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CONVERGENCE THEOREMS OF ITERATIVE ALGORITHMS
FOR A FAMILY OF FINITE NONEXPANSIVE MAPPINGS

Jong Soo Jung

Abstract. Let E be a Banach space, C a nonempty closed convex subset
of E, f : C → C a contraction, and Ti : C → C a nonexpansive map-
ping with nonempty F :=

⋂N
i=1 F ix(Ti), where N ≥ 1 is an integer and

F ix(Ti) is the set of fixed points of Ti. Let {xn
t } be the sequence defined

by xn
t = tf(xn

t ) + (1 − t)Tn+NTn+N−1 · · ·Tn+1x
n
t (0 < t < 1). First, it

is shown that as t → 0, the sequence {xn
t } converges strongly to a solu-

tion in F of certain variational inequality provided E is reflexive and has a
weakly sequentially continuous duality mapping. Then it is proved that the
iterative algorithm xn+1 = λn+1f(xn) + (1 − λn+1)Tn+1xn (n ≥ 0) con-
verges strongly to a solution in F of certain variational inequality in the same
Banach space provided the sequence {λn} satisfies certain conditions and the
sequence {xn} is weakly asymptotically regular. Applications to the convex
feasibility problem are included.

1. INTRODUCTION

Let E be a real Banach space and C a nonempty closed convex subset of E .
Recall that a mapping f : C → C is a contraction on C if there exists a constant
k ∈ (0, 1) such that ‖f(x) − f(y)‖ ≤ k‖x − y‖ for all x, y ∈ C. We use
ΣC = {f : f : C → C a contraction} to denote the collection of all contractions on
C. Let T : C → C be a nonexpansive mapping (that is, ‖Tx− Ty‖ ≤ ‖x− y‖ for
all x, y ∈ C) and Fix(T ) denote the set of fixed points of T ; that is, Fix(T ) =
{x ∈ C : x = Tx}.
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We consider the iterative algorithm: for N ≥ 1, T1, T2, · · · , TN nonexpansive
mappings, f ∈ ΣC and λn ∈ (0, 1),

(1.1) xn+1 = λn+1f(xn) + (1 − λn+1)Tn+1xn, n ≥ 0,

where Tn := Tn mod N . As a special case of (1.1), the following algorithm

(1.2) zn+1 = λn+1u + (1− λn+1)Tn+1zn, n ≥ 0,

where u, z0 ∈ C are arbitrary (but fixed), has been investigated by many author:
see, for example, Browder [2], Halpern [7], Lions [14], Reich [19], Shioji and
Takahashi [20], Wittmann [23], Xu [24] for N = 1 and Bauschke [1], Jung [8],
Jung et al. [10], Jung and Kim [11], O’Hara et al. [17, 18], Takahashi et al. [22]
and Zhou et al. [27] for N > 1, respectively. The authors above showed that the
sequence {zn} generated by (1.2) converges strongly to a point in the fixed point set
Fix(T ) for N = 1 and to a point in the common fixed point set

⋂N
i=1 Fix(Ti) for

N > 1 under the following respective conditions in either Hilbert spaces or certain
Banach spaces:

(C1) lim
n→∞λn = 0; (Halpern [7])

(C2)
∞∑

n=1

λn = ∞ or, equivalently,
∞∏

n=1

(1 − λn) = 0; (Halpern [7])

(C3) lim
n→∞

λn − λn+1

λ2
n+1

= 0; (Lions [14])

(C4)
∞∑

n=1

|λn+1 − λn| < ∞; (Wittmann [23])

(C5)
∞∑

n=1

|λn+N − λn| < ∞; (Bauschke [1])

(C6) lim
n→∞

λn

λn+N
= 1 or, equivalently, lim

n→∞
λn − λn+N

λn+N
= 0.

(O’Hara et al. []17,18)

In particular, in 2005, Jung et al. [10] considered the perturbed control condition
with the necessary conditions (C1) and (C2) on the parameters

(C7) |λn+N − λn| ≤ ◦(λn+N) + σn,
∞∑

n=1

σn < ∞

to obtain the strong convergence of the sequence {zn} generated by (1.2) in a
uniformly smooth Banach space having a weakly sequentially continuous duality
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mapping and gave an example which satisfies the conditions (C1), (C2) and (C7),
but fails to satisfy the conditions (C5) and (C6). Using the Banach limit techniques
and the weak asymptotic regularity on the sequence {xn} together with the con-
ditions (C1) and (C2), Zhou et al. [27] also studied convergence of the sequence
{zn} generated by (1.2) in a reflexive Banach space having a weakly sequentially
continuous duality mapping and a uniformly Gâteaux differentiable norm together
with the assumption that every weakly compact convex subset of E has the fixed
point property for nonexpansive mappings.

For N = 1, the viscosity approximation method of selecting a particular fixed
point of a given nonexpansive mapping was proposed by Moudafi [16] in Hilbert
space. In 2004, Xu [25] extended Theorem 2.2 of Moudafi [6] for the iterative
algorithm (1.1) to a uniformly smooth Banach space using the condition (C1), (C2)
and (C4) or (C6) for N = 1. Very recently, using the condition (C1), (C2) and (C7),
Jung [9] improved the results of Xu [25] to the case of N > 1 in a reflexive Banach
space E having a weakly sequentially continuous duality mapping and a uniformly
Gâteaux differentiable norm together with the assumption that every weakly compact
convex subset of E has the fixed point property for nonexpansive mappings.

The main purpose of this work is to remove the assumption of uniformly Gâteaux
differentiable norm and the fixed point property (that is, the uniformly smoothness
assumption) in the above mentioned results. More precisely, first we show the
existence of a solution of certain variational inequality in a reflexive Banach space
having a weakly sequentially continuous duality mapping. Then we establish the
strong convergence of the sequence {xn} generated by the algorithm (1.1) for finitely
many nonexpansive mappings to a solution of certain variational inequality in the
same Banach space under the conditions (C1) and (C2) on the parameters {λn} and
the weak asymptotic regularity condition on the sequence {xn}. Applications to
the convex feasibility problem are also investigated. The main results improve and
unify the corresponding results of Bauschke [1], Jung [8, 9], Jung et al. [10], Jung
and Kim [11] and O’Hara et al. [17, 18], Xu [26] and others.

2. PRELIMINARIES

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be its dual. The value
of f ∈ E∗ at x ∈ E will be denoted by 〈x, f〉. When {xn} is a sequence in E ,
then xn → x (resp., xn ⇀ x, xn

∗
⇀ x) will denote strong (resp., weak, weak∗)

convergence of the sequence {xn} to x.
A Banach space E is said to be smooth (and the norm of E is said to be Gâteaux

differentiable) if

lim
t→0

‖x + ty‖ − ‖x‖
t
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exists for each x, y in its unit sphere U = {x ∈ E : ‖x‖ = 1}. The (normalized)
duality mapping J from E into the family of nonempty (by Hahn-Banach theorem)
weak-star compact subsets of its dual E ∗ is defined by

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}
for each x ∈ E . It is known (cf. [3]) that a Banach space E is smooth if and only if
the duality mapping J is single-valued. The duality mapping J is said to be weakly
sequentially continuous if J is single valued and weak-to-weak ∗ continuous; that
is, if xn ⇀ x in E , J(xn) ∗

⇀ J(x) in E∗.
A Banach space E is said to satisfy Opial’s condition if, for any sequence {xn}

in E , xn ⇀ x implies lim supn→∞ ‖xn−x‖ < lim supn→∞ ‖xn−y‖ for all y ∈ E
with y 
= x. It is well-known that, if E admits a weakly sequentially continuous
duality mapping, then E satisfies Opial’s condition.

Let C be a nonempty closed convex subset of E . C is said to have the fixed point
property for nonexpansive mappings if every nonexpansive mapping of a bounded
closed convex subset D of C has a fixed point. Let D be a subset of C. Then a
mapping Q : C → D is said to be retraction from C onto D if Qx = x for all
x ∈ D. A retraction Q : C → D is said to be sunny if Q(Qx + t(x − Qx)) = Qx
for all t ≥ 0 and x + t(x − Qx) ∈ C. A sunny nonexpansive retraction is a
sunny retraction which is also nonexpansive. Sunny nonexpansive retractions are
characterized as follows [5, p. 48]: If E is smooth, then Q : C → D is a sunny
nonexpansive retraction if and only if the following inequality holds:

(2.1) 〈x − Qx, J(z − Qx)〉 ≤ 0, x ∈ C, z ∈ D.

We need the following lemmas for the proof of our main results. For these
lemmas, we refer to [3, 5, 6, 12, 15].

Lemma 2.1. Let E be a real Banach space and J the duality mapping. Then,
for any given x, y ∈ E , we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉
for all j(x + y) ∈ J(x + y).

Lemma 2.2. (Demicloseness principle) Let E be a reflexive Banach space
with Opial’s condition, C a nonempty closed convex subset of E and T : C → E

a nonexpansive mapping. Then the mapping I − T is demiclosed on C, where I is
the identity mapping; that is, xn ⇀ x in E and (I − T )xn → y imply that x ∈ C

and (I − T )x = y.

Lemma 2.3. Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1− λn)sn + λnβn + γn, n ≥ 0,
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where {λn}, {βn} and {γn} satisfying the condition:

(i) {λn} ⊂ [0, 1] and
∑∞

n=0 λn = ∞ or, equivalently,∏∞
n=0(1− λn) := limn→∞

∏n
k=0(1 − λk) = 0,

(ii) lim supn→∞ βn ≤ 0 or
∑∞

n=1 λnβn < ∞,

(iii) γn ≥ 0 (n ≥ 0),
∑∞

n=0 γn < ∞.

Then limn→∞ sn = 0.

Lemma 2.4. If E is a Banach space such that E ∗ is strictly convex, then E
is smooth and any duality mapping is norm-to-weak ∗-continuous.

Lemma 2.5. Let E be a smooth Banach space, C a nonempty closed convex
subset of E and T : C → C a nonexpansive mapping. If J is the duality mapping
on E , then

〈(I − T )(x)− (I − T )(y), J(x− y)〉 ≥ 0, for all x, y ∈ C.

Let µ be a continuous linear functional on l∞ and (a0, a1, · · · ) ∈ l∞. We
write un(an) instead of µ((a0, a1, · · ·)). µ is said to be Banach limit if µ satisfies
‖µ‖ = µn(1) = 1 and un(an+1) = µn(an) for all (a0, a1, · · ·) ∈ l∞. If µ is a
Banach limit, the following are well-known:

(i) for all n ≥ 1, an ≤ cn implies µ(an) ≤ µ(cn),
(ii) µ(an+N ) = µ(an) for any fixed positive integer N,

(iii) lim inf
n→∞ an ≤ µn(an) ≤ lim sup

n→∞
an for all (a0, a1, · · · ) ∈ l∞.

The following lemma was given in [27] as the revision of [20, Proposition 2].

Lemma 2.6. Let a ∈ R be a real number and a sequence {an} ∈ l∞ satisfy
the condition µn(an) ≤ a for all Banach limit µ. If lim supn→∞(an+N − an) ≤ 0
for N ≥ 1, then lim supn→∞ an ≤ a.

Finally, the sequence {xn} generated by (1.1) is said to be weakly asymptotically
regular [27] if for N ≥ 1,

w − lim
n→∞(xn+N − xn) = 0, that is, xn+N − xn ⇀ 0

and asymptotically regular if for N ≥ 1,

lim
n→∞(xn+N − xn) = 0, that is, xn+N − xn → 0,

respectively.
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3. MAIN RESULTS

First, we give conditions for the existence of solutions of certain variational
inequality.

For any n ≥ 1, Tn+NTn+N−1 · · ·Tn+1 : C → C is nonexpansive and so, for
any t ∈ (0, 1) and f ∈ ΣC , tf + (1 − t)Tn+NTn+N−1 · · ·Tn+1 : C → C defines
a strict contraction mapping. Thus, by Banach contraction mapping principle, there
exists a unique fixed point xf,n

t satisfying

(A) xf,n
t = tf(xf,n

t ) + (1− t)Tn+NTn+N−1 · · ·Tn+1x
f,n
t .

For simplicity we will write xn
t for xf,n

t provided no confusion occurs.
The following result gives conditions under which we solves a variational in-

equality.

Theorem 3.1. Let E be a Banach space such that E ∗ is strictly convex, C a
nonempty closed convex subset of E and T 1, · · · , TN nonexpansive mappings from
C into itself with F :=

⋂N
i=1 Fix(Ti) 
= ∅ and

F = Fix(TN · · ·T1) = Fix(T1TN · · ·T3T2) = · · · = Fix(TN−1 · · ·T1TN).

Suppose that {xn
t } defined by (A) converges strongly to a point in F as t → 0 +.

If we define Q : ΣC → F by

Q(f) := lim
t→0+

xn
t , f ∈ ΣC ,

then Q(f) solves the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

Proof. For any t ∈ (0, 1) and f ∈ ΣC , let {xn
t } ∈ C be the unique point that

satisfies the equation

xn
t = tf(xn

t ) + (1− t)Tn+N Tn+N−1 · · ·Tn+1x
n
t .

Since limt→0 xn
t exists, if we define Qn : ΣC → Fix(Tn+NTn+N−1 · · ·Tn+1) by

Qn(f) = lim
t→0

xn
t .

then Qn(f) = limt→0 xn
t is well-defined. Since

(I − f)xn
t = −1 − t

t
(I − Tn+NTn+N−1 · · ·Tn+1)xn

t ,
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by Lemma 2.5, we have for p ∈ Fix(Tn+NTn+N−1 · · ·Tn+1),

〈(I − f)xn
t , J(xn

t − p)〉 = −1 − t

t
〈(I − Tn+NTn+N−1 · · ·Tn+1)xn

t

− (I − Tn+NTn+N−1 · · ·Tn+1)p, J(xn
t − p)〉 ≤ 0.

Noting that J is norm-to-weak∗-continuous by Lemma 2.4, and taking the limit as
t → 0+, we obtain

〈(I − f)Qn(f), J(Qn(f) − p)〉 ≤ 0, for n ≥ 1.

However, by our assumption, since

F = Fix(TN · · ·T1) = Fix(T1TN · · ·T3T2) = · · · = Fix(TN−1 · · ·T1TN),

we know that Qn(f) solves the variational inequality

〈(I − f)Qn(f), J(Qn(f) − p)〉 ≤ 0, f ∈ ΣC , p ∈ F for n ≥ 1.

Since E is smooth, in F , there is at most one solution of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F,

and so Qn(f) = Q(f) for all n ≥ 1. Since xn
t → Q(f) ∈ F as t → 0+ and Q(f)

is independent of n, we have

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F. �

The following lemma establishes conditions under which {xn
t } defined by (A)

converges strongly to a point in F as t → 0+.

Lemma 3.1. Let E be a reflexive smooth Banach space satisfying Opial’s
condition and having the duality mapping J weakly sequentially continuous at 0.
Let C be a nonempty closed convex subset of E and T 1, · · · , TN nonexpansive
mappings from C into itself with F :=

⋂N
i=1 Fix(Ti) 
= ∅ and

F = Fix(TN · · ·T1) = Fix(T1TN · · ·T3T2) = · · · = Fix(TN−1 · · ·T1TN).

Then {xn
t } defined by (A) converges strongly to a point in F as t → 0 +.

Proof. Let tm ∈ (0, 1) be such that tm → 0 and let {xm} := {xn
tm} be a

subsequence of {xn
t }. Thus,

xm = tmf(xm) + (1− tm)Tn+NTn+N−1 · · ·Tn+1xm.
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Let y ∈ Fix(Tn+NTn+N−1 · · ·Tn+1). Then

xm − y = tm(f(xm) − y)

+ (1− tm)(Tn+NTn+N−1 · · ·Tn+1xm − Tn+NTn+N−1 · · ·Tn+1y).

Therefore

‖xm − y‖2 = 〈xm − y, J(xm − y)〉

≤ tm〈f(xm) − y, J(xm − y)〉+ (1 − tm)‖xm − y‖2.

It follows that for all y ∈ Fix(Tn+NTn+N−1 · · ·Tn+1),

(3.1) ‖xm − y‖2 ≤ 〈f(xm) − y, J(xm − y)〉.
Hence

〈xm − f(xm), J(y − xm)〉 = 〈xm − y, J(y − xm)〉 + 〈y − f(xm), J(y − xm)〉
≥ −‖xm − y‖2 + ‖xm − y‖2 = 0.

That is,
〈xm − f(xm), J(y − xm)〉 ≥ 0.

Now

‖xm − y‖
≤ tm‖f(xm) − y‖

+(1− tm)‖Tn+NTn+N−1 · · ·Tn+1xm − Tn+NTn+N−1 · · ·Tn+1y‖
≤ tm‖f(xm) − y‖ + (1 − tm)‖xm − y‖.

This gives that

‖xm − y‖ ≤ ‖f(xm) − y‖ ≤ ‖f(xm) − f(y)‖+ ‖f(y) − y‖
≤ k‖xm − y‖ + ‖f(y)− y‖,

and so ‖xm−y‖ ≤ 1
1−k‖f(y)−y‖. In particular, {xm} is bounded, so are {f(xm)}

and {Tn+NTn+N−1 · · ·Tn+1xm} . Since E is reflexive, {xm} has a weakly con-
vergent subsequence, say xmk

⇀ u ∈ E . Since tm → 0+,

xm − Tn+NTn+N−1 · · ·Tn+1xm = tm(f(xm) − Tn+NTn+N−1 · · ·Tn+1xm) → 0.

Hence by Lemma 2.2, u ∈ Fix(Tn+NTn+N−1 · · ·Tn+1). Therefore by (3.1) and
the assumption that J is weakly sequentially continuous at 0, we obtain

‖xmk
− u‖2 ≤ 〈f(xmk

) − u, J(xmk
− u)〉 → 0,
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and so xmk
→ u.

We will now show that every weakly convergent subsequence of {xm} has the
same limit. suppose that xmk

⇀ u and xmj ⇀ v. Then by the above proof,
u, v ∈ Fix(Tn+NTn+N−1 · · ·Tn+1) and xmk

→ u and xmj → v. It follows from
(3.1) that

(3.2) ‖u− v‖2 ≤ 〈f(u)− v, J(u − v)〉,

and

(3.3) ‖v − u‖2 ≤ 〈f(v)− u, J(v − u)〉.

Adding (3.2) and (3.3) yields

2‖u − v‖2 ≤ ‖u − v‖2 + 〈f(u)− f(v), J(u− v)〉 ≤ (1 + k)‖u − v‖2.

Since k ∈ (0, 1), this implies that u = v. Hence xm is strongly convergent to
a point in Fix(Tn+NTn+N−1 · · ·Tn+1) as t → 0+. The same argument shows
that if tl → 0+, then the subsequence {xl} := {xn

tl
} of {xn

t } is strongly conver-
gent to the same limit. Thus, as t → 0+, {xn

t } converges strongly to a point in
Fix(Tn+NTn+N−1 · · ·Tn+1). Therefore, by assumption, {xn

t } converges strongly
to a point in F as t → 0+.

Using Theorem 3.1 and Lemma 3.1, we show the existence of solutions of certain
variational inequality in a reflexive Banach space having a weakly sequentially
continuous duality mapping.

Theorem 3.2. Let E be a reflexive Banach space having a weakly sequentially
continuous duality mapping J . Let C be a nonempty closed convex subset of E and
T1, · · · , TN nonexpansive mappings from C into itself with F :=

⋂N
i=1 Fix(Ti) 
= ∅

and

F = Fix(TN · · ·T1) = Fix(T1TN · · ·T3T2) = · · · = Fix(TN−1 · · ·T1TN).

Then there exists the unique solution Q(f) ∈ F of the variational inequality

(3.4) 〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F,

where Q : ΣC → F is defined by Q(f) := limt→0+ xn
t and xn

t is defined by (A).

Proof. We notice that the definition of the weak sequential continuity of the
duality mapping J implies that E is smooth. Thus E ∗ is strictly convex for E

reflexive. By Lemma 3.1, {xn
t } defined by (A) converges strongly to a point in F
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as t → 0+. Hence by Theorem 3.1, Q(f) is the unique solution of the variational
inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F,

where Q : ΣC → F is defined by Q(f) = limt→0+ xn
t and xn

t is defined by (A).
In fact, suppose that p, q ∈ F satisfy (3.4). Then it follows that

〈(I − f)q, J(q − p)〉 ≤ 0 and 〈(I − f)p, J(p− q)〉 ≤ 0.

Adding these two inequalities, we have

(1 − k)‖q − p‖2 ≤ 〈(I − f)q − (I − f)p, J(q − p)〉 ≤ 0,

and so q = p.

Remark 3.1. In Theorem 3.2, if f(x) = u, x ∈ C, is a constant, then it
follows from (2.1) that (3.4) is reduced to the sunny nonexpansive retraction from
C onto F ; that is, Q satisfies the property:

〈Q(u)− u, J(Q(u)− p)〉 ≤ 0, u ∈ C, p ∈ F.

Remark 3.2. Theorem 3.1, Lemma 3.1 and Theorem 3.2 generalize Theorem
3.8, Lemma 3.9 and Theorem 3.10 in O’Hara et al. [18] to the viscosity approxi-
mation method for N > 1 finite mappings respectively. Theorem 3.2 also extends
Theorems 3.1 in Xu [26] to the case of N > 1 finite mappings together with the
contraction f .

Remark 3.3. In [9], Jung established Theorem 3.2 in a reflexive Banach space
with a uniformly Gâteaux differentiable norm together with assumption that every
weakly compact convex subset of E has the fixed point property for nonexpansive
mappings.

Now we study the strong convergence of the iterative algorithm (1.1) for a family
of finite nonexpansive mappings.

For convenience, we list again the condition to be imposed on the sequence
{λn} of parameters in the iterative algorithm (1.1).

(C1) lim
n→∞ λn = 0; (C2)

∞∑

n=1

λn = ∞ or, equivalently,
∞∏

n=1

(1− λn) = 0.

Using Theorem 3.2, we give the following result in a reflexive Banach space
having a weakly sequentially continuous duality mapping, which generalizes Theo-
rem 5 in Zhou et al. [27] to the viscosity approximation method.
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Proposition 3.1. Let E be a reflexive Banach space having a weakly se-
quentially continuous duality mapping J . Let C be a nonempty closed con-
vex subset of E and T1, · · · , TN nonexpansive mappings from C into itself with
F :=

⋂N
i=1 Fix(Ti) 
= ∅ and

F = Fix(TN · · ·T1) = Fix(T1TN · · ·T3T2) = · · · = Fix(TN−1 · · ·T1TN).

Let {λn} be a sequence in (0, 1) which satisfies the conditions (C1), f ∈ Σ C and
x0 ∈ C chosen arbitrarily. Let {xn} be generated by

xn+1 = λn+1f(xn) + (1− λn+1)Tn+1xn, n ≥ 0

and µ a Banach limit. Then

µn〈(I − f)Q(f), J(Q(f)− xn)〉 ≤ 0,

where Q : ΣC → F is defined by Q(f) = limt→0+ xn
t and xn

t is defined by (A).

Proof. Note that the definition of the weak continuity of duality mapping J
implies that E is smooth. Let xn

t be defined by (A) and n = r mod N for some
r ∈ {1, · · · , N}. Then we can write xn

t := xr
t and

xr
t − xn+N = (1− t)(Tn+NTn+N−1 · · ·Tn+1x

r
t − xn+N ) + t(f(xr

t ) − xn+N ).

Applying Lemma 2.1, we have

(3.5)
‖xr

t − xn+N‖2 ≤(1 − t)2‖Tn+NTn+N−1 · · ·Tn+1x
r
t − xn+N‖2

+ 2t〈f(xr
t )− xn+N , J(xr

t − xn+N )〉.
Let p ∈ F . As in the proof of Lemma 3.1, we have

‖xr
t − p‖ ≤ 1

1 − k
‖f(p)− p‖, t ∈ (0, 1),

and hence {xr
t} is bounded. We also have

‖xn − p‖ ≤ max{‖x0 − p‖, 1
1 − k

‖f(p) − p‖}

for all n ≥ 0 and all p ∈ F and so {xn} is bounded. Indeed, let p ∈ F and
d = max{‖x0−p‖, 1

1−k‖f(p)−p‖}. Then by the nonexpansivity of Tn and f ∈ ΣC ,

‖x1 − p‖ ≤ (1− λ1)‖T1x0 − p‖ + λ1‖f(x0) − p‖
≤ (1− λ1)‖x0 − p‖ + λ1(‖f(x0) − f(p)‖ + ‖f(p)− p‖)
≤ (1− (1− k)λ1)‖x0 − p‖+ λ1‖f(p)− p‖
≤ (1− (1− k)λ1)d + λ1(1 − k)d = d.
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Using an induction, we obtain ‖xn+1 −p‖ ≤ d. Hence {xn} is bounded, and so are
{Tn+1xn} and {f(xn)}. As a consequence with the control condition (C1), we get

‖xn+1 − Tn+1xn‖ ≤ λn+1‖Tn+1xn − f(xn)‖ → 0 (n → ∞).

By using the same method, we have

‖xn+N − Tn+N · · ·Tn+1xn‖ → 0 (n → ∞).

Indeed, noting that each Ti is nonexpansive and using just above fact, we obtain
the finite table

xn+N−Tn+Nxn+N−1 → 0,

Tn+Nxn+N−1−Tn+NTn+N−1xn+N−2 → 0,

...
Tn+N · · ·Tn+2xn+1−Tn+N · · ·Tn+1xn → 0.

Adding up this table yields

xn+N − Tn+N · · ·Tn+1xn → 0 (n → ∞).

Observe also that

‖Tn+NTn+N−1 · · ·Tn+1x
r
t − xn+N‖ ≤ ‖xr

t − xn‖ + en,

where en = ‖xn+N − Tn+NTn+N−1 · · ·Tn+1xn‖ → 0 as n → ∞, and

〈f(xr
t) − xn+N , J(xr

t − xn+N )〉

= 〈f(xr
t) − xr

t , J(xr
t − xn+N )〉 + ‖xr

t − xn+N ‖2.

Thus it follows from (3.5) that

(3.6)
‖xr

t − xn+N‖2 ≤(1− t)2(‖xr
t − xn‖ + en)2

+ 2t(〈f(xr
t )− xr

t , J(xr
t − xn+N )〉 + ‖xr

t − xn+N ‖2)

Applying the Banach limit µ to (3.6), we have

(3.7)
µn(‖xr

t − xn+N‖2) ≤(1 − t)2µn((‖xr
t − xn‖ + en)2)

+2tµn(〈f(xr
t) − xr

t , J(xr
t − xn+N )〉+ ‖xr

t − xn+N ‖2)

and it follows from (3.7) that

(3.8) µn〈xr
t − f(xr

t ), J(xr
t − xn)〉 ≤ tµn(‖xr

t − xn‖2).



Convergence Theorems of Iterative Algorithms 895

Since

t‖xr
t − xn‖2 ≤ t(

2
1 − k

‖f(p)− p‖ + ‖x0 − p‖)2 → 0 (t → 0),

we conclude from Theorem 3.2 and (3.8) that

µn〈(I − f)Q(f), J(Q(f)− xn)〉 ≤ lim sup
t→0

µn〈xr
t − f(xr

t ), J(xr
t − xn)〉 ≤ 0,

where Q : ΣC → F is defined by Q(f) = limt→0 xr
t .

Theorem 3.3. Let E be a reflexive Banach space having a weakly sequentially
continuous duality mapping J . Let C be a nonempty closed convex subset of E and
T1, · · · , TN nonexpansive mappings from C into itself with F :=

⋂N
i=1 Fix(Ti) 
= ∅

and

F = Fix(TN · · ·T1) = Fix(T1TN · · ·T3T2) = · · · = Fix(TN−1 · · ·T1TN).

Let {λn} be a sequence in (0, 1) which satisfies the conditions (C1) and (C2),
f ∈ ΣC and x0 ∈ C chosen arbitrarily. Let {xn} be generated by

(3.9) xn+1 = λn+1f(xn) + (1 − λn+1)Tn+1xn, n ≥ 0.

If the sequence {xn} is weakly asymptotically regular, then {xn} converges strongly
to Q(f), where Q(f) ∈ F solves a variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0 f ∈ ΣC , p ∈ F.

Proof. Put S = TN · · ·T1. Then Fix(S) = F =
⋂N

i=1 Fix(Ti) by assumption.
By Theorem 3.2, there exists a solution Q(f) of a variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0 f ∈ ΣC , p ∈ F,

where Q(f) = limt→0+ xt and xt = tf(xt)+(1−t)Sxt for 0 < t < 1. We proceed
with the following steps:

Step 1. ‖xn−z‖ ≤ max{‖x0−z‖, 1
1−k‖f(z)−z‖} for all n ≥ 0 and all z ∈ F

as in the proof of Proposition 3.1. Hence {xn} is bounded and so are {Tn+1xn}
and {f(xn)}.

Step 2. lim supn→∞〈(I − f)Q(f), J(Q(f)− xn)〉 ≤ 0. To this end, put

an := 〈(I − f)Q(f), J(Q(f)− xn)〉, n ≥ 1.
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Then Proposition 3.1 implies that µn(an) ≤ 0 for any Banach limit µ. Since {xn}
is bounded, there exists a subsequence {xnj} of {xn} such that

lim sup
n→∞

(an+N − an) = lim
j→∞

(anj+N − anj )

and xnj ⇀ q ∈ E . This implies that xnj+N ⇀ q since {xn} is weakly asymp-
totically regular. From the weak sequential continuity of duality mapping J , we
have

w − lim
j→∞

J(Q(f) − xnj+N ) = w − lim
j→∞

J(Q(f) − xnj ) = J(Q(f) − q),

and so

lim sup
n→∞

(an+N − an)

= lim
j→∞

〈(I − f)Q(f), J(Q(f)− xnj+N )− J(Q(f) − xnj )〉 = 0.

Then Lemma 2.6 implies that lim supn→∞ an ≤ 0, that is,

lim sup
n→∞

〈(I − f)Q(f), J(Q(f)− xn)〉 ≤ 0.

Step 3. limn→∞ ‖xn − Q(f)‖ = 0. By using (3.9), we have

xn+1 − Q(f) = λn+1(f(xn) − Q(f)) + (1− λn+1)(Tn+1xn − Q(f)).

Applying Lemma 2.1, we obtain

‖xn+1 − Q(f)‖2

≤ (1− λn+1)2‖Tn+1xn − Q(f)‖2 + 2λn+1〈f(xn) − Q(f), J(xn+1 − Q(f))〉
≤ (1− λn+1)2‖xn − Q(f)‖2 + 2kλn+1‖xn − Q(f)‖‖xn+1 − Q(f)‖

+ 2λn+1〈f(Q(f))− Q(f), J(xn+1 − Q(f))〉

≤ (1− λn+1)2‖xn − Q(f)‖2 + kλn+1(‖xn − Q(f)‖2 + ‖xn+1 − Q(f)‖2)

+ 2λn+1〈f(Q(f))− Q(f), J(xn+1 − Q(f))〉.

It then follows that
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(3.10)

‖xn+1 − Q(f)‖2 ≤ 1 − (2 − k)λn+1 + λ2
n+1

1 − kλn+1
‖xn − Q(f)‖2

+
2λn+1

1− kλn+1
〈f(Q(f))− Q(f), J(xn+1 − Q(f))〉

≤ 1 − (2 − k)λn+1

1 − kλn+1
‖xn − Q(f)‖2 +

λ2
n+1

1 − kλn+1
M2

+
2λn+1

1− kλn+1
〈f(Q(f))− Q(f), J(xn+1 − Q(f))〉,

where M = supn≥0 ‖xn − Q(f)‖. Put

αn =
2(1 − k)λn+1

1− kλn+1
,

βn =
M2λn+1

2(1 − k)
+

1
1 − k

〈f(Q(f))− Q(f), J(xn+1 − Q(f))〉.

From (C1), (C2) and Step 2, it follows that

αn → 0,

∞∑

n=0

αn = ∞, and lim sup
n→∞

βn ≤ 0.

Since (3.10) reduces to

‖xn+1 − Q(f)‖2 ≤ (1− αn)‖xn − Q(f)‖2 + αnβn,

from Lemma 2.3 with γn = 0, we conclude that limn→∞ ‖xn − Q(f)‖ = 0. This
completes the proof.

Corollary 3.1. Let E , C, and T1, · · · , TN be as in Theorem 3.3. Let {λn}
be a sequence in (0, 1) which satisfies the conditions (C1) and (C2), f ∈ Σ C and
x0 ∈ C chosen arbitrarily. Let {xn} be generated by

(3.11) xn+1 = λn+1f(xn) + (1 − λn+1)Tn+1xn, n ≥ 0.

If the sequence {xn} is asymptotically regular, then {xn} converges strongly to
Q(f), where Q(f) ∈ F is the unique solution of the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0 f ∈ ΣC , p ∈ F.

Remark 3.4. If {λn} satisfies conditions (C1), (C2) and (C5), (or (C6),) or
the perturbed control condition:

(C7) |λn+N − λn| ≤ ◦(αn+N ) + σn,

∞∑

n=0

σn < ∞,
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then the sequence {xn} generated by (3.11) is asymptotically regular. Now we give
only the proof for the condition (C7). Indeed, by Step 1 in the proof of Theorem
3.3, there exists a constant L > 0 such that for all n ≥ 0, ‖f(xn)‖ + ‖Txn‖ ≤ L.

Since for all n ≥ 1, Tn+N = Tn, we have

‖xn+N − xn‖
= ‖(1− λn+N )(Tn+Nxn+N−1 − Tnxn−1)

+ (λn+N − λn)(f(xn−1) − Tnxn−1) + λn+N (f(xn+N−1) − f(xn−1))‖
≤ (1 − λn+N )‖xn+N−1 − xn−1‖ + L|λn+N − λn|

+ kλn+N‖xn+N−1 − xn−1‖
= (1 − (1 − k)λn+N )‖xn+N−1 − xn−1‖ + (◦(λn+N) + σn)L.

By taking sn+1 = ‖xn+N − xn‖, αn = (1 − k)λn+N , αnβn = ◦(λn+N)L and
γn = σnL, we have

sn+1 ≤ (1− λn)sn + λnβn + γn,

and, by Lemma 2.3, limn→∞ ‖xn+N − xn‖ = 0.
In view of this observation, we have the following:

Corollary 3.2. Let E , C, and T1, · · · , TN be as in Corollary 3.1. Let {λn} be
a sequence in (0, 1) which satisfies the conditions (C1), (C2) and (C5) ( or (C6))
or (C7), f ∈ ΣC and x0 ∈ C chosen arbitrarily. Let {xn} be generated by

xn+1 = λn+1f(xn) + (1 − λn+1)Tn+1xn, n ≥ 0.

Then {xn} converges strongly to Q(f) ∈ F , where Q(f) is the unique solution of
the variational inequality

〈(I − f)Q(f), J(Q(f)− p)〉 ≤ 0, f ∈ ΣC , p ∈ F.

Remark 3.5. (1) Theorem 3.3 and Corollary 3.1 extend Theorem 6 and The-
orem 10 of Zhou et al. [27] to the viscosity approximation method without the
assumption of uniformly Gâteaux differentiable norm and the fixed point property
(that is, the uniform smoothness assumption), respectively.

(2) Theorem 3.3 (Corollary 3.1 and Corollary 3.2) also improves Theorem 2 (and
Corollary 2) of Jung [9] because the assumption of uniformly Gâteaux differentiable
norm and the fixed point property (that is, the uniform smoothness assumption) is
removed.
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(3) Corollary 3.2 extends Theorem 4.3 of O’Hara et al. [18] to the viscosity
approximation method together with the condition (C7) in place of the condition
(C6) on the parameters {λn}.

Next, as an application of Theorem 3.3 or Corollary 3.1, we study the convex
feasibility problem in a a strictly convex and reflexive Banach space with a weakly
sequentially continuous duality mapping.

Using a nonlinear ergodic theorem, Crombez [4] considered the convex feasi-
bility problem in a Hilbert space. Later, Kitahara and Takahashi [13], Takahashi
and Tamura [21], Takhashi et al. [22] dealt with the convex feasibility problem by
convex combinations of sunny nonexpansive retractions in uniformly convex Banch
spaces. In particular, Zhou et al. [27] investigated the convex feasibility problem in
a strictly convex and reflexive Banach space with a uniformly Gâteaux differentiable
norm along with the assumption that every weakly compact convex subset of it has
the fixed point property for nonexpansive mappings.

The following lemma was given by Takahashi et al. [22].

Lemma 3.2. [22] Let E be a strictly convex Banach space and C a closed
convex subset of E . Let S1, S2, · · · , SN be nonexpansive mappings of C into
itself such that the set of common fixed points of S 1, S2, · · · , SN is nonempty. Let
T1, T2, · · · , TN be mappings of C into itself given by T i = (1 − αi)I + αiSi for
any 0 < αi < 1, (i = 1, 2, · · · , N ) where I denotes the identity mapping on C.
Then {T1, T2, · · · , TN} satisfies the following:

N⋂

i=1

Fix(Ti) =
N⋂

i=1

Fix(Si)

and
N⋂

i=1

Fix(Ti) = Fix(TN · · ·T1) = Fix(T1TN · · ·T2)

= · · · = Fix(TN−1TN−2 · · ·T1TN).

Using Lemma 3.2 and Theorem 3.3 or Corollary 3.1 in the case of f(x) = u,
x ∈ C, constant, we obtain the following:

Theorem 3.4. Let E be a strictly convex and reflexive Banach space having
a weakly sequentially continuous duality mapping J . Let C be a nonempty closed
convex subset of E and C1, C2 · · · , CN nonexpansive retracts of C into itself with⋂N

i=1 Ci 
= ∅. Define a family of finite {T1, T2, · · · , TN} by Ti = (1−αi)I+αiQCi

for any 0 < αi < 1 (i = 1, 2, · · · , N ), where QCi is a nonexpansive retraction of C
onto Ci. Let {λn} and {xn} be as in Theorem 3.3 with f(x) = u, x ∈ C, constant.
Then the sequence {xn} converges strongly to a point z ∈ ⋂N

i=1 Ci. Moreover, if
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Qu = limn→∞ xn for any u ∈ C, then Q is a sunny nonexpansive retraction of C

onto
⋂N

i=1 Ci.

Proof. By Lemma 3.2, we have
⋂N

i=1 Fix(Ti) =
⋂N

i=1 Fix(QCi) =
⋂N

i=1 Ci

and
N⋂

i=1

Fix(Ti) = Fix(TN · · ·T1) = Fix(T1TN · · ·T3T2)

= · · · = Fix(TN−1TN−2 · · ·T1TN).

Thus, applying Theorem 3.3 with f(x) = u , x ∈ C, constant, we have the desired
conclusion immediately.

Corollary 3.3. Let E , C, Ci, Ti and QCi (i = 1, 2, · · · , N ) be as in Theorem
3.4. Let {λn} and {xn} be as in Corollary 3.1 with f(x) = u, x ∈ C, constant.
Then the sequence {xn} converges strongly to a point z ∈ ⋂N

i=1 Ci. Moreover, if
Qu = limn→∞ xn for any u ∈ C, then Q is a sunny nonexpansive retraction of C

onto
⋂N

i=1 Ci.

Theorem 3.5. Let E be a strictly convex and reflexive Banach space having
a weakly sequentially continuous duality mapping J . Let C be a nonempty closed
convex subset of E and S1, S2 · · · , SN nonexpansive mappings of C into itself
with F :=

⋂N
i=1 Fix(Si) 
= ∅. Define a family of finite {T1, T2, · · · , TN} by

Ti = (1 − αi)I + αiSi for any 0 < αi < 1, (i = 1, 2, · · · , N ). Let {λn} and
{xn} be as in Corollary 3.1 with f(x) = u, x ∈ C, constant. Then the sequence
{xn} converges strongly to a common fixed point of S 1, S2, · · · , SN . Moreover, if
Qu = limn→∞ xn for any u ∈ C, then Q is a sunny nonexpansive retraction of C

onto
⋂N

i=1 Fix(Si).

Proof. By Lemma 3.2, we have
⋂N

i=1 Fix(Ti) =
⋂N

i=1 Fix(Si) = F and

N⋂

i=1

Fix(Ti) = Fix(TN · · ·T1) = Fix(T1TN · · ·T3T2)

= · · · = Fix(TN−1TN−2 · · ·T1TN).

Thus, applying Corollary 3.1 with f(x) = u, x ∈ C, constant, the sequence {xn}
converges strongly to a common fixed point of S1, S2, · · · , SN . This completes the
proof.

REFERENCES

1. H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive
mappings in Hilbert space, J. Math. Anal. Appl., 202 (1996), 150-159.



Convergence Theorems of Iterative Algorithms 901

2. F. E. Browder, Convergence of approximations to fixed points of nonexpansive map-
pings in Banach spaces, Archs Ration. Mech. Anal., 24 (1967), 82-90.

3. I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Prob-
lems, Kluwer Academic Publishers, Dordrecht, 1990.

4. G. Crombez, Image recovery by convex combinations of projections, J. Math. Anal.
Appl., 155 (1991), 413-419.

5. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory in: “Cambridge
Studies in Advanced Mathematics,” Vol. 28, Cambridge Univ. Press, Cambridge,
UK, 1990.

6. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive
Mappings, Marcel Dekker, New York and Basel, 1984.

7. B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 73 (1967),
957-961.

8. J. S. Jung, Iterative approaches to common fixed points of nonexpansive mappings
in Banach spaces, J. Math. Anal. Appl., 302 (2005), 509-520.

9. J. S. Jung, Viscosity approximation methods for a family of finite nonexpansive
mappings in Banach spaces, Nonlinear Anal., 64 (2006), 2536-2552.

10. J. S. Jung, Y. J. Cho and R. P. Agarwal, Iterative schemes with some control conditions
for a family of finite nonexpansive mappings in Banach space, Fixed Point Theory
and Appl., 2005-2 (2005), 125-135.

11. J. S. Jung and T. H. Kim, Convergence of approximate sequences for compositions of
nonexpansive mappings in Banach spaces, Bull. Korean Math. Soc., 34(1) (1997),
93-102.

12. J. S. Jung and C. Morales, The Mann process for perturbed m-accretive operators in
Banach spaces, Nonlinear Anal., 46 (2001), 231-243.

13. S. Titahara and W. Takahashi, Image recovery by convex combinations of sunny
nonexpansive retractions, Topol. Meth. Nonlinear Anal., 2 (1993), 333-342.

14. P. L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Śer
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