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ON SENSITIVITY ANALYSIS IN VECTOR OPTIMIZATION

G. M. Lee and N. Q. Huy

Abstract. The aim of this paper is to devote to the sensitivity analysis in vec-
tor optimization problems. We prove that, under some suitable qualification
conditions, the efficient solution map and efficient frontier of a parameterized
vector optimization problem are proto-differentiable. It also provide two suf-
ficient conditions for inner and outer approximation of the proto-derivative of
the efficient frontier map.

1. INTRODUCTION

Sensitivity analysis of perturbation maps, where the derivative of a perturbation
map is defined graphically: the graph of the derivative is certain tangent cone to
the graph of a multifunction under consideration, was intensively studied in the past
several years. A number of interesting results of sensitivity analysis of perturbation
maps have been found in [2-13, 15-18] via the concept of the contingent cone, but
a few results are established concerning the adjacent cone (see [6-8, 11, 13]).

The concept of the proto-differentiability of a multifunction, in which the con-
tingent cone and adjacent cone at a point to its graph coincide, was introduced
by Rockafellar [13]. For more details, we refer the reader to [13, 14]. Rock-
afellar [13] showed that for a parametric scalar optimization problem with smooth
object and constraint functions, the perturbation map which associates with each
parametric vector the corresponding Kuhn-Tucker points and multipliers is often
proto-differentiable.

The aim of this paper is to devote to the sensitivity analysis in vector optimization
problems. We prove that, under some suitable qualification conditions, the efficient
solution map and the efficient frontier map of a parameterized vector optimization
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problem are proto-differentiable. It also provide two sufficient conditions for inner
and outer approximation of the proto-derivative of the efficient frontier map.

The organization of the paper is as follows. In Section 2, we recall several
concepts of derivatives of multifunctions and their properties which are needed in
the sequel. In Section 3, we establish the proto-differentiability of the efficient
solution map and the efficient frontier map. The sufficient conditions in order to
approximate to the proto-derivative of the efficient frontier maps are presented in
Section 4.

2. PRELIMINARIES

Throughout this paper let C be a nonempty convex closed pointed cone in the
n-dimensional Euclidean space R

n. For a set Ω ⊂ Rn, denote by cl Ω and intΩ,
the topological closure and the interior of Ω, respectively.

Consider a parametric vector optimization problem:

(Pu)

{
Minimize f(u, x) := (f1(u, x), . . . , fn(u, x))

subject to x ∈ Γ(u),

where Γ : R
d ⇒ R

m is a multifunction and fi : R
d × R

m → R, i = 1, 2, . . . , n, is
a single-valued function.

Definition 2.1. Let Ω ⊂ R
n. A vector v̄ ∈ Ω is said to be an efficient (resp.

weakly efficient) point of Ω if there is no v ∈ Ω satisfying v − v̄ ∈ C \ {0} (resp.
v − v̄ ∈ intC). The set of all the efficient (resp. weakly efficient) points of Ω is
denoted by E(Ω) (resp. Ew(Ω)).

We set

Λ(u) = f(u, Γ(u)) := {y ∈ R
n : y = f(u, x), x ∈ Γ(u)}.

Definition 2.2. The set S(u) = {x ∈ Γ(u) : f(u, x) ∈ E(Λ(u))} is said to
be the efficient solution set of (Pu). The set E(u) = {f(u, x) : x ∈ S(u)} ⊂ Rn is
called the efficient frontier of (Pu).

We recall some basic concepts in Set-valued analysis. For more details, we refer
the reader to Ref. 1.

Let y ∈ cl ∆ ⊂ R
n. The contingent cone T∆(y) and the adjacent cone (or the

intermediate tangent cone) T b
∆(y) of ∆ at y are defined by the formulas:

T∆(y) = {η ∈ R
n | ∃{tk} → 0+,

∃{ηk} → η such that y + tkηk ∈ ∆ for all k},
T b

∆(y) = {η ∈ R
n | ∀{tk} → 0+,

∃{ηk} → η such that y + tkηk ∈ ∆ for all k}.
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Definition 2.3. [1]. Let F : R
d ⇒ R

n be a multifunction with the graph defined
by

gph F = {(u, y) ∈ R
d × R

n | y ∈ F (u)}.
The contingent derivative DF (u, y) and the adjacent derivative DbF (u, y) of F at
(u, y) ∈ gph F are the multifunctions from R

d to R
n given by

DF (u, y)(ζ) = {η ∈ R
n | (ζ, η) ∈ TgphF (u, y)} ∀ζ ∈ R

d

and

DbF (u, y)(ζ) = {η ∈ R
n | (ζ, η) ∈ T b

gphF (u, y)} ∀ζ ∈ R
d, respectively.

Clearly,

gph DF (u, y) = TgphF (u, y) and gph DbF (u, y) = T b
gphF (u, y).

Definition 2.4. [13]. Let G : R
d ⇒ R

n be a multifunction, and let u ∈ domG
and y ∈ G(u). Let Ξt : R

d ⇒ R
n be the difference quotient multifunction at u

relative to y defined by

(2.1) Ξt(ζ) =
G(u + tζ) − y

t
for t > 0.

The multifunction G is said to be proto-differentiable at u relative to y if there is
a multifunction Ξ : R

d ⇒ R
n such that Ξt converges in graph to Ξ, i.e., the set

gph Ξt converges in R
d × R

n to the set gph Ξ in the sense of Kuratowski-Painlevé
as t → 0+. We call Ξ the proto-derivative of G at u relative to y and denote it by
G′

u,y .

Definition 2.5. [13]. We shall say that the set ∆ is approximable at y ∈ ∆ if
the contingent cone and adjacent cone of ∆ at y coincide.

Lemma 2.1. [13]. A multifunction G : R
d ⇒ R

n is proto-differentiable at u
relative to y ∈ G(u) if and only if the set gphG is approximable at (u, y). In this
case,

gphG′
u,y = TgphG(u, y) = T b

gphG(u, y).

Definition 2.6. [11, 13]. Let G : R
d ⇒ R

n be a multifunction, and let u ∈
domG and y ∈ G(u). We say that G is semi-differentiable at u relative to y if there
is a multifunction Ξ : R

d ⇒ R
n such that the quotient multifunctions Ξ t, t > 0, in

(2.1) satisfy the condition

lim
t→0+;ζ′→ζ

Ξt(ζ ′) = Ξ(ζ) for all ζ ∈ R
d,
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where the convergence of sets is understood in the sense of Kuratowski-Painlevé.

From Theorem 3.1 in [13], it follows that semi-differentiability implies proto-
differentiability. Note that the reverse implication is not true in general (see for
instance [13]). Obviously, if a single-valued function G : R

d → R
n is continuously

Fréchet differentiable at u, then it is semi-differentiable at u relative to y = G(u).
Furthermore, the proto-derivative G′

u,y of G at u relative to y and the Fréchet
derivative G′

u of G at u coincide.
In the sequel, R+ denotes the set of all the nonnegative real numbers and

R++ := R+\{0}. We shall need the following type of derivative for multifunctions.

Definition 2.7. [3]. For any (u, y) ∈ gph F , the set RCgphF (u, y) ⊂ R
d × R

n

defined by

RCgphF (u, y)

= {(ζ, η) ∈ R
d × R

n | there exist {tk} ⊂ R++, {uk} ⊂ R
d, yk ∈ F (uk)

such that lim
k→∞

uk = u, lim
k→∞

[tk((uk, yk) − (u, y))] = (ζ, η)}.

is called the closed radial cone to the graph of F at (u, y).
A straightforward calculation gives an alternative characterization of the closed

radial cone as follows:

RCgphF(u, y)

= {(ζ, η) ∈ R
d × R

n | ∃{tk} ⊂ R++, ∃{ζk} ⊂ R
d, ∃{ηk} ⊂ R

n such that

lim
k→∞

ζk = ζ, lim
k→∞

ηk = η, lim
k→∞

(u + tkζk)

= u, y + tkηk ∈ F (u + tkζk) for all k}.

It is easy to check that

TgphF(u, y) ⊂ RCgphF(u, y)

and
TgphF(u, y) = RCgphF(u, y)

if gphF is a convex set.

Definition 2.8. Let F : R
d ⇒ R

n be a multifunction and (u, y) ∈ gphF .
The radial epiderivative Dp(u, y) of F at (u, y) is the multifunction from R

d to R
n

defined by
gphDpF (u, y) = RCgphF(u, y).
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Note that in [15], the notion “closed radial cone” and “radial epiderivative” was
called “TP-cone” and “TP-derivative”, respectively.

Let Γ : R
d ⇒ R

m be a multufunction from R
d to R

m and let Λ : R
d ⇒ R

n a
multifunction defined by

Λ(u) = {y ∈ R
n : y = f(u, x), x ∈ Γ(u)},

where f : R
d × R

m → R
n is a single-valued function. Let Γ̃ : R

d × R
n ⇒ R

m be
a multifunction from R

d × R
n to R

m defined by

Γ̃(u, y) = {x ∈ Γ(u) | y = f(u, x)}.

The following lemma shows the proto-differentiability of the perturbation map
for effective domain and valued domain of the parametric vector optimization prob-
lem (Pu).

Lemma 2.2. Let û ∈ R
d, x̂ ∈ Γ(û) and ŷ = f(û, x̂). Suppose that Γ(·) is

proto-differentiable at û relative to x̂ and f(·) is continuously Fr échet differentiable
at (û, x̂), and

(2.2) DpΓ̃(û, ŷ)(0, 0) = {0}.

Then Λ(·) is proto-differentiable at û relative to ŷ. Moreover,

Λ′
û,ŷ(ζ) = {η ∈ R

n | η = ∇uf(û, x̂)(ζ)+∇xf(û, x̂)(ξ) and ξ ∈ Γ′
û,x̂(ζ)} ∀ζ ∈ R

d.

Proof. Let L := {(ζ, η) ∈ R
d × R

n | η = f ′
û,x̂(ζ, ξ) and ξ ∈ Γ′

û,x̂(ζ)}. By
Lemma 2.1, we only need to show that

TgphΛ(û, ŷ) ⊂ L ⊂ T b
gphΛ(û, ŷ).

Let (ζ, η) ∈ TgphΛ(û, ŷ). Then there exist {tk} ⊂ R++, tk → 0, {(ζk, ηk)} ⊂
R

d ×R
n, (ζk, ηk) → (ζ, η) such that ŷ + tkηk ∈ Λ(û+ tkζk) for all k. Then there

exist ξk ∈ R
n such that

(2.3) x̂ + tkξk ∈ Γ(û + tkζk) and ŷ + tkηk = f(û + tkζk, x̂ + tkξk) ∀k.

Hence x̂ + tkξk ∈ Γ̃(û + tkζk, ŷ + tkηk). We claim that the sequence {ξk} has a
convergent subsequence. Indeed, suppose that {ξk} has not any convergent subse-
quence. Then we may assume that lim

k→∞
‖ξk‖ = ∞. Setting

ξ̃k =
ξk

‖ξk‖ , ζ̃k =
ζk

‖ξk‖ , η̃k =
ηk

‖ξk‖ , t̃k = tk‖ξk‖,
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we have tkζk = t̃k ζ̃k, tkηk = t̃k η̃k, lim
k→∞

ζ̃k = lim
k→∞

η̃k = 0, lim
k→∞

t̃k ζ̃k = lim
k→∞

t̃k η̃k

= 0,

(2.4) ξ̃k ∈ Γ̃(û + t̃k ζ̃k, ŷ + t̃k η̃k) − x̂

t̃k

and ‖ξ̃k‖ = 1 for all k. By taking a subsequence if necessary, we may assume
that lim

k→∞
ξ̃k = ξ̃ and ‖ξ̃‖=1. Then, from (2.4) it follows that ξ̃ ∈ DpΓ̃(û, ŷ)(0, 0),

contrary to (2.2) and our claim is proved. There is no loss of generality in assuming
that lim

k→∞
ξk = ξ. Combining the proto-differentiability of Γ(·) at û relative to x̂

and the continuous Fréchet differentiability of f(·) at (û, x̂) with (2.3), we have
ξ ∈ Γ′

u,x(ζ) and η = f ′
û,x̂(ζ, ξ). Hence TgphΛ(û, ŷ) ⊂ L.

What is left is to show that L ⊂ T b
gphΛ(û, ŷ). Let (ζ, η) ∈ L. Then η =

f ′
û,x̂(ζ, ξ) for some ξ ∈ Γ′

û,x̂(ζ). Since Γ(·) is proto-differentiable at û relative to
x̂ it follows that for any {t̄k} ⊂ R++, t̄k → 0 there exists {(ζ̄k, ξ̄k)} ⊂ R

d × R
m,

(ζ̄k, ξ̄k) → (ζ, ξ) such that x̂ + t̄k ξ̄k ∈ Γ(û + t̄kζ̄k) for all k. Taking

η̄k =
f(û + t̄kζ̄k, x̂ + t̄kξ̄k) − ŷ

t̄k
,

we have ŷ + t̄k η̄k ∈ Λ(û + t̄k ζ̄k) for all k and lim
k→∞

η̄k = η. Hence (ζ, η) ∈
T b

gphΛ(û, ŷ). Thus L ⊂ T b
gphΛ(û, ŷ). By the continuous Fréchet differentiability of

f(·) at (û, x̂), it is easy to check that

f ′
û,x̂(ζ, ξ) = ∇uf(û, x̂)(ζ) + ∇xf(û, x̂)(ξ).

The proof is complete.

The semi-differentiability of Λ(·) is established by our next lemma.

Lemma 2.3. In Lemma 2.2, if Γ(·) is semi-differentiable at û relative to x̂

then Λ(·) is semi-differentiable at û relative to ŷ.

Proof. Let ζ ∈ R
d and η ∈ lim sup

t→0+

ζ′→ζ

Λ(û + tζ ′) − ŷ

t
. From Proposition 2.3 in

[13] it follows that η ∈ Λ ′
û,ŷ(ζ). Analysis similar to that in the proof of Lemma 2.2

shows that ξ ∈ Γ′
u,x(ζ) and η = f ′

û,x̂(ζ, ξ). From the semi-differentiability of Γ(·)
at û relative to x̂ it follows that for any tk → 0+ and ζk → ζ there exists ξk → ξ
such that x̂ + tkξk ∈ Γ(û + tkζk) for all k. Setting

ηk =
f(û + tkζk, x̂ + tkξk) − ŷ

tk
,
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we have lim
k→∞

ηk = η and ŷ + tkηk ∈ Λ(û + tkζk) for all k. Hence η ∈

lim inf
t→0+

ζ′→ζ

Λ(û + tζ ′) − ŷ

t
. Thus Λ(·) is semi-differentiable at û relative to ŷ.

Lemma 2.4. Suppose that G : R
d ⇒ R

n is proto-differentiable at u relative
to y ∈ G(u) and the following constraint qualification holds:

(2.5) DpG(u, y)(0)∩ (−C) = {0}.

Then the multifunction G + C : R
d ⇒ R

n defined by (G + C)(·) = G(·) + C is
proto-differentiable at u relative to x and

(2.6) (G + C)′u,y(ζ) = G′
u,y(ζ) + C ∀ζ ∈ R

d.

Proof. Let u ∈ R
d and y ∈ G(u). Obviously, y ∈ (G + C)(u). We shall

establish the lemma if we prove the following:

(2.7) D(G + C)(u, y)(ζ) ⊂ DG(u, y)(ζ) + C ∀ζ ∈ R
d

and

(2.8) DGb(u, y)(ζ) + C ⊂ Db(G + C)(u, y)(ζ), ∀ζ ∈ R
d

Let ξ ∈ D(G + C)(u, y)(ζ). Then there exist {tk} ⊂ R++, tk → 0, {(ζk, ξk)} ⊂
R

d × R
n, (ζk, ξk) → (ζ, ξ) such that y + tkξk ∈ G(u + tkζk) + C for all k. It

follows that

(2.9) ξk = ηk + ck,

where ηk ∈ G(u + tkζk) − y

tk
and ck ∈ C

tk
⊂ C. We claim that the sequence {ηk}

has a convergent subsequence. Indeed, suppose that {ηk} has not any convergent
subsequence. Then we may assume that lim

k→∞
‖ηk‖ = ∞. Setting

η̃k =
ηk

‖ηk‖ , ζ̃k =
ζk

‖ηk‖ , t̃k = tk‖ηk‖,

we have tkζk = t̃k ζ̃k , lim
k→∞

ζ̃k =0, lim
k→∞

t̃kζ̃k =0, η̃k ∈ G(u + t̃kζ̃k) − y

t̃k
and ‖η̃k‖

= 1 for all k. By taking a subsequence if necessary, we may assume that lim
k→∞

η̃k =

η̃ and ‖η̃‖ =1. Then η̃ ∈ DpG̃(u, y)(0). From (2.9) it follows that lim
k→∞

ck

‖ηk‖ = −η̃.
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By the closedness of C, −η̃ ∈ C. Hence η̃ ∈ DpG(u, y)(0) ∩ (−C), contrary to
(2.5), and hence our claim is proved. There is no loss of generality in assuming
that lim

k→∞
ηk = η. It follows that η ∈ DG(u, y)(ζ). By (2.9) and the closedness of

C, lim
k→∞

ck = ξ − η and ξ − η ∈ C. Hence ξ ∈ DG(u, y)(ζ) + C. Therefore (2.7)
is fulfilled.

It remains to prove that (2.8) holds. Let ζ ∈ R
d and η ∈ DbG(x, y)(ζ) + C.

Set

(2.10) ξ = η + c,

where η ∈ DbG(u, y)(ζ) and c ∈ C. Since η ∈ DbG(u, y)(ζ), it follows that for
any {tk} ⊂ R++, tk → 0, there exist {(ζk, ηk)} ⊂ R

d × R
n, (ζk, ηk) → (ζ, η)

such that y + tkηk ∈ G(u+ tkζk) for all k. Taking ξk = ηk + c, by (2.10), we have

lim
k→∞

ξk = ξ and y + tkξk ∈ (G + C)(u + tkζk) for all k.

Thus ξ ∈ Db(G + C)(u, y)(ζ) and (2.8) is proved. Combining (2.7) and (2.8) with
the proto-differentiability of G at u relative to y we obtain Db(G + C)(u, y)(ζ) =
D(G + C)(u, y)(ζ) for all ζ ∈ R

d. Thus (G + C)(·) is proto-differentiable at x

relative to y and the formula (2.6) is fulfilled.

The following example shows that the condition (2.5) in Lemma 2.4 is essential
for the validity of the conclusion (2.6).

Example 2.1. [6]. Let C = R+ and let the multifunctions G : R ⇒ R be given
by the formula

G(u) = {y | − u2 ≤ y ≤ u2} ∪ {y | y ≤ −1}.

We can check that G(·) and (G + R+)(·) are proto-differentiable at 0 relative to 0,
G′

0,0 = {0} and (G + R+)0,0(0) = R+. Thus

(G + C)′0,0(0) �= G′
0,0(0) + R+.

We check at one that

DpG(0, 0)(0)∩ (−C) = R+,

and the condition (2.5) is not fulfilled.
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3. PROTO-DIFFERENTIABILITY OF THE EFFICIENT SOLUTION

MAP AND EFFICIENT FRONTIER MAP

In this section, we consider a family of parameterized vector optimization prob-
lems (Pu) defined by in Section 2. We recall that f : R

d × R
m → R

n is a single-
valued function, Γ : R

d ⇒ R
m is a multifunction from R

d to R
m and the multifunc-

tion Λ : R
d ⇒ R

n has the form Λ(u) = {y ∈ R
n : y = f(u, x), x ∈ Γ(u)}. The

efficient frontier (resp. efficient solution) map of a family of parameterized vector
optimization problem (Pu) is a multifunction E : R

d ⇒ R
n (resp. S : R

d ⇒ R
m)

defined by E(u) = E(Λ(u)) (resp. S(u) = {x ∈ Γ(u) : f(u, x) ∈ E(u)}) for all
u ∈ R

d.
Let ϕ : R

m → R
n be single-valued function. ϕ is said to be monotone if for

any x1, x2 ∈ R
m one has 〈f(x2) − f(x1), x2 − x1〉 ≥ 0. ϕ is said to be strictly

monotone if for any x1, x2 ∈ R
m and x1 �= x2 imply 〈f(x2)−f(x1), x2−x1〉 > 0.

Two sufficient conditions for the proto-differentiability of the efficient solution
map and the efficient frontier map are established by our next theorem.

Theorem 3.1. Let û ∈ R
d, x̂ ∈ S(û) and ŷ = f(û, x̂). Suppose that the

following properties hold:

(i) f is continuously Fr échet differentiable at (û,x̂);
(ii) ∇xf(û, x̂)(·) is strictly monotone on R

m;
(iii) DpΓ̃(û, ŷ)(0, 0) = {0}.

Then the efficient solution map S(·) is proto-differentiable at û relative to x̂ when-
ever the efficient frontier map E(·) is proto-differentiable at û relative to ŷ. More-
over

(3.1)
S ′

û,x̂(ζ) = {ξ ∈ DΓ(û, x̂)(ζ) | ∇uf(û, x̂)(ζ)

+∇xf(û, x̂)(ξ) ∈ E ′
û,ŷ(ζ)} ∀ζ ∈ R

d.

Proof. Let L = {(ζ, ξ) ∈ R
d × R

m | ξ ∈ DΓ(û, x̂)(ζ) and f ′
û,x̂(ζ, ξ) ∈

E ′
û,ŷ(ζ)}. By Lemma 2.1, we only need to show that

(3.2) TgphS(û, x̂) ⊂ L ⊂ T b
gphS(û, x̂).

Let (ζ, ξ) ∈ TgphS(û, x̂). Then there exist {tk} ⊂ R++, tk → 0+, {(ζk, ξk)} ⊂
R

d × R
m, (ζk, ξk) → (ζ, ξ) such that x̂ + tkξk ∈ Γ(û + tkζk) and f(û +

tkζk, x̂ + tkξk) ∈ E(û + tkζk) for all k. Hence ξ ∈ DΓ(û, x̂)(ζ). Taking

ηk =
f(û + tkζk, x̂ + tkξk) − ŷ

tk
, we have ŷ + tkηk ∈ E(û + tkζk) and lim

k→∞
ηk =
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f ′
û,x̂(ζ, ξ). Hence f ′

û,x̂(ζ, ξ) ∈ E ′
û,ŷ(ζ). Since f(·) is continuously Fréchet differ-

entiable at (û, x̂) it follows that

f ′
û,x̂(ζ, ξ) = ∇uf(û, x̂)(ζ) + ∇xf(û, x̂)(ξ).

Therefore the first inclusion in (3.2) is fulfilled.
It remains to prove that the second inclusion in (3.2) holds. Let (ζ, ξ) ∈ L.

Then ξ ∈ DΓ(û, x̂)(ζ) and f ′
û,x̂(ζ, ξ) ∈ E ′

û,ŷ(ζ). Since E(·) is proto-differentiable
at û relative to ŷ it follows that for any t̃k → 0+ there exists {(ζ̃k, η̃k)} ⊂ R

d×R
n,

(ζ̃k, η̃k) → (ζ, f ′
û,x̂(ζ, ξ)) such that

(3.3) ŷ + t̃k η̃k ∈ E(û + t̃k ζ̃k) ∀k.

Hence there exists {ξ̃k} ⊂ R
m such that

(3.4) x̂ + t̃kξ̃k ∈ Γ(û + t̃k ζ̃k) and ŷ + t̃k η̃k = f(û + t̃kζ̃k, x̂ + t̃kξ̃k) ∀k.

From (iii) and analysis similar to that in the proof of Lemma 2.2, the sequence
{ξ̃k} has a convergent subsequence. Without loss of generality we can assume that
lim

k→∞
ξ̃k = ξ̃. Then ξ̃ ∈ DbΓ(û, x̂)(ζ) ⊂ DΓ(û, x̂)(ζ) and lim

k→∞
η̃k = f ′

û,x̂(ζ, ξ̃).

Hence f ′
û,x̂(ζ, ξ̃) = f ′

û,x̂(ζ, ξ). It follows that ∇xf(û, x̂)(ξ) = ∇xf(û, x̂)(ξ̃). By
(ii), we have ξ̃ = ξ, and hence ξ ∈ DΓ(û, x̂)(ζ). Combining this with (3.3) and
(3.4) we obtain (ζ, ξ) ∈ T b

gphS . Thus the second inclusion in (3.2) is fulfilled. The
proof is complete.

Definition 3.1. [18]. Let Ω ⊂ R
n. A vector v̄ ∈ Ω is said to be a normally

efficient if v̄ ∈ E(Ω) and NΩ+C(v̄) ⊂ int C ∪ {0}, where N∆(v) denotes the
normal cone to ∆ at v. The set of all the normally efficient points of Ω is denoted
by EN(Ω). A vector x ∈ Γ(u) is said to be a normally efficient solution of the
problem (Pu) if f(u, x) ∈ EN(Λ(u)). The set of all the normally efficient solutions
of (Pu) is denoted by SN(u).

We say that the multifunction G : R
d ⇒ R

n is convex (resp. C-convex) if for
any u1, u2 ∈ R

d and any t ∈ [0, 1],

(1 − t)G(u1) + tG(u2) ⊂ G((1− t)u1 + tu2)

(resp. (1 − t)G(u1) + tG(u2) ⊂ G((1− t)u1 + tu2)) + C).

It is easy to check that if the function f : R
d × R

m → R
n is C-convex then the

multifunction Λ(·) is C−convex.
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Theorem 3.2. Let û ∈ R
d, û ∈ int (domΛ), x̂ ∈ SN (û) and ŷ = f(û, x̂).

Suppose that the following properties hold:

(i) Γ(·) is convex;
(ii) f is C − convex and continuously Fréchet differentiable at (û, x̂);
(iii) DpΓ̃(û, ŷ)(0, 0) = {0}.

Then the efficient frontier map E(·) is proto-differentiable at û relative to ŷ. More-
over,

E ′
û,ŷ(ζ) = E(Λ′

û,ŷ(ζ)) ∀ζ ∈ R
d,

where Λ′
û,ŷ(ζ) = {η ∈ R

n | η = ∇uf(û, x̂)(ζ) + ∇xf(û, x̂)(ξ) and ξ ∈ Γ′
û,x̂(ζ)}.

Proof. Since Γ(·) is a convex multifunction it follows that Γ(·) is proto-
differentiable at û relative to x̂. By Lemma 2.2, we have Λ(·) is proto-differentiable
at û relative to ŷ. Let ζ ∈ R

d. It suffices to prove that

(3.5) DE(û, ŷ)(ζ) ⊂ E(Λ′
û,ŷ(ζ)) ⊂ DbE(û, ŷ)(ζ).

Let η ∈ E(Λ′
û,ŷ(ζ)). Then η ∈ Λ′

û,ŷ(ζ). By the proto-differentiability of Λ(·) at û

relative to ŷ, for any tk → 0+ there exists {(ζk, ηk)} ⊂ R
d ×R

n, (ζk, ηk) → (ζ, η)
such that ŷ + tkηk ∈ Λ(û + tkζk) for all k. From (ii) it follows that Λ(·) is
C−convex. Consequently, Λ(û + tkζk) ⊂ E(û + tkζk) + C for all k. Hence there
exists {η̃k} ⊂ R

n such that

(3.6) ŷ + tkη̃k ∈ E(û + tkζk) and ηk − η̃k ∈ C ∀k.

It follows that there exists {ξ̃k} ⊂ R
m such that

(3.7) x̂ + tk ξ̃k ∈ Γ(û + tkζk) and ŷ + tkη̃k = f(û + tkζk, x̂ + tk ξ̃k) ∀k.

From (iii) and analysis similar to that in the proof of Lemma 2.2, the sequence
{ξ̃k} has a convergent subsequence. Without loss of generality we can assume that
lim

k→∞
ξ̃k = ξ̃. Hence, by (3.7), ξ̃ ∈ Γ′

û,x̂(ζ) and lim
k→∞

η̃k = η̃ with η̃ = f ′
û,x̂(ζ, ξ̃).

From (3.6) it follows that η̃ ∈ DbE(û, ŷ)(ζ) ⊂ DbΛ(û, ŷ)(ζ). By the closedness of
C, we have η− η̃ ∈ C. Since η ∈ E(Λ′

û,ŷ(ζ)) and DbΛ(û, ŷ)(ζ) = Λ′
û,ŷ(ζ) it may

be concluded that η̃ = η. Therefore the second inclusion in (3.5) is fulfilled. Obvi-
ously, the first inclusion in (3.5) is fulfilled by Theorem 5.2 in [18]. Thus E(·) is
proto-differentiable at û relative to ŷ and E ′

û,ŷ(ζ) = E(Λ′
û,ŷ(ζ)). Applying Lemma

2.2 we obtain Λ′
û,ŷ(ζ) = {η ∈ R

n | η = ∇uf(û, x̂)(ζ) + ∇xf(û, x̂)(ξ) and ξ ∈
Γ′

û,x̂(ζ)}. The proof is complete.
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4. APPROXIMATION FOR THE PROTO-DERIVATIVE OF THE EFFICIENT FRONTIER MAP

It is well known that the computation of the proto-derivative of the efficient
frontier map E(·) is not easy in general. A number of interesting results concerning
the computation of the proto-derivative of a multifunction are found in [6-8, 11-13].
In this section, we discuss inner and outer approximation of the proto-derivative of
the efficient frontier map.

Theorem 4.1. Let û ∈ R
d, x̂ ∈ S(û) and ŷ = f(û, x̂). Suppose that the

following properties hold:

(i) Γ(·) is proto-differentiable at û relative to x̂;

(ii) f is continuously Fr échet differentiable at (û, x̂);

(iii) DpE(û, ŷ)(0) ∩ (−C) = {0};
(iv) Λ(·) has C − dominated property in a neighborhood of û, i.e.,there is a

neighborhoodU of û such that Λ(u) ⊂ E(u) + C ∀u ∈ U.

Then E(Λ′
û,ŷ(ζ)) ⊂ E ′

û,ŷ(ζ) ∀ζ ∈ R
d.

Proof. By x̂ ∈ S(û), we have ŷ ∈ E(û) ⊂ Λ(û). Let ζ ∈ R
d and η ∈

E(Λ′
û,ŷ(ζ)). Then η ∈ Λ′

û,ŷ(ζ). From (i)-(iv) and Lemma 2.4, it follows that

Λ′
û,ŷ(ζ) = E ′

û,ŷ(ζ) + C.

Hence there exist η′ ∈ E ′
û,ŷ(ζ) and c ∈ C such that η = η ′ + c. We claim that

c = 0. Indeed, if c ∈ C \ {0} then η − η′ ∈ C \ {0}. Obviously, η′ ∈ Λ′
û,ŷ(ζ). It

follows that η �∈ E(Λ′
û,ŷ(ζ)), which is impossible. Thus η ∈ E ′

û,ŷ(ζ). The proof is
complete.

Theorem 4.2. Let û ∈ R
d, x̂ ∈ S(û) and ŷ = f(û, x̂). Suppose that the

following properties hold:

(i) Γ(·) is semi-differentiable at û relative to x̂;

(ii) f is continuously Fr échet differentiable at (û, x̂);

(iii) DpΓ̃(û, ŷ)(0, 0) = {0}.
Then E ′

û,ŷ(ζ) ⊂ Ew(Λ′
û,ŷ(ζ)) ∀ζ ∈ R

d.

Proof. Let ζ ∈ R
d and η ∈ E ′

û,ŷ(ζ). Then η ∈ Λ′
û,ŷ(ζ). Suppose the assertion

of the theorem is false. Then we can find η̃ ∈ Λ′
û,ŷ(ζ) such that

(4.1) η − η̃ ∈ intC.
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By η ∈ E′
û,ŷ(ζ), there exist {tk} ⊂ R++, tk → 0+, {(ζk, ηk)} ⊂ R

d × R
n,

(ζk, ηk) → (ζ, η) such that ŷ + tkηk ∈ E(û + tkζk) for all k. From (i)-(iii)
and Lemma 2.3, it follows that Λ(·) is semi-differentiable at û relative to ŷ.
Consequently, for the preceeding sequences {tk} and {ζk}, there exists {η̃k} ⊂
R

n, lim
k→∞

η̃k = η̃ such that ŷ + tkη̃k ∈ Λ(û + tkζk) for all k. Hence, by (4.1),

we have (ŷ + tkηk) − (ŷ + tk η̃k) ∈ int C for all k large enough. The result
is ŷ + tkηk �∈ E(û + tkζk) for all k large enough, which is impossible. Thus
η ∈ Ew(Λ′

û,ŷ(ζ)). The proof is complete.
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