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ON ε-APPROXIMATE SOLUTIONS FOR CONVEX
SEMIDEFINITE OPTIMIZATION PROBLEMS

Gwi Soo Kim and Gue Myung Lee

Abstract. In this paper, we discuss ε-optimality conditions and ε-saddle
point theorems for ε-approximate solutions for convex semidefinite optimiza-
tion problem which hold under a weakened constraint qualification or which
hold without any constraint qualification.

Moreover, we formulate a Wolfe type dual problem for the convex semidef-
inite optimization problem, and prove ε-weak duality and ε-strong duality be-
tween the primal problem and the dual problem, which hold under a weakened
constraint qualification.

1. INTRODUCTION

Convex semidefinite optimization problem is to optimize an objective convex
function over a linear matrix inequality. When the objective function is linear and
the corresponding matrices are diagonal, this problem become a linear optimiza-
tion problem. So, this problem is an extension of a linear optimization problem. In
particular, convex semidefinite optimization problem includes many important appli-
cations in systems and control theory [4], approximate theory ([3,9,11]) and combi-
natorial optimization ([1,23,26]). Hence convex semidefinite optimization has been
intensively studied ([20,25,28] and [30]). Polynomial time interior point algorithms
are now available for solving semidefinite programming problem. Many authors
([2,18,19,24,32,33]) have developed interior point algorithms for linear, semidefi-
nite and convex optimization problems.
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In particular, for convex semidefinite optimization problem, strong duality with-
out constraint qualification [27], complete dual characterization conditions of solu-
tions ([13,16]), saddle point theorems [5] and characterizations of optimal solution
sets [14] have been investigated.

From computational viewpoint, algorithms which have been proposed in lit-
erature to solve optimization problems compute only ε-approximate solutions for
the problems. To get the ε-approximate solution, many authors have established
ε-optimality conditions, ε-saddle point theorems and ε-duality theorems for opti-
mization problems ([6-8,21,22,29,31]).

Recently, Jeyakumar et al. [13] established sequential optimality conditions for
exact solutions of convex optimization problems which holds without any constraint
qualification. Jeyakumar et al. [12] gave ε-optimality conditions for convex op-
timization problems, which hold without any constraint qualification. Yokoyama
et al. [31] gave a special case of convex optimization problem which satisfies ε-
optimality conditions. Kim et al. [17] proved sequential ε-saddle point theorems
and ε-saddle point theorems for convex optimization problems.

In this paper, we consider ε-approximate solutions for a convex semidefinite
optimization problem and prove ε-optimality theorems and ε-saddle point theorems
for such solutions which hold under a weakened constraint qualification or which
hold without any constraint qualification. Moreover, we formulate a Wolfe type dual
problem for the convex semidefinite optimization problem and its dual problem,
which hold under a weakened constraint qualification.

2. PRELIMINARIES

Consider the convex semidefinite optimization problem:

(SDP) Minimize f(x)

subject to F0 +
m∑

i=1

xiFi � 0,

where f : R
m → R is a convex function, and for i = 0, 1, · · · , m, Fi ∈ Sn, the

space of n × n real symmetric matrices. The space Sn is partially ordered by the
Löwner order; that is, for M, N ∈ Sn, M � N if and only if M − N is positive
semidefinite. The inner product in Sn is defined by (M, N ) = Tr[MN ], where
Tr[·] is the trace operation.

Let S := {M ∈ Sn | M � 0} . Then S is self-dual, that is,

S+ = {θ ∈ Sn | (θ , Z) � 0 ∀Z ∈ S } = S .
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Let F (x) := F0 +
∑m

i=1 xiFi , F̂(x) =
∑m

i=1 xiFi , x = (x1 · · · , xm) ∈ R
m .

Then F̂ is a linear operator from R
m to Sn and its dual is defined by

F̂ ∗(Z) = (Tr[F1Z] , · · · , Tr[FmZ])

for any Z ∈ Sn . Clearly, A := {x ∈ R
m | F (x) ∈ S } is the feasible set of

(SDP). Let
D :=

⋃
(Z,δ)∈S×R+

{(F̂ ∗(Z),−Tr[ZF0] − δ)}.

Clearly, D is a convex cone, but is not necessarily closed.
If the interior point condition holds for (SDP), that is, there exists x̂ ∈ R

m such
that F0 +

∑m
i=1 x̂iFi is positive definite, then D is closed, but the converse may

not hold. For instance, let

F0 =
(

0 0
0 0

)
, F1 =

(
0 1
1 0

)
and F2 =

(
0 0
0 0

)
.

Then it is clear that there does not exists x̂ ∈ R
m such that F0 +

∑2
i=1 x̂iFi is

positive definite. However,

D : =
⋃

(Z,δ)∈S×R+

{(Tr[ZF1], Tr[ZF2],−Tr[ZF0] − δ)}

= {(x, 0, z) ∈ R
3 |x ∈ R, z � 0}.

So, D is closed in R
3.

We will use ths closedness of the set D as a constraint qualification for (SDP).
We give the definition of ε-approximate solutions.

Definition 2.1. Let ε � 0. Then x̄ ∈ A is called an ε-approximate solution of
(SDP) if for any x ∈ A,

f(x) � f(x̄) − ε.

Definition 2.2. Let g : R
n → R be a convex function.

(1) The subdifferential of g at a is given by

∂g(a) := {v ∈ R
n | g(x) � g(a) + 〈v, x− a〉 , ∀x ∈ R

n},

where 〈·, ·〉 is the scalar product on R
n.

(2) The ε-subdifferential of g at a is given by

∂gε(a) := {v ∈ R
n | g(x) � g(a) + 〈v, x− a〉 − ε, ∀x ∈ R

n}.
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From Theorem 3.1.1 in [10], we can obtain the following proposition.

Proposition 2.1. Let f : R
n → R be a convex function and δC is the indicator

function with respect to a closed convex subset C of R
n. Let ε � 0. Then there

exist ε0, ε1 � 0 such that ε0 + ε1 = ε and

∂ε(f + δc)(x̄) = ∂ε0f(x̄) + ∂ε1f(x̄).

From Theorem 1 (Feasibility Theorem) in [4], we can obtain the following
Lemma.

Lemma 2.1. Let Fi ∈ Sn, i = 0, 1, · · · , m. Suppose that A �= ∅. Let u ∈ R
m

and α ∈ R. Then the following are equivalent:

(i) {x ∈ R
m |F0 +

m∑
i=1

Fixi � 0} ⊂ {x ∈ R
m | 〈u, x〉 � α}.

(ii)
(

u

α

)
∈ cl


 ⋃

(Z,δ)∈S×R+

{(
F̂ ∗(Z)

−Tr[ZF0] − δ

)}
 .

Lemma 2.2. Let x̄ ∈ A and ε � 0 . Then x̄ is an ε-approximate solution of
(SDP) if and only if there exist ε0, ε1 � 0, v ∈ ∂ε0f(x̄) such that ε0 + ε1 = ε and

(
v

〈v, x̄〉 − ε1

)
∈ cl


 ⋃

(Z,δ)∈S×R+

{(
F̂ ∗(Z)

−Tr[ZF0] − δ

)}
 .

Proof. x̄ ∈ A is an ε-approximate solution of (SDP)
⇐⇒ 0 ∈ ∂ε(f + δA)(x̄),where δA is the indicator function with respect to A.
⇐⇒ (by Proposition 2.1) there exist ε0, ε1 � 0, v ∈ ∂ε0f(x̄) such that ε0 +

ε1 = ε and
〈v, x〉 � 〈v, x̄〉 − ε1, for any x ∈ A

Thus it follows from Lemma 2.1 that Lemma 2.2 holds.

Lemma 2.3. [15] Let h : R
n → R be a continuous convex function and

u : R
n → R ∪ {+∞} be a proper lower semicontinuous convex function. Then

epi(h + u)∗ = epih∗ + epiu∗.
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3. ε-OPTIMALITY THEOREMS

Now we give ε-optimality theorems for (SDP).

Theorem 3.1. Let x̄ ∈ A and
⋃

(Z,δ)∈S×R+
{
(

F̂ ∗(Z)
−Tr[ZF0]− δ

)
} is closed in

R
m × R. Then x̄ ∈ A is an ε-approximate solution of (SDP) if and only if there

exist ε0, ε1 � 0, v ∈ ∂ε0f(x̄), Z ∈ S such that ε0 + ε1 = ε,

v = F̂ ∗(Z)

and
0 � Tr[Z · F (x̄)] � ε1.

Proof. x̄ ∈ A is an ε-approximate solution of (SDP).
⇐⇒ (by Lemma 2.2 and assumption) there exist ε0, ε1 � 0, v ∈ ∂ε0f(x̄) such

that ε0 + ε1 = ε and(
v

〈v, x̄〉 − ε1

)
∈

⋃
(Z,δ)∈S×R+

(
F̂ ∗(Z)

−Tr[ZF0] − δ

)
.

⇐⇒ there exist ε0, ε1 � 0, v ∈ ∂ε0f(x̄), Z ∈ S, δ � 0 such that ε0 + ε1 = ε,

v = F̂ ∗(Z) and

−Tr[ZF0] − δ = 〈v, x̄〉 − ε1.

⇐⇒ there exist ε0, ε1 � 0, v ∈ ∂ε0f(x̄), Z ∈ S, δ � 0 such that ε0 + ε1 = ε,

v = F̂ ∗(Z) and

ε1 − δ = Tr[Z · F (x̄)].

⇐⇒ there exist ε0, ε1 � 0, v ∈ ∂ε0f(x̄), Z ∈ S such that ε0 + ε1 = ε

v = F̂ ∗(Z) and

0 � Tr[Z · F (x̄)] � ε1.

Example 3.1. Consider the following semidefinite program.

(SDP) minimize x1 + x2
2

subject to
(

0 x1

x1 0

)
� 0.
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Let f(x1, x2) = x1 + x2
2,

F0 =
(

0 0
0 0

)
, F1 =

(
0 1
1 0

)
and F2 =

(
0 0
0 0

)
.

Then (SDP) becomes

minimize f(x1, x2)

subject to F0 +
2∑

i=1

xiFi � 0.

Then A := {(0, x2) ∈ R
2 | x2 ∈ R} is the set of all feasible solutions of (SDP).

and the set of all ε-approximate solution is {(x1, x2) ∈ R
2 | x1 = 0, x2 � 0}. Let

ε0 ∈ [0, ε] and ε1 � 0 be such that ε0+ε1 = ε. Then for any x̄2 ∈ R, ∂ε0f(0, x̄2) =
{1} × [2x̄2 − 2

√
ε0, 2x̄2 + 2

√
ε0] . Let

E :=
⋃

Z∈S,ε0�0,ε1�0.ε0+ε1=ε

{(F̂ ∗(Z) ∈ ∂ε0f(x̄1, x̄2), 0 � Tr[ZF (x̄1, x̄2)] � ε1}.

Then by Theorem 3.1, E is the set of all ε-approximate solution of (SDP). Now
we caculate the set of E .

E =
⋃

Z∈S,ε0∈[0,ε]

{(0, x̄2) ∈ R
2 |F̂ ∗(Z) ∈ ∂ε0f(0, x̄2)}.

=
⋃

ε0∈[0,ε]

{(0, x̄2) ∈ R
2 |F̂ ∗

(
a b

b c

)
,∈ ∂ε0f(0, x̄2), a � 0, c � 0, b2 � ac}.

=
⋃

0�ε0�ε

{(0, x̄2) ∈ R
2 |0 ∈ [2x̄2 − 2

√
ε0, 2x̄2 + 2

√
ε0]}.

= {(0, x̄2) ∈ R
2 |0 ∈ [2x̄2 − 2

√
ε, 2x̄2 + 2

√
ε]}.

= {(0, x̄2) ∈ R
2 | − √

ε � x̄2 �
√

ε]}.
and

D : =
⋃

(Z,δ)∈S×R+

{(F̂ ∗(Z),−Tr[ZF0] − δ)}.

=
⋃

(Z,δ)∈S×R+

{(Tr[ZF1], Tr[ZF2],−Tr[ZF0] − δ)}

= {(x, 0, z) ∈ R
3 |x ∈ R, z � 0}

Thus D is closed in R
3. Hence Theorem 3.1 holds for this example.
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Theorem 3.2. Let x̄ ∈ A. Then x̄ is an ε-approximate solution of (SDP) if and
only if there exist ε0, ε1 � 0, v ∈ ∂ε0 f(x̄), Zn ∈ S, δn � 0 such that ε0 +ε1 = ε ,

v = lim
n→∞ F̂ ∗(Zn)

and
ε1 = lim

n→∞(Tr[ZnF (x̄)] + δn).

Proof. x̄ is an ε-approximate solution of (SDP)
⇐⇒ (by Lemma 2.2) there exist ε0 , ε1 � 0 , v ∈ ∂ε0f(x̄), Zn ∈ S such that

ε0 + ε1 = ε and

(
v

〈v, x̄〉 − ε1

)
∈ cl


 ⋃

(Z,δ)∈S×R+

(
F̂ ∗(Z)

−Tr[ZF0] − δ

)


⇐⇒ there exist ε0 , ε1 � 0 , v ∈ ∂ε0f(x̄), Zn ∈ S , δn � 0 such that
ε0 + ε1 = ε ,

v = lim
n→∞ F̂ ∗(Zn) and

ε1 = lim
n→∞(Tr[ZnF0] + δn).

⇐⇒ there exist ε0 , ε1 � 0 , v ∈ ∂ε0f(x̄), Zn ∈ S , δn � 0 such that
ε0 + ε1 = ε ,

v = lim
n→∞ F̂ ∗(Zn) and

ε1 = lim
n→∞(Tr[ZnF (x̄)] + δn).

Example 3.2. Let ε ∈ [0, 1
2). Consider the following semidefinite program.

(SDP) minimize x1 +
1
2

x2
1

subject to
(

0 1
2 x1

1
2 x1 x2

)
� 0.

Let f(x1, x2) = x1 + 1
2 x2

1,

F0 =
(

0 0
0 0

)
, F1 =

(
0 1

2
1
2 0

)
and F2 =

(
0 0
0 1

)
.
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Then (SDP) becomes

minimize f(x1, x2)

subject to F0 +
2∑

i=1

xiFi � 0,

and the feasible set of (SDP) is {(x1, x2) ∈ R
2 | x1 = 0, x2 � 0} and the set

of all ε-approximate solution is {(x1, x2) ∈ R
2 | x1 = 0, x2 � 0}. Let ε0 � 0

and ε1 � 0 be such that ε0 + ε1 = ε. Let (x̄1, x̄2) = (0, 0). Then (x̄1, x̄2) is an
ε-approximate solution of (SDP) and ∂ε0f(0, 0) = [1 −√

2ε0, 1 +
√

2ε0] × {0} .
Then since ε ∈ [0, 1

2), 1 −√
2ε0 � 1 and hence (1, 0) ∈ ∂ε0f(0, 0). Let

Zn =
(

n 1
2

1
2

1
n

)
.

Then Zn � 0 for all n, F̂ ∗(Zn) = (Tr[ZnF1], Tr[ZnF2]) = (1, 1
n), Tr[ZnF0] =

0 and lim
n→∞ F̂ ∗(Zn) = lim

n→∞(1, 1
n ) = (1, 0). Let δn = ε1. Then we have, (1, 0) ∈

∂ε0f(x̄1, x̄2), (1, 0) = lim
n→∞ F̂ ∗(Zn), and ε1 = lim

n→∞(Tr[ZnF0]+δn). Thus Theorem
3.2 holds for this example. But we can not apply Theorem 3.1 to this example.
Indeed, let D =

⋃
(Z,δ)∈S×R+

{(Tr[ZF1], Tr[ZF2],−Tr[ZF0] − δ)} Then

D : = {(b, c,−δ) ∈ R
3 |a � 0, c � 0, b2 � ac, δ � 0}

= {(b, c) ∈ R
2 |a � 0, c � 0, b2 � ac} × (−R+)

= {(0, 0, z) ∈ R
3 |z � 0} ∪ {(x, y, z) ∈ R

3 |x ∈ R, y > 0, z � 0}

This means that D is not closed, and hence we can not apply Theorem 3.1 to this
example.

4. ε-SADDLE POINT THEOREMS AND ε-DUALITY THEOREM

Now we give ε-saddle point theorems and ε-duality theorems for (SDP). Using
Lemma 2.1, we can obtain the following lemmas which are useful in proving our
ε-saddle point theorems for (SDP).

Lemma 4.1. Let x̄ ∈ A. Then x̄ is an ε-approximate solution of (SDP) if and
only if there exists a sequence {Zn} in S such that

f(x)− lim inf
n→∞ Tr[ZnF (x)] � f(x̄) − ε, for any x ∈ R

m.
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Proof. (⇒) Let x̄ ∈ A be an ε-approximate solution of (SDP). Then f(x) �
f(x̄) − ε, for any x ∈ A. Let h(x) = f(x) − f(x̄) + ε. Then h(x) + δA(x) � 0,
for any x ∈ R

m. Thus we have, from Lemma 2.3,

0 ∈ epi(h + δA)∗ = epih∗ + epiδA
∗

= epif∗ + (0, f(x̄) − ε) + epiδA
∗

and hence (0, ε − f(x̄)) ∈ epif∗ + epiδA
∗. So there exists (u, r) ∈ epif∗ such

that (−u, ε − f(x̄) − r) ∈ epiδA
∗ and hence there exists (u, r) ∈ epif ∗ such that

〈−u, x〉 � ε−f(x̄)−r for any x ∈ A. Since f∗(u) � r, 〈−u, x〉 � ε−f(x̄)−f∗(u)
for any x ∈ A, and hence it follows from Lemma 2.1 that

(
u

−ε + f(x̄) + f∗(u)

)
∈ cl


 ⋃

(Z,δ)∈S×R+

(
F̂ ∗(Z)

−Tr[ZF0] − δ

)
 .

So, there exists (Zn, δn) ∈ S × R+ such that

u = lim
n→∞ F̂ ∗(Zn),

−ε + f(x̄) + f∗(u) = − lim
n→∞

[
Tr[ZnF0] + δn

]
.

This gives

〈u, x〉 − f(x) � f∗(u) = − lim
n→∞

[
Tr[ZnF0] + δn

]
− f(x̄) + ε, for any x ∈ R

m.

Thus we have, for any x ∈ R
n,

f(x̄) − ε � 〈−u, x〉+ f(x)− lim
n→∞

[
Tr[ZnF0] + δn

]

= f(x) − lim
n→∞

〈
F̂ ∗(Zn), x

〉
− lim

n→∞

[
Tr[ZnF0] + δn

]

= f(x) − lim
n→∞

[〈
F̂ ∗(Zn), x

〉
+ Tr[ZnF0] + δn

]

= f(x) − lim
n→∞

[
Tr[ZnF (x)] + δn

]
� f(x) − lim inf

n→∞ Tr[ZnF (x)]− lim inf
n→∞ δn

� f(x) − lim inf
n→∞ Tr[ZnF (x)].

(⇐) Suppose that there exists a sequence {Zn} in S such that
f(x) − lim infn→∞ Tr[ZnF (x)] � f(x̄) − ε, for any x ∈ R

m. Then we have,

f(x) � f(x) − lim inf
n→∞ Tr[ZnF (x)] � f(x̄) − ε,
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for any x ∈ A and hence f(x) � f(x̄)−ε, for any x ∈ A. So x̄ is an ε-approximate
solution of (SDP).

Lemma 4.2. Let x̄ ∈ A. Suppose that
⋃

(Z,δ)∈S×R+

{(
F̂ ∗(Z)

−Tr[ZF0] − δ

)}
is

closed. Then x̄ is an ε-approximate solution of (SDP) if and only if there exists
Z ∈ S such that for any x ∈ R

m,

f(x) − Tr[ZF (x)] � f(x̄) − ε.

Proof. (⇒) Let x̄ be an ε-approximate solution of (SDP). Then with the same
arguments as in proof of Lemma 4.1, we can check there exists u ∈ R

m such that
(

u
−ε + f(x̄) + f∗(u)

)
∈

⋃
(Z,δ)∈S×R+

{(
F̂ ∗(Z)

−Tr[ZF0] − δ

)}
.

Thus there exist (Z, δ) ∈ S × R+ such that

u = F̂ ∗(Z),

−ε + f(x̄) + f∗(u) = −Tr[ZF0] − δ.

This gives
〈
F̂ ∗(Z), x

〉
− f(x) = 〈u, x〉 − f(x) � f∗(u)

= −Tr[ZF0] − δ − f(x̄) + ε,

for any x ∈ R
m. Thus we have, for any x ∈ R

m,

f(x̄) − ε � 〈−u, x〉+ f(x)− Tr[ZF0] − δ

= f(x) −
〈
F̂ ∗(Z), x

〉
− Tr[ZF0] − δ

= f(x) − Tr[ZF (x)] − δ

� f(x) − Tr[ZF (x)].

(⇐) Suppose that there exists Z ∈ S such that

f(x) − Tr[ZF (x)] � f(x̄) − ε,

for any x ∈ R
m. Then we have,

f(x) � f(x)− Tr[ZF (x)] � f(x̄)− ε,
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for any x ∈ A. Thus f(x) � f(x̄)−ε, for any x ∈ A. Hence x̄ is an ε-approximate
solution of (SDP).

Let ε � 0. Consider the following sequential ε-saddle point problem and ε-saddle
point problem:

(SSP)ε Find x̄ ∈ R
m and a sequence {Z̄n} ⊂ S such that

f(x̄) − lim infn→∞ Tr[ZnF (x̄)]− ε � f(x̄) − lim infn→∞ Tr[Z̄nF (x̄)]

� f(x) − lim infn→∞ Tr[Z̄nF (x)] + ε

for any x ∈ R
m and any sequence {Zn} ⊂ S.

(SP)ε Find x̄ ∈ R
m and Z̄ ∈ S such that

f(x̄) − Tr[ZF (x̄)] − ε � f(x̄) − Tr[Z̄F (x̄)] � f(x) − Tr[Z̄F (x)] + ε

for any x ∈ R
m and any Z ∈ S.

Now we give a useful characterization of solution of (SSP)ε.

Lemma 4.3. Suppose that A �= ∅. Let (x̄, Z̄n) ∈ R
m ×S, n = 1, 2, · · · . Then

(x̄, Z̄n) is a solution of (SSP)ε if and only if

f(x̄) − lim inf
n→∞ Tr[Z̄nF (x̄)] � f(x) − lim inf

n→∞ Tr[Z̄nF (x)] + ε

for any x ∈ R
m,

lim inf
n→∞ Tr[Z̄nF (x̄)] � ε

and F (x̄) ∈ S.

Proof. (⇒) Let (x̄, Z̄n) be a solution of (SSP)ε. Then

f(x̄) − lim inf
n→∞ Tr[Z̄nF (x̄)] � f(x) − lim inf

n→∞ Tr[Z̄nF (x)] + ε,

for any x ∈ R
m. Letting Zn = 0 in the first inequality of (SSP)ε , we have

lim infn→∞ Tr[Z̄nF (x̄)] � ε . Now we prove that lim infn→∞ Tr[Z̄nF (x̄)] � 0.
Assume to the contary that lim infn→∞ Tr[Z̄nF (x̄)] < 0.

Then from the first inequality of (SSP)ε , − lim infn→∞ Tr[ZnF (x̄)] − ε �
− lim infn→∞ Tr[Z̄nF (x̄)] , for any Zn ∈ S.
Letting Zn = MZ̄n with M > 0. We have that (1−M) lim infn→∞ Tr[Z̄nF (x̄)] �
ε . Setting M → ∞, this is a contradiction.
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(⇐) Since 0 � lim infn→∞ Tr[Z̄nF (x̄)] � ε and F (x̄) ∈ S , we have, for
any sequence Zn ⊂ S,

f(x̄)− lim inf
n→∞ Tr[Z̄nF (x̄)] � f(x̄) − ε

� f(x̄) − lim inf
n→∞ Tr[ZnF (x̄)]− ε.

Thus (x̄, Z̄n) is a solution of (SSP)ε .

Using Lemmas 4.1 and 4.3, we give a sequential ε-saddle point theorem which
holds between (SDP) and (SSP)ε .

Theorem 4.1. (Sequential ε-Saddle Point Theorem)

(1) If x̄ ∈ A is an ε-approximate solution of (SDP), then there exists a sequence
Z̄n such that (x̄, Z̄n) is a solution of (SSP)ε

(2) If A �= ∅ and (x̄, Z̄n) is a solution of (SSP)ε, then x̄ is an 2ε-approximate
solution of (SDP).

Proof. (1) Let x̄ ∈ A be an ε-approximate solution of (SDP). Then f(x) �
f(x̄) − ε for any x ∈ A. It follows from Lemma 4.1 that there exists a sequence
Z̄n in S such that

(4.1) f(x) − lim inf
n→∞ Tr[Z̄nF (x)] � f(x̄) − ε for any x ∈ R

m.

Since lim infn→∞ Tr[Z̄nF (x̄)] � 0 , we have, for any x ∈ R
m,

f(x)− lim inf
n→∞ Tr[Z̄nF (x)] + ε � f(x̄)− lim inf

n→∞ Tr[Z̄nF (x̄)] .

Letting x = x̄ in (4.1), we have

lim inf
n→∞ Tr[Z̄nF (x̄)] � ε.

Hence it follows from Lemma 4.3 that (x̄, Z̄n) is a solution of (SSP)ε.
(2) Since (x̄, Z̄n) is a solution of (SSP)ε , it follows from Lemma 4.3 that for

any x ∈ A,

f(x) + ε � f(x) − lim inf
n→∞ Tr[Z̄nF (x)] + ε

� f(x̄) − lim inf
n→∞ Tr[Z̄nF (x̄)]

� f(x̄) − ε.
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Hence f(x) + 2ε � f(x̄) for any x ∈ A. By Lemma 4.3, F (x̄) ∈ S, i.e., x̄ ∈ A.
Consequently, x̄ is an 2ε-approximate solution of (SDP).

Example 4.1. Consider the following semidefinite linear program.

(SDLP) minimize x1

subject to


 0 x1 0

x1 x2 0
0 0 x1 + 1


 � 0.

Let f(x1, x2) = x1,

F0 =


0 0 0

0 0 0
0 0 1


 , F1 =


0 1 0

1 0 0
0 0 1


 and F2 =


0 0 0

0 1 0
0 0 0




and ε � 0. Then the feasible set of (SDLP) is {(x1, x2) ∈ R
2 | x1 = 0, x2 � 0}

and the set of all ε-approximate solution is {(x1, x2) ∈ R
2 | x1 = 0, x2 � 0}. Let

(x̄1, x̄2) = (0, 1). Then (x̄1, x̄2) is an ε-approximate solution of (SDLP). Let

Z̄n =


n 1

2 0
1
2

1
n 0

0 0 0


 .

Then for any sequence {Zn} ⊂ S, f(x̄1, x̄2)− lim
n→∞ inf Tr[ZnF (x̄1, x̄2)]− ε � −ε,

f(x̄1, x̄2)− lim
n→∞ inf Tr[Z̄nF (x̄1, x̄2)] = − lim

n→∞ inf 1
n = 0 , and for any (x1, x2) ∈

R
2,

f(x1, x2) − lim
n→∞ inf Tr[Z̄nF (x1, x2)] + ε

= x1 − lim
n→∞ inf(x1 +

1
n

x2) + ε

= ε.

Thus ((x̄1, x̄2), Z̄n) is a solution of (SSP)ε. Hence (1) of Theorem 4.1 holds.

Theorem 4.2. (ε- Saddle Point Theorem) Suppose that
⋃

(Z,δ)∈S×R+{(
F̂ ∗(Z)

−Tr[ZF0]− δ

)}
is closed. If x̄ ∈ A is an ε-approximate solution of (SDP),

then there exists Z̄ ∈ S such that (x̄, Z̄) is a solution of (SP)ε.
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Proof. Let x̄ ∈ A be an ε-approximate solution of (SDP). Then f(x) �
f(x̄) − ε, for any x ∈ A. By Lemma 4.2, there exists Z̄ ∈ S such that

(4.2) f(x)− Tr[Z̄F (x)] � f(x̄) − ε,

for any x ∈ R
m. Since F (x̄) ∈ S and Z̄ ∈ S, Tr[Z̄F (x̄)] � 0 . Thus from (4.2),

f(x)− Tr[Z̄F (x)] + ε � f(x̄)− Tr[Z̄F (x̄)]

for any x ∈ R
m. Letting x = x̄ in (4.2), 0 � Tr[Z̄F (x̄)] � ε. Hence we have,

for any x ∈ R
m and any Z ∈ S,

f(x̄) − Tr[ZF (x̄)]− ε � f(x̄) − Tr[Z̄F (x̄)]

� f(x) − Tr[Z̄F (x)] + ε.

Consequently, (x̄, Z̄) is a solution of (SP)ε.

Example 4.2. Consider the following semidefinite program.

(SDP) minimize x1 + x2
2

subject to
(

0 x1

x1 0

)
� 0.

Let f(x1, x2) = x1 + x2
2,

F0 =
(

0 0
0 0

)
, F1 =

(
0 1
1 0

)
and F2 =

(
0 0
0 0

)
.

Then as shown in Example 3.1,
⋃

(Z,δ)∈S×R+
{
(

F̂ ∗(Z)
−Tr[ZF0] − δ

)
} is closed.

Let ε � 0 and (x̄1, x̄2) = (0,
√

ε). Then (x̄1, x̄2) is an ε-approximate solution

of (SDP). Let f(x1, x2) = x1 + x2
2 and F (x1, x2) =

(
0 x1

x1 0

)
. Then for any

Z ∈ S, f(x̄1, x̄2) − Tr[Z̄F (x̄1, x̄2)] − ε = ε − ε = 0. Let Z̄ =
(

1 1
2

1
2 1

)
. Then

Z̄ ∈ S, f(x̄1, x̄2) − Tr[Z̄F (x1, x2)] + ε = x2
2 + ε. Thus ((x̄1, x̄2), Z̄) is a solution

of (SP)ε. Hence Theorem 4.2 holds.

Theorem 4.3. If (x̄, Z̄) is a solution of (SP)ε, then x̄ is an 2ε-approximate
solution of (SDP).

Proof. Since (x̄, Z̄) is a solution of (SP)ε, we can prove by the similar way in
the proof of Lemma 4.3, that

f(x)− Tr[Z̄F (x)] + ε � f(x̄) − Tr[Z̄F (x̄)]for any x ∈ R
m,



On ε-Approximate Solutions for Convex Semidefinite Optimization Problems 779

Tr[Z̄F (x̄)] � ε and x̄ ∈ A.

Thus we have, for any x ∈ A,

f(x) + ε � f(x) − Tr[Z̄F (x)] + ε

� f(x̄) − Tr[Z̄F (x̄)]

� f(x̄) − ε.

Hence f(x) + 2ε � f(x̄) for any x ∈ A. Consequently, x̄ is an 2ε-approximate
solution of (SDP).

Now we formulate the dual problem (SDD) of (SDP) as follows:

(SDD) Maximize f(x) − Tr[ZF (x)]

subject to 0 ∈ ∂ε0f(x) − F̂ ∗(Z)

Z � 0
ε0 ∈ [0, ε].

We prove ε-weak and ε-strong duality theorems which hold between (SDP) and
(SDD).

Theorem 4.4. (ε-Weak Duality) For any feasible x of (SDP) and any feasible
(y, Z) of (SDD),

f(x) � f(y)− Tr[ZF (y)]− ε.

Proof. Let x and (y, Z) be feasible solutions of (SDP) and (SDD), respectively.
Then Tr[ZF (x)] � 0 and there exists v ∈ ∂ε0f(y) such that v = F̂ ∗(Z). Thus, we
have

f(x) − {f(y)− Tr[ZF (y)]} � 〈v, x− y〉 − ε0 + Tr[ZF (y)]

= 〈F̂ ∗(Z), x− y〉 − ε0 + Tr[ZF (y)]

= Tr[Z(
m∑

i=1

xiFi)] + Tr[ZF0] − ε0

= Tr[ZF (x)]− ε0

� −ε0

� −ε.
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Hence f(x) � f(y) − Tr[ZF (y)] − ε.

Theorem 4.5. (ε-Strong Duality) Suppose that
⋃

(Z,δ)∈S×R+

{(
F̂ ∗(Z)

−Tr[ZF0] − δ

)}

is closed. If x̄ ∈ A is an ε-approximate solution of (SDP), then there exists Z̄ ∈ S
such that (x̄, Z̄) is an 2ε-approximate solution of (SDD).

Proof. Since x̄ is an ε-approximate solution of (SDP). It follows from Theorem
4.2 that there exists Z̄ ∈ S such that (x̄, Z̄) is a solution of (SP)ε. Thus we have,
for any x ∈ R

m and any Z ∈ S,

f(x̄)− Tr[ZF (x̄)]− ε � f(x̄) − Tr[Z̄F (x̄)]

� f(x) − Tr[Z̄F (x)] + ε.

Letting Z = 0 in the first inequality, we have Tr[Z̄F (x̄)] � ε. The second inequality
means that x̄ is an ε-approximate solution of the following problem:

Minimize f(x) − Tr[Z̄F (x)]

subjec to x ∈ R
m

and hence there exists ε0 ∈ [0, ε] such that

0 ∈ ∂ε0f(x̄) − F̂ ∗(Z̄).

So, (x̄, Z̄) is feasible for (SDD). For any feasible (y, Z) of (SDD),

f(x̄) − Tr[Z̄F (x̄)] − {f(y)− Tr[ZF (y)]} � f(x̄) − {f(y)− Tr[ZF (y)]} − ε

� −ε − ε (by ε-weak duality)

= −2ε.

Thus (x̄, Z̄) is an 2ε-approximate solution of (SDD).

Example 4.3. Consider the following semidefinite program.

(SDP) minimize x1 + x2
2

subject to
(

0 x1

x1 0

)
� 0.

Let f(x1, x2) = x1 + x2
2,

F0 =
(

0 0
0 0

)
, F1 =

(
0 1
1 0

)
and F2 =

(
0 0
0 0

)
,
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and ε � 0. Let f(x1, x2) = x1 + x2
2 and F (x1, x2) =

(
0 x1

x1 0

)
. Then A :=

{(0, x2) ∈ R
2 | x2 ∈ R} is the set of all feasible solutions of (SDP) and the

set of all ε-approximate solution is {(x1, x2) ∈ R
2 | x1 = 0, x2 � 0}. Let

F := {((x1, x2), Z) |F̂ ∗(Z) ∈ ∂ε0f(x1, x2), Z � 0, ε0 ∈ [0, ε]}.
Then F is the set of all feasible solution of (SDD). Now we can calculate the

set F .

F =
{(

(x1, x2),
(

a b

b c

))
| F̂ ∗

(
a b

b c

)
∈ {1} × [2x2 − 2

√
ε0, 2x2 + 2

√
ε0],

a � 0, c � 0, b2 � ac, ε0 ∈ [0, ε]
}

=
{(

(x1, x2),
(

a 1
2

1
2 c

))
| F̂ ∗

(
a 1

2
1
2 c

)
∈ {1} × [2x2 − 2

√
ε0, 2x2 + 2

√
ε0],

a � 0, c � 0, b2 � ac, ε0 ∈ [0, ε]
}

=
{(

(x1, x2),
(

a 1
2

1
2 c

))
| (1, 0) ∈ {1} × [2x2 − 2

√
ε0, 2x2 + 2

√
ε0],

a � 0, c � 0, b2 � ac, ε0 ∈ [0, ε]
}

=
{(

(x1, x2),
(

a 1
2

1
2 c

))
| 0 ∈ [2x2 − 2

√
ε0, 2x2 + 2

√
ε0],

a � 0, c � 0, b2 � ac, ε0 ∈ [0, ε]
}

=
{(

(x1, x2),
(

a 1
2

1
2 c

))
| x1 ∈ R,−√

ε � x2 �
√

ε, a � 0, c � 0,
1
4

� ac
}

For any (x1, x2) ∈ Ax1 + x2
2. and any

(
(x1, x2),

(
a 1

2
1
2 c

))
∈ F,

f(y1, y2)−Tr[
(

a 1
2

1
2 c

)
F (y1, y2)]−ε = y1 +y2

2 −y1−ε = y2
2 −ε � 0 � f(x1, x2).

Hence Theorem 4.4 (ε-weak daulity) for this example holds.

Let (x̄1, x̄2) ∈ A is an ε-approximate solution of (SDP). For any (x1, x2) ∈ A
and any Z ∈ S, Tr[ZF (x)] = 0. So from arguments, in Example 3.1, there exists
Z̄ ∈ S and ε0 ∈ [0, ε] such that F̂ ∗(Z) ∈ ∂ε0f(x̄1, x̄2), that is, there exists Z̄ ∈ S
such that ((x̄1, x̄2), Z̄) ∈ F and hence by weak duality, ((x̄1, x̄2), Z̄) is an ε-
approximate solution of (SDD).

So Strong duality (Theorem 4.5) holds.
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