TAIWANESE JOURNAL OF MATHEMATICS Vol. 11, No. 3, pp. 915-928, August 2007 This paper is available online at http://www.math.nthu.edu.tw/tjm/

A STRONG AND WEAK CONVERGENCE THEOREM FOR RESOLVENTS OF ACCRETIVE OPERATORS IN BANACH SPACES

Shigeru Iemoto and Wataru Takahashi

Abstract. In this paper, we first introduce an iterative sequence of Mann's type and Halpern's type for finding a zero point of an m-accretive operator in a real Banach space. Then we obtain the strong and weak convergence by changing control conditions of the sequence. The result improves and extends a strong convergence theorem and a weak convergence theorem obtained by Kamimura and Takahashi [9], simultaneously.

1. INTRODUCTION

Let E be a real Banach space and let $A \subset E \times E$ be an m-accretive operator. Then the problem of finding a solution $v \in H$ with $0 \in Av$ has been investigated by many researchers.

One well-known method for solving the equation $0 \in Av$ in E is the following: $x_0 = x \in E$ and

(1)
$$x_{n+1} = J_{\lambda_n} x_n, \quad n = 0, 1, 2, \cdots,$$

where $\{\lambda_n\} \subset (0,\infty)$ and $J_{\lambda_n} = (I + \lambda_n A)^{-1}$. This method is called the *proximal point algorithm*. Rockafellar [21] proved that if E is a Hilbert space, $\liminf_{n\to\infty} \lambda_n > 0$ and $A^{-1}0 \neq \emptyset$, then the sequence $\{x_n\}$ generated by (1) converges weakly to an element of $A^{-1}0$. Later, many researchers have studied the convergence of (1); Brézis and Lions [1], Güler [5], Reich [14, 18], Pazy [13], Nevanlinna and Reich [11], Jung and Takahashi [7] and these references mentioned therein. Some of them dealt with the weak convergence of (1) and others proved

Received March 16, 2007.

Communicated by J. C. Yao.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47H06, Secondary 47J25.

Key words and phrases: Convex minimization problem, *m*-accretive operator, Resolvent, Proximal point algorithm.

strong convergence theorems by imposing strong assumptions on *A*. See also Bruck [3], Reich [15-17, 19], Passty [12] and Bruck and Passty [4]. On the other hand, motivated by Halpern [6] and Mann [10], Kamimura and Takahashi [9] introduced the following two iterative schemes,

(2)
$$x_{n+1} = \alpha_n x + (1 - \alpha_n) J_{\lambda_n} x_n, \quad n = 0, 1, 2, \cdots$$

and

(3)
$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) J_{\lambda_n} x_n, \quad n = 0, 1, 2, \cdots,$$

where $x_0 = x \in E$, $\{\alpha_n\}$ is a sequence in [0, 1] and $\{\lambda_n\}$ is a sequence in $(0, \infty)$. Then, under additional conditions, they proved that the sequence $\{x_n\}$ generated by (2) converges strongly to some $v \in A^{-1}0$ and the sequence $\{x_n\}$ generated by (3) converges weakly to some $v \in A^{-1}0$.

In this paper, motivated by Kamimura and Takahashi [9], we introduce the following iterative sequence: $x_0 = x \in E$ and

(4)
$$x_{n+1} = \alpha_n x + \beta_n x_n + \gamma_n J_{\lambda_n} x_n, \quad n = 0, 1, 2, \cdots,$$

where $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\} \subset [0, 1]$ satisfy $\alpha_n + \beta_n + \gamma_n = 1$ and $\{\lambda_n\} \subset (0, \infty)$. And, by changing control conditions of the sequence, we prove a convergence theorem which improves and extends a strong convergence theorem and a weak convergence theorem obtained by Kamimura and Takahashi [9], simultaneously.

Finally, using this result, we consider the problem of finding a minimizer of a convex function in a real Hilbert space H.

2. PRELIMINARIES

Throughout this paper, we denote the set of all nonnegative integers by \mathcal{N} . Let E be a real Banach space with norm $\|\cdot\|$ and let E^* denote the dual of E. We denote the value of $y^* \in E^*$ at $x \in E$ by $\langle x, y^* \rangle$. When $\{x_n\}$ is a sequence in E, we denote the strong convergence of $\{x_n\}$ to $x \in E$ by $x_n \to x$ and the weak convergence by $x_n \to x$. We also know that if C is a closed convex subset of a uniformly convex Banach space E, then for each $x \in E$, there exists a unique element $u = Px \in C$ with $||x - u|| = \inf\{||x - y|| : y \in C\}$. Such a P is called the metric projection of E onto C. The duality mapping J from E into 2^{E^*} is defined by

$$J(x) = \{y^* \in E^* : \langle x, y^* \rangle = \|x\|^2 = \|y^*\|^2\}, \quad x \in E.$$

Let $S(E) = \{x \in E : ||x|| = 1\}$. The norm of E is said to be uniformly Gâteaux differentiable if for each $y \in S(E)$, the limit

(5)
$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

is attained uniformly for $x \in S(E)$. The norm of E is said to be Fréchet differentiable if for each $x \in S(E)$, (5) is attained uniformly for $y \in S(E)$. It is also said to be uniformly Fréchet differentiable if the limit (5) is attained uniformly for $x, y \in S(E)$. In such a case, E is called uniformly smooth. It is known that if the norm of E is uniformly Gâteaux differentiable, then the duality mapping J is single-valued and uniformly norm to weak^{*} continuous on each bounded subset of E. If E is uniformly smooth, then the duality mapping J is uniformly norm to norm continuous on each bounded subset of E.

Let C be a closed convex subset of E. A mapping $T: C \to C$ is said to be nonexpansive if $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in C$. We denote the set of all fixed points of T by F(T). A closed convex subset C of E is said to have the fixed point property for nonexpansive mappings if every nonexpansive mapping of a bounded closed convex subset D of C into itself has a fixed point in D. A nonempty closed convex subset of a uniformly convex Banach space E has the fixed point property for nonexpansive mappings. Let D be a subset of C. A mapping P of C into D is said to be sunny if P(Px + t(x - Px)) = Px whenever $Px + t(x - Px) \in C$ for $x \in C$ and $t \geq 0$. A mapping P of C into itself is called a retraction if $P^2 = P$. We denote the closure of the convex hull of D by $\overline{co}D$.

Let I denote the identity operator on E. An operator $A \subset E \times E$ with domain $D(A) = \{z \in E : Az \neq \emptyset\}$ and range $R(A) = \bigcup \{Az : z \in D(A)\}$ is said to be accretive if for each $x_1, x_2 \in D(A)$ and $y_1 \in Ax_1, y_2 \in Ax_2$, there exists $j \in J(x_1 - x_2)$ such that $\langle y_1 - y_2, j \rangle \geq 0$. If A is accretive, then we have $||x_1 - x_2|| \le ||x_1 - x_2 + r(y_1 - y_2)||$ for all $x_1, x_2 \in D(A), y_1 \in Ax_1, y_2 \in Ax_2$ and r > 0. An accretive operator A is said to be m-accretive if R(I + rA) = Efor all r > 0. If A is accretive, then we can define, for each r > 0, a nonexpansive single valued mapping $J_r: R(I+rA) \to D(A)$ by $J_r = (I+rA)^{-1}$. It is called the resolvent of A. We also define the Yosida approximation A_r by $A_r = (I - J_r)/r$. We know that $A_r x \in AJ_r x$ for all $x \in R(I+rA)$ and $||A_r x|| \le \inf\{||y|| : y \in Ax\}$ for all $x \in D(A) \cap R(I + rA)$. We also know that for an m-accretive operator A, we have $A^{-1}0 = F(J_r)$ for all r > 0. An operator $A \subset E \times E^*$ is called monotone if for any $(x_1, y_1), (x_2, y_2) \in A, \langle x_1 - x_2, y_1 - y_2 \rangle \geq 0$. A monotone operator $A \subset E \times E^*$ is called maximal if its graph $G(A) = \{(x, y) : y \in Ax\}$ is not properly contained in the graph of any other monotone operator. In a real Hilbert space, an operator A is m-accretive if and only if A is maximal monotone; see [24, 25] for more details.

3. MAIN THEOREMS

Let $A \subset E \times E$ be an m-accretive operator and let $J_r : E \to E$ be the resolvent of A for each r > 0. Then we consider the following algorithm. The sequence $\{x_n\}$ is generated by

(6)
$$\begin{cases} x_0 = x \in E, \\ x_{n+1} = \alpha_n x + \beta_n x_n + \gamma_n J_{\lambda_n} x_n + e_n, \quad n \in \mathcal{N} \end{cases}$$

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \subset [0, 1], \{\lambda_n\} \subset (0, \infty)$ and $\{e_n\} \subset E$.

The following lemmas are useful in the proof of our main theorem.

Lemma 3.1. (Reich [19] and Takahashi-Ueda [27]). Let E be a reflexive Banach space whose norm is uniformly Gateaux differentiable. Suppose that Ehas the fixed point property for nonexpansive mappings. If $A^{-1}0 \neq \emptyset$, then the strong $\lim_{t\to\infty} J_t x$ exists and belongs to $A^{-1}0$ for all $x \in E$. Further, if Px = $\lim_{t\to\infty} J_t x$ for each $x \in E$, then P is a sunny nonexpansive retraction of E onto $A^{-1}0$.

Lemma 3.2. (Browder [2]). Let C be a bounded closed convex subset of a uniformly convex Banach space E and let T be a nonexpansive mapping of C into itself. If $\{x_n\}$ converges weakly to $z \in C$ and $\{x_n - Tx_n\}$ converges strongly to 0, then Tz = z.

Lemma 3.3. (Reich [18] and Takahashi-Kim [26]). Let E be a uniformly convex Banach space whose norm is Fréchet differentiable, let C be a nonempty closed convex subset of E and let $\{T_0, T_1, T_2, ...\}$ be a sequence of nonexpansive mappings of C into itself such that $\bigcap_{n=0}^{\infty} F(T_n)$ is nonempty. Let $x \in C$ and $S_n = T_n T_{n-1} \cdots T_0$ for all $n \in \mathcal{N}$. Then the set $\bigcap_{n=0}^{\infty} \overline{co}\{S_m x : m \ge n\} \cap U$ consists of at most one point, where $U = \bigcap_{n=0}^{\infty} F(T_n)$.

Lemma 3.4. (Xu [29]). Let E be a uniformly convex Banach space. Then for each r > 0, there exists a strictly increasing, continuous and convex function $g: [0, \infty) \rightarrow [0, \infty)$ such that g(0) = 0 and

$$\|\lambda x + (1 - \lambda)y\|^{2} \le \lambda \|x\|^{2} + (1 - \lambda) \|y\|^{2} - \lambda(1 - \lambda)g(\|x - y\|)$$

for all $x, y \in \{z \in E : ||z|| \le r\}$ and $\lambda \in [0, 1]$.

Using these results, we first prove the following theorem. The proof is mainly due to Kamimura and Takahashi [9].

Theorem 3.1. Let *E* be a uniformly convex Banach space whose norm is uniformly smooth and let $A \subset E \times E$ be an m-accretive operator. Let $x_0 = x \in E$ and let $\{x_n\}$ be a sequence generated by (6). Assume that $\alpha_n + \beta_n + \gamma_n = 1$ for all $n \in \mathcal{N}, \sum_{n=0}^{\infty} ||e_n|| < \infty$ and $A^{-1}0 \neq \emptyset$. Then we have the following (i) and (ii):

(i) If

$$\sum_{n=0}^{\infty} \alpha_n = \infty, \lim_{n \to \infty} \alpha_n = 0, \lim_{n \to \infty} \beta_n = 0, \text{ and } \lim_{n \to \infty} \lambda_n = \infty,$$

then $\{x_n\}$ converges strongly to an element of $A^{-1}0$. Further, if $Px = \lim_{n\to\infty} x_n$ for each $x \in E$, then P is a sunny nonexpansive retraction of E onto $A^{-1}0$.

$$(ii)$$
 If

$$\sum_{n=0}^{\infty} \alpha_n < \infty, \ \limsup_{n \to \infty} \beta_n < 1, \ and \ \liminf_{n \to \infty} \lambda_n > 0,$$

then $\{x_n\}$ converges weakly to $v \in A^{-1}0$.

Proof. We first show that $\{x_n\}$ generated by (6) is bounded. In fact, from $A^{-1}0 \neq \emptyset$, there exists $u \in A^{-1}0$ such that $J_s u = u$ for all s > 0. Then we have

$$\begin{aligned} \|x_1 - u\| &= \|\alpha_0 x + \beta_0 x_0 + \gamma_0 J_{\lambda_0} x_0 + e_0 - u\| \\ &\leq \alpha_0 \|x - u\| + \beta_0 \|x_0 - u\| + \gamma_0 \|J_{\lambda_0} x_0 - u\| + \|e_0\| \\ &\leq (\alpha_0 + \beta_0) \|x - u\| + \gamma_0 \|x_0 - u\| + \|e_0\| \\ &\leq \|x - u\| + \|e_0\|. \end{aligned}$$

If $||x_k - u|| \le ||x - u|| + \sum_{i=0}^{k-1} ||e_i||$ holds for some $k \in \mathcal{N}$, we can similarly show $||x_{k+1} - u|| \le ||x - u|| + \sum_{i=0}^{k} ||e_i||$. Therefore, from $\sum_{n=0}^{\infty} ||e_n|| < \infty$, $\{x_n\}$ is bounded. Hence $\{J_{\lambda_n} x_n\}$ is also bounded.

(i) Let $z_t = J_t x$, $y_n = J_{\lambda_n} x_n$ and $u \in A^{-1}0$, where t > 0. By Lemma 3.1, the strong $\lim_{t\to\infty} z_t$ exists and belongs to $A^{-1}0$. Putting $z = \lim_{t\to\infty} z_t$, we shall prove

(7)
$$\limsup_{n \to \infty} \langle x - z, J(x_n - z) \rangle \le 0.$$

To prove this, it is sufficient to show

(8)
$$\limsup_{n \to \infty} \langle x - z, J(y_n - z) \rangle \le 0.$$

In fact, since $x_{n+1} - y_n = \alpha_n(x - y_n) + \beta_n(x_n - y_n) + e_n$, we have $x_{n+1} - y_n \to 0$. This yields

$$\lim_{n \to \infty} \|J(x_{n+1} - z) - J(y_n - z)\| = 0$$

because J is uniformly continuous. Then (8) implies (7). Now, we know that $(x-z_t)/t \in Az_t$ and $A_{\lambda_n} x_n \in Ay_n$. Since A is accretive, we obtain

$$\left\langle A_{\lambda_n} x_n - \frac{x - z_t}{t}, J(y_n - z_t) \right\rangle \ge 0$$

and hence

$$\langle x - z_t, J(y_n - z_t) \rangle \leq t \langle A_{\lambda_n} x_n, J(y_n - z_t) \rangle.$$

From $\lambda_n \to \infty$, we also have

$$\lim_{n \to \infty} \|A_{\lambda_n} x_n\| = \lim_{n \to \infty} \left\| \frac{x_n - y_n}{\lambda_n} \right\| = 0.$$

Then we have

(9)
$$\limsup_{n \to \infty} \langle x - z_t, J(y_n - z_t) \rangle \le 0.$$

for all t>0. Since $z_t \to z$ as $t \to \infty$ and J is uniformly continuous, for any $\varepsilon > 0$, there exists $t_0 > 0$ such that for all $t \ge t_0$ and $n \in \mathcal{N}$,

$$|\langle z-z_t, J(y_n-z_t)\rangle| \leq \frac{\varepsilon}{2}$$
 and $|\langle x-z, J(y_n-z_t)-J(y_n-z)\rangle| \leq \frac{\varepsilon}{2}$.

This implies that for $t \ge t_0$ and $n \in \mathcal{N}$,

$$\begin{aligned} |\langle x-z_t, J(y_n-z_t)\rangle - \langle x-z, J(y_n-z)\rangle| \\ &\leq |\langle x-z_t, J(y_n-z_t)\rangle - \langle x-z, J(y_n-z_t)\rangle| \\ &+ |\langle x-z, J(y_n-z_t)\rangle - \langle x-z, J(y_n-z)\rangle| \\ &= |\langle z-z_t, J(y_n-z_t)\rangle| + |\langle x-z, J(y_n-z_t) - J(y_n-z)\rangle| \\ &\leq \varepsilon. \end{aligned}$$

Hence, from (9) and (10), we have

$$\limsup_{n \to \infty} \langle x - z, J(y_n - z) \rangle \le \limsup_{n \to \infty} \langle x - z_t, J(y_n - z_t) \rangle + \varepsilon \le \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we obtain (8). Let $\varepsilon > 0$. From $\sum_{n=0}^{\infty} ||e_n|| < \infty$ and (7), there exists $m \in \mathcal{N}$ such that for all $n \ge m$,

$$M\sum_{i=m}^{\infty} \|e_i\| \le \frac{\varepsilon}{2}$$
 and $\langle x-z, J(x_n-z) \rangle \le \frac{\varepsilon}{4}$,

where $M = 2 \sup_{n \in \mathcal{N}} ||x_n - z||$. Since $\beta_n(x_n - z) + \gamma_n(y_n - z) = (x_{n+1} - z) - \alpha_n(x - z) - e_n$, we have

$$\|\beta_n(x_n-z) + \gamma_n(y_n-z)\|^2 \ge \|x_{n+1}-z\|^2 - 2\left\langle\alpha_n(x-z) + e_n, J(x_{n+1}-z)\right\rangle,$$

which yields

$$\begin{aligned} \|x_{n+1} - z\|^2 &\leq \|\beta_n(x_n - z) + \gamma_n(y_n - z)\|^2 + 2 \langle \alpha_n(x - z) + e_n, J(x_{n+1} - z) \rangle \\ &\leq (\beta_n \|x_n - z\| + \gamma_n \|y_n - z\|)^2 + 2\alpha_n \langle x - z, J(x_{n+1} - z) \rangle + M \|e_n\| \\ &\leq (\beta_n \|x_n - z\| + \gamma_n \|x_n - z\|)^2 + 2\alpha_n \langle x - z, J(x_{n+1} - z) \rangle + M \|e_n\| \\ &\leq (1 - \alpha_n) \|x_n - z\|^2 + 2\alpha_n \langle x - z, J(x_{n+1} - z) \rangle + M \|e_n\|. \end{aligned}$$

Hence for all $n \in \mathcal{N}$, we have

$$||x_{n+m+1} - z||^2 \le (1 - \alpha_{n+m}) ||x_{n+m} - z||^2 + \alpha_{n+m} \frac{\varepsilon}{2} + M ||e_{n+m}||.$$

By induction, we obtain

$$\|x_{n+m+1} - z\|^2 \le \prod_{i=m}^{n+m} (1 - \alpha_i) \|x_m - z\|^2 + \left\{ 1 - \prod_{i=m}^{n+m} (1 - \alpha_i) \right\} \frac{\varepsilon}{2} + M \sum_{i=m}^{n+m} \|e_i\|$$

for all $n \in \mathcal{N}$. So, we obtain

$$\limsup_{n \to \infty} \|x_n - z\|^2 = \limsup_{n \to \infty} \|x_{n+m+1} - z\|^2 \le \frac{\varepsilon}{2} + M \sum_{i=m}^{\infty} \|e_i\| \le \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, we can conclude that $\{x_n\}$ converges strongly to z.

(ii) First we prove the result in the case of $\alpha_n \equiv 0$ and $e_n \equiv 0$, that is,

(11)
$$\begin{cases} u_0 = x \in E; \\ u_{n+1} = \beta_n u_n + (1 - \beta_n) J_{\lambda_n} u_n, \quad n \in \mathcal{N}. \end{cases}$$

Let $y_n = J_{\lambda_n} u_n$ and $v \in A^{-1}0$. For l = ||x - v||, the set $D = \{z \in E : ||z - v|| \le l\}$ is a nonempty bounded closed convex subset of E which is invariant under J_s for all s > 0. So $\{u_n\} \subset D$ is bounded and we can show that $\{J_{\lambda_n} u_n\}$ is also bounded. From

$$||u_{n+1} - v|| = ||\beta_n u_n + (1 - \beta_n)y_n - v||$$

$$\leq \beta_n ||u_n - v|| + (1 - \beta_n) ||y_n - v||$$

$$\leq ||u_n - v||,$$

 $\lim_{n\to\infty} ||u_n - v||$ exists. Since A is accretive and $A_{\lambda_n}u_n = (u_n - J_{\lambda_n}u_n)/\lambda_n = (u_n - y_n)/\lambda_n$, we have

$$\begin{aligned} \|y_n - v\|^2 &\leq \left\|y_n - v + \frac{\lambda_n}{2}(A_{\lambda_n}u_n - 0)\right\|^2 \\ &= \left\|y_n - v + \frac{1}{2}(u_n - y_n)\right\|^2 \\ &= \left\|\frac{1}{2}(u_n - v) + \frac{1}{2}(y_n - v)\right\|^2 \\ &\leq \frac{1}{2} \|u_n - v\|^2 + \frac{1}{2} \|y_n - v\|^2 - \frac{1}{4}g(\|u_n - y_n\|) \\ &\leq \|u_n - v\|^2 - \frac{1}{4}g(\|u_n - y_n\|) \end{aligned}$$

and hence

$$(1 - \beta_n) \frac{1}{4} g(\|u_n - y_n\|)$$

$$\leq (1 - \beta_n)(\|u_n - v\| - \|y_n - v\|)(\|u_n - v\| + \|y_n - v\|)$$

$$= (\|u_n - v\| - \beta_n \|u_n - v\| - (1 - \beta_n) \|y_n - v\|)(\|u_n - v\| + \|y_n - v\|)$$

$$\leq (\|u_n - v\| - \|u_{n+1} - v\|)(\|u_n - v\| + \|y_n - v\|).$$

Since $\limsup_{n\to\infty} \beta_n < 1$ and $\lim_{n\to\infty} ||u_n - v||$ exists, from Lemma 3.4 we obtain $u_n - y_n \to 0$. So, from

$$\|y_n - J_1 y_n\| = \|(I - J_1)y_n\|$$
$$= \|A_1 y_n\|$$
$$\leq \inf\{\|z\| : z \in Ay_n\}$$
$$\leq \|A_{\lambda_n} u_n\|$$
$$= \left\|\frac{u_n - y_n}{\lambda_n}\right\|$$

and $\liminf_{n\to\infty} \lambda_n > 0$, we have $y_n - J_1 y_n \to 0$. Further, letting $w \in E$ be a weak subsequential limit of $\{u_n\}$ such that $u_{n_i} \to w$, we get $y_{n_i} \to w$. Then it follows from Lemma 3.2 that $w \in F(J_1) = A^{-1}0$. Since E has a uniformly smooth norm, putting $T_n = \beta_n I + (1 - \beta_n) J_{\lambda_n}$ and $S_n = T_n T_{n-1} \cdots T_0$, we have $\bigcap_{n=0}^{\infty} F(T_n) = A^{-1}0$ and $\{w\} = \bigcap_{n=0}^{\infty} \overline{\operatorname{co}}\{u_m : m \ge n\} \cap A^{-1}0$ by Lemma 3.3. Therefore $\{u_n\}$ converges weakly to an element of $A^{-1}0$.

Finally, we show the theorem in the case of (ii). Our discussion follows an idea of Brézis and Lion [1]. Note that $\{J_{\lambda_n}x_n\}$ are bounded. Define $U_nz =$

 $T_n z + \alpha_n (x - J_{\lambda_n} z) + e_n$ for all $z \in E$ and $n \in \mathcal{N}$, where $T_n = \beta_n I + (1 - \beta_n) J_{\lambda_n}$. We know that $\{u_n\}$ defined by (11) converges weakly to some $u \in A^{-1}0$ and the sequence $\{x_n\}$ generated by (6) satisfies $x_{n+1} = U_n x_n$. We define, for every $m \in \mathcal{N}$, the sequence $\{z_n^m\}$ by $z_0^m = x_m$ and $z_{n+1}^m = T_{n+m} z_n^m, n \in \mathcal{N}$. Then, putting $u_0 = x_m$ and $u_n = z_n^m$, we have that $\{z_n^m\}$ converges weakly to some $z^m \in A^{-1}0$ as $n \to \infty$. From the definition of $\{z_n^m\}$, we also have

$$\begin{aligned} \left\| z_n^{m+1} - z_{n+1}^m \right\| &= \left\| T_{n+m} T_{n+m-1} \cdots T_{m+1} x_{m+1} - T_{n+m} T_{n+m-1} \cdots T_m x_m \right\| \\ &\leq \left\| x_{m+1} - T_m x_m \right\| = \left\| \alpha_m (x - J_{\lambda_m} x_m) + e_m \right\| \\ &\leq \alpha_m \left\| x - J_{\lambda_m} x_m \right\| + \left\| e_m \right\| \end{aligned}$$

for all $m, n \in \mathcal{N}$. Since $z_n^{m+1} \rightharpoonup z^{m+1}$ and $z_n^m \rightharpoonup z^m$ as $n \to \infty$, we have that $||z^{m+1} - z^m|| \le \alpha_m ||x - J_{\lambda_m} x_m|| + ||e_m||$ for all $m \in \mathcal{N}$. From $\sum_{n=0}^{\infty} \alpha_n < \infty$ and $\sum_{n=0}^{\infty} ||e_n|| < \infty$, $\{z^m\}$ is a Cauchy sequence and hence $\{z^m\}$ converges strongly to some $z \in A^{-1}0$. Since

$$\begin{aligned} \left\| x_{n+m+1} - z_{n+1}^{m} \right\| &= \| U_{n+m} U_{n+m-1} \cdots U_m x_m - T_{n+m} T_{n+m-1} \cdots T_m x_m \| \\ &= \| T_{n+m} U_{n+m-1} U_{n+m-2} \cdots U_m x_m \\ &+ \alpha_{n+m} (x - J_{\lambda_{n+m}} U_{n+m-1} U_{n+m-2} \cdots U_m x_m) + e_{n+m} \\ &- T_{n+m} T_{n+m-1} \cdots T_m x_m \| \\ &= \| T_{n+m} U_{n+m-1} U_{n+m-2} \cdots U_m x_m \\ &+ \alpha_{n+m} (x - J_{\lambda_{n+m}} x_{n+m}) + e_{n+m} - T_{n+m} T_{n+m-1} \cdots T_m x_m \| \\ &\leq \| U_{n+m-1} U_{n+m-2} \cdots U_m x_m - T_{n+m-1} T_{n+m-2} \cdots T_m x_m \| \\ &+ \alpha_{n+m} \| x - J_{\lambda_{n+m}} x_{n+m} \| + \| e_{n+m} \| \\ &\leq \cdots \leq \sum_{i=m}^{n+m} \{ \alpha_i \| x - J_{\lambda_i} x_i \| + \| e_i \| \}, \end{aligned}$$

we have

$$\begin{aligned} |\langle x_{n+m+1} - z, h \rangle| &= |\langle x_{n+m+1} - z_{n+1}^m, h \rangle + \langle z_{n+1}^m - z^m, h \rangle + \langle z^m - z, h \rangle| \\ &\leq \left(\sum_{i=m}^{n+m} \{ \alpha_i \, \|x - J_{\lambda_i} x_i\| + \|e_i\| \} \right) \|h\| + \left| \langle z_{n+1}^m - z^m, h \rangle \right| \\ &+ |\langle z^m - z, h \rangle| \end{aligned}$$

for all $h \in E^*$ and $m, n \in \mathcal{N}$. Since $z_{n+1}^m - z^m \to 0$ as $n \to \infty$, this implies

$$\begin{split} \limsup_{n \to \infty} |\langle x_n - z, h \rangle| &= \limsup_{n \to \infty} |\langle x_{n+m+1} - z, h \rangle| \\ &\leq \left(\sum_{i=m}^{\infty} \{ \alpha_i \, \|x - J_{\lambda_i} x_i\| + \|e_i\| \} \right) \|h\| + |\langle z^m - z, h \rangle| \end{split}$$

for all $h \in E^*$ and $m \in \mathcal{N}$. Since $z^m \to z$ as $m \to \infty$, $\sum_{n=0}^{\infty} \alpha_n < \infty$ and $\sum_{n=0}^{\infty} \|e_n\| < \infty$, $\{x_n\}$ converges weakly to $z \in A^{-1}0$.

Using Theorem 3.1, we obtain the following two theorems proved by Kamimura and Takahashi [8].

Theorem 3.2. ([8]) Let H be a real Hilbert space and let $A \subset H \times H$ be a maximal monotone operator with $A^{-1}0 \neq \emptyset$. Let $x_0 = x \in H$ and let $\{x_n\}$ be a sequence generated by

(12)
$$y_n \approx J_{\lambda_n} x_n, \quad x_{n+1} = \alpha_n x + (1 - \alpha_n) y_n, \quad n \in \mathcal{N},$$

where $||y_n - J_{\lambda_n} x_n|| \le \delta_n$, $\sum_{n=0}^{\infty} \delta_n < \infty$, and $\{\alpha_n\} \subset [0, 1]$ and $\{\lambda_n\} \subset (0, \infty)$ satisfy

$$\lim_{n \to \infty} \alpha_n = 0, \ \sum_{n=0}^{\infty} \alpha_n = \infty \text{ and } \lim_{n \to \infty} \lambda_n = \infty.$$

Then $\{x_n\}$ converges strongly to Px, where P is the metric projection of H onto $A^{-1}0$.

Proof. Letting $e_n = (1 - \alpha_n)(y_n - J_{\lambda_n}x_n)$ in (12), we have

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) J_{\lambda_n} x_n + e_n$$

for all $n \in \mathcal{N}$. And we also have

$$\sum_{n=0}^{\infty} \|e_n\| = \sum_{n=0}^{\infty} (1 - \alpha_n) \|y_n - J_{\lambda_n} x_n\| \le \sum_{n=0}^{\infty} \|y_n - J_{\lambda_n} x_n\| \le \sum_{n=0}^{\infty} \delta_n < \infty.$$

So, if we put $\beta_n = 0$ for every $n \in \mathcal{N}$ in Theorem 3.1, we get the conclusion.

Theorem 3.3. ([8]) Let H be a real Hilbert space and let $A \subset H \times H$ be a maximal monotone operator with $A^{-1}0 \neq \emptyset$ and let P be the metric projection of H onto $A^{-1}0$. Let $x \in H$ and let $\{x_n\}$ be a sequence generated by

(13)
$$y_n \approx J_{\lambda_n} x_n, \quad x_{n+1} = \beta_n x_n + (1 - \beta_n) y_n, \quad n \in \mathcal{N},$$

where $||y_n - J_{\lambda_n} x_n|| \le \delta_n$, $\sum_{n=0}^{\infty} \delta_n < \infty$, and $\{\beta_n\} \subset [0, 1]$ and $\{\lambda_n\} \subset (0, \infty)$ satisfy

$$\limsup_{n \to \infty} \beta_n < 1 \text{ and } \liminf_{n \to \infty} \lambda_n > 0.$$

924

Then $\{x_n\}$ converges weakly to $v \in A^{-1}0$.

Proof. As in the proof of Theorem 3.2, put $e_n = (1 - \beta_n)(y_n - J_{\lambda_n}x_n)$ in (13). So, if we put $\alpha_n = 0$ for every $n \in \mathcal{N}$ in Theorem 3.1, we get the conclusion.

Remark 1. As in the proofs of Theorems 3.2 and 3.3, we can also show the strong and weak convergence theorems of Xu [30, Theorems 5.1 and 5.2].

4. Applications

Let *H* be a real Hilbert space and let $f : H \to (-\infty, \infty]$ be a proper lower semicontinuous convex function. Then, we can define the subdifferential of *f* as follows:

$$\partial f(x) = \{ z \in H : f(y) \ge \langle z, y - x \rangle + f(x), \ y \in H \}$$

for all $x \in H$. In this section, we apply our algorithm to the case of $A = \partial f$. In such a case, we know that $A = \partial f$ is a maximal monotone operator; see [24, 25]. Our discussion follows Rockafellar [21]. If $A = \partial f$, the algorithm (6) is reduced to the following:

(14)
$$\begin{cases} x_0 = x \in H, \\ y_n \approx \operatorname*{argmin}_{z \in H} \left\{ f(z) + \frac{1}{2\lambda_n} \|z - x_n\|^2 \right\} = J_{\lambda_n} x_n, \\ x_{n+1} = \alpha_n x + \beta_n x_n + \gamma_n y_n, \quad n \in \mathcal{N}, \end{cases}$$

where $||y_n - J_{\lambda_n} x_n|| \le \delta_n$, $J_{\lambda_n} = (I + \lambda_n \partial f)^{-1}$, $\sum_{n=0}^{\infty} \delta_n < \infty$, and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \subset [0, 1]$ satisfy $\alpha_n + \beta_n + \gamma_n = 1$ and $\{\lambda_n\} \subset (0, \infty)$. Using Theorem 3.1, we can prove the following theorem.

Theorem 4.1. Let $f : H \to (-\infty, \infty]$ be a proper lower semicontinuous convex function with $(\partial f)^{-1}0 \neq \emptyset$. Let $x_0 = x \in H$ and let $\{x_n\}$ be a sequence generated by (14). Then we have the following (i) and (ii):

(*i*) Suppose that

$$\sum_{n=0}^{\infty} \alpha_n = \infty, \lim_{n \to \infty} \alpha_n = 0, \lim_{n \to \infty} \beta_n = 0 \text{ and } \lim_{n \to \infty} \lambda_n = \infty.$$

Then $\{x_n\}$ converges strongly to $v \in (\partial f)^{-1}0$, where $v = P_{(\partial f)^{-1}0}x$.

(*ii*) Suppose that

$$\sum_{n=0}^{\infty} \alpha_n < \infty, \ \limsup_{n \to \infty} \beta_n < 1, \ and \ \liminf_{n \to \infty} \lambda_n > 0.$$

Then $\{x_n\}$ converges weakly to $v \in (\partial f)^{-1}0$.

Proof. (i) Putting $g_n(z) = f(z) + ||z - x_n||^2 / 2\lambda_n$, we obtain

$$\partial g_n(z) = \partial f(z) + \frac{1}{\lambda_n}(z - x_n)$$

for all $z \in H$ and

$$J_{\lambda_n} x_n = (I + \lambda_n \partial f)^{-1} x_n = \operatorname{argmin}_{z \in H} g_n(z).$$

It follows from Theorem 3.1 that $\{x_n\}$ converges strongly to $v \in (\partial f)^{-1}0$, where $v = P_{(\partial f)^{-1}0}x$.

(ii) As in the proof of (i), we can prove (ii).

References

- 1. H. Brézis and P. L. Lions, Produits infinis de resolvants, *Israel J. Math.*, **29** (1978), 329-345.
- 2. F. E. Browder, Semicontractive and semiaccretie nonlinear mappings in Banach spaces, *Bull. Amer. Math. Soc.*, **74** (1968), 660-665.
- 3. R. E. Bruck, A strongly convergent iterative solution of $0 \in U(x)$ for a maximal monotone operator U in Hilbert space, J. Math. Anal. Appl., **48** (1974), 114-126.
- 4. R. E. Bruck and G. B. Passty, Almost convergence of the infinite product of resolvents in Banach spaces, *Nonlinear Anal.*, **3** (1979), 279-282.
- 5. O. Guler, On the convergence of the proximal point algorithm for convex minimization, *SIAM J. Control Optim.*, **29** (1991), 403-419.
- 6. B. Halpern, Fixed points of nonexpansive maps, *Bull. Amer. Math. Soc.*, **73** (1967), 957-961.
- 7. J. S. Jung and W. Takahashi, Dual convergence theorems for the infinite products of resolvents in Banach spaces, *Kodai Math. J.*, **14** (1991), 358-364.
- 8. S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory, **106** (2000), 226-240.
- S. Kamimura and W. Takahashi, Weak and Strong Convergence of Solutions to Accretive Operator Inclusions and Applications, *Set-Valued Anal.*, 8 (2000), 361-374.

926

- 10. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510.
- O. Nevanlinna and S. Reich, Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces, *Israel J. Math.*, **32** (1979), 44-58.
- 12. G. B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, *J. Math. Anal. Appl.*, **72** (1979), 383-390.
- 13. A. Pazy, Remarks on nonlinear ergodic theory in Hilbert space, *Nonlinear Anal.*, **6** (1979), 863-871.
- 14. S. Reich, On infinite products of resolvents", Atti Acad. Naz. Lincei, 63 (1977), 338-340.
- 15. S. Reich, An iterative procedure for constructing zeros of accretive sets in Banach spaces, *Nonlinear Anal.*, **2** (1978), 85-92.
- 16. S. Reich, Construction zeros of accretive operators, Appl. Anal., 8 (1979), 349-352.
- 17. S. Reich, Construction zeros of accretive operators II, Appl. Anal., 9 (1979), 159-163.
- S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 274-276.
- 19. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, *J. Math. Anal. Appl.*, **75** (1980), 287-292.
- R. T. Rockafellar, Characterization of the subdifferentials of convex functions, *Pacific J. Math.*, 17 (1966), 497-510.
- 21. R. T. Rockafellar, Monotone operators and the proximal point algorithm, *SIAM J. Control Optim.*, **14** (1976), 877-898.
- N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, *Proc. Amer. Math. Soc.*, **125** (1997), 3641-3645.
- 23. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, 2000.
- 24. W. Takahashi, *Convex Analysis and Approximation of Fixed Points*, Yokohama Publishers, 2000, (in Japanese).
- 25. W. Takahashi, *Introduction to Nonlinear and Convex Analysis*, Yokohama Publishers, 2005, (in Japanese).
- 26. W. Takahashi and G. E. Kim, Approximating fixed points of nonexpansive mappings in Banach spaces, *Math. Japan*, **48** (1998), 1-9.
- 27. W. Takahashi and Y. Ueda, On Reich's strong convergence theorems for resolvents of accretive operators, *J. Math. Anal. Appl.*, **104** (1984), 546-553.
- R. Wittmann, Approximation of fixed points of nonexpansive mappings, *Arch. Math.*, 58 (1992), 486-491.

- 29. H. K. Xu, Inequalities in Banach spaces with applications, *Nonlinear Anal.*, 16 (1991), 1127-1138.
- 30. H. K. Xu, Iterative algorithms for nonlinear operators, J. London. Math. Soc., 66 (2002), 240-256.

Shigeru Iemoto and Wataru Takahashi Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ohokayama, Meguroku, Tokyo 152-8552, Japan E-mail: Shigeru.Iemoto@is.titech.ac.jp E-mail: wataru@is.titech.ac.jp