D2 + DA + AD + A2)
= sv(D(D + A)) + sv(AD) + sv(A2)
= dvsv(Q) + 2dvmv

≤ ∆sv(Q) + 2dvmv

So we have
sv(Q2 − ∆Q) ≤ maxv∈V (G)2dvmv = 2T.

By Lemma 2.4, we have
µ2 − ∆µ − 2T ≤ 0,

and then

µ ≤ ∆ +
√

∆2 + 8T

2
.
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In order to get the equality above, all inequalities in the above should be equalities.
That is dv =∆ and dvmv =T hold for any vertex v. So by Lemma 2.4, G is regular.
Conversely, when G is regular, it is easy to check that the equality holds.

Remark 2. From the proof of this Lemma, we can get easily that µ(G) ≤
maxu∈V (G)

√
2d2

u + 2dumu, and this is one of the main results in [8].

Corollary 2.6. Let G be a simple connected graph, then

λ(G) ≤ 1
2

(
∆ +

√
∆2 + 8

(
2m − (n − 1)δ + (δ − 1)∆

) )
.

Equality holds if and only if G is regular bipartite.

Proof. Since dumu ≤ 2m − (n − 1)δ + (δ − 1)∆, together with Lemma 1.1
and Lemma 2.5, we can get the result.

Lemma 2.7. Let G be a simple connected graph, then

µ(G) ≤ maxu∈V (G)

(
du +

√
dumu

)
,

and the equality holds if and only if G is regular or semiregular bipartite.

Proof. Let x = (xv, v ∈ V ) be a unit vector such that µx = Qx, then for
any u ∈ V , µxu = duxu +

∑
v∼u xv =

∑
v∼u(xv + xu). By the Cauchy-Schwarz

inequality, we have

µ2x2
u ≤ du

∑
v∼u

(xu + xv)2

= d2
ux2

u + 2dux2
u(µ − du) + du

∑
v∼u

x2
v .

Hence ∑
u∈V

µ2x2
u =

∑
u∈V

(2duµ − d2
u)x2

u +
∑
u∈V

du

∑
v∼u

x2
v

=
∑
u∈V

(2duµ − d2
u)x2

u +
∑
u∈V

dumux2
u.

Thus we have ∑
u∈V

(µ2 − 2duµ + d2
u − dumu)x2

u ≤ 0.

So there exists one vertex u such that

µ2 − 2duµ + d2
u − dumu ≤ 0,
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which implies our result.
If the equality holds, then we have for any u ∈ V , uv, uw ∈ E , xu + xv =

xu + xw, that is, for any u ∈ V , the neighbors of u have equal eigencomponents.
While from µxu = duxu +

∑
v∼u xv, we have

(µ − du)xu = duxv ,

(µ − dv)xv = dvxu,

(µ − dw)xw = dwxu.

So dv = dw and for any uv ∈ E ,

(a) µ = du + dv.

Since G is connected, there are at most two different degrees in G. If the subgraph
G[N (u)] induced by N (u) has at least one edge, then from (a) we have du = dv

and G must be regular. If G[N (u)] contains no edge, then G must be semiregular
bipartite. So we get the desired result. Conversely, it is easy to check that when G
is either regular or semiregular bipartite, the result holds.

Corollary 2.8. Let G be a simple connected graph, then λ ≤ maxu∈V (G)

(
du+√

dumu

)
. Equality holds if and only if G is regular bipartite or semiregular

bipartite.

3. MAIN RESULTS AND EXAMPLES

In this section, we establish some upper bounds for the adjacency spectral radius
of a graph G by the matrix Q(G) and its line graph LG. Finally, we give two
examples to illustrate that our results are sometimes better than the known ones in
Section 1.

Theorem 3.1. Let G be a simple connected graph, then

(4) ρ(G) ≤ maxu∈V (G)

√
d2

u + dumu

2
.

The equality holds if and only if G is a regular graph.

Proof. From the proof of Lemma 2.5, we have sv(Q2) = sv(D2 +DA+AD+
A2) = 2d2

v+2dvmv , from Lemma 2.4, we have µ(G) ≤ maxu∈V (G)

√
2d2

u + 2dumu,

and by Lemma 2.2, we get the result.



Some Sharp Upper Bounds on the Spectral Radius of Graphs 995

Theorem 3.2. Let G be a simple connected graph, then

(5) ρ(G) ≤ maxu∼v

√
du(du + mu) + dv(dv + mv)

2
,

the equality holds if and only if G is a regular graph.

Proof. By Lemmas 2.1 and 2.2 and Remark 1, we can get the result.

Theorem 3.3. Let G be a simple connected graph, then

(6) ρ(G) ≤ ∆ +
√

∆2 + 8T

4
,

where T = max{dumu|u ∈ V } is the maximum 2-degree in V . Moreover, the
equality holds if and only if G is regular.

Proof. By Lemmas 2.2 and 2.5, we can get the desired result.

Theorem 3.4. Let G be a simple connected graph, then

(7) ρ(G) ≤ maxu∈V (G)
1
2

(
du +

√
dumu

)
.

The equality holds if and only if G is a regular graph.

Proof. From Lemma 2.2 and Lemma 2.7, we can get the desired result.

Remark 3. It is easy to check that (4), (7) and (3) are incomparable, since du

and mu are incomparable in general. While a simple computation shows that (7) is
better than (4).

Theorem 3.5. Let G be a simple connected graph, then

(8) ρ(G) ≤ max
{1

4

(
(du + dv) +

√
(du − dv)2 + 4mumv

)
: uv ∈ E(G)

}
.

The equality holds if and only if G is a regular graph.

Proof. Consider D−1QD, by modifying the proof of Theorem 2.14 in [4] and
a similar argument in Lemma 2.7 for the case when the equality holds, we can get

µ(G) ≤ max
{1

2

(
(du + dv) +

√
(du − dv)2 + 4mumv

)
: uv ∈ E(G)

}
,

equality holds if and only if G is regular or semiregular bipartite. From Lemma
2.2, we can get the result.
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Remark 4. It is easy to check that

1
2

(
(du + dv) +

√
(du − dv)2 + 4mumv

)
≤

√
d2

u + d2
v + 2mumv

≤ d2
u + d2

v + mumv + dudv

du + dv
.

So by Lemma 2.2, we can get that

ρ(G) ≤ 1
4

(
(du + dv) +

√
(du − dv)2 + 4mumv

)

≤ 1
2

(√
d2

u + d2
v + 2mumv

)

≤ 1
2

(d2
u + d2

v + mumv + dudv

du + dv

)
.

Even for these two new bounds, they are incomparable with (4), (5), (7).
At last, we give two examples to illustrate the results in this section are some-

times better than those cited in Section 1. Let G1 and G2 be two graphs as shown
in the following figures.
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We summarize all the upper bounds for the spectral radius of graphs considered in
this paper as follows:

ρ (1) (2) (3) (4) (5) (6) (7) (8)
G1 2.450 3.450 3.317 2.828 3.317 3.236 3.123 3.225 2.781
G2 2.330 3.646 3.464 3.464 3.317 3.646 3.279 3.232 3.000

The table above shows in a general sense, these bounds are incomparable except
for (4) and (7). (8) is the best of all.
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