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NONLINEAR (A, η)-MONOTONE OPERATOR INCLUSION
SYSTEMS INVOLVING NON-MONOTONE SET-VALUED MAPPINGS

Heng-you Lan, Jung Im Kang and Yeol Je Cho

Abstract. In this paper, we introduce a new concept of (A, η)-monotone
operators, which generalizes the (H, η)-monotonicity and A-monotonicity in
Hilbert spaces and other existing monotone operators as special cases. We
study some properties of (A, η)-monotone operators and define the resolvent
operators associated with (A, η)-monotone operators. Further, by using the
new resolvent operator technique, we construct some new iterative algorithms
for solving a new class of nonlinear (A, η)-monotone operator inclusion sys-
tems involving non-monotone set-valued mappings in Hilbert spaces. We also
prove the existence of solutions for the nonlinear operator inclusion systems
and the convergence of iterative sequences generated by the algorithm. Our
results improve and generalize the corresponding results of recent works.

1. INTRODUCTION

It is well known that some systems of variational inequalities, variational inclu-
sions, complementarity problems and equilibrium problems have been studied by
some authors in recent years because of their close relations to Nash equilibrium
problems. Huang and Fang [1] introduced a system of order complementarity prob-
lems and established some existence results for these using fixed point theory. Verma
[2] introduced and studied some systems of variational inequalities and developed
some iterative algorithms for approximating the solutions of systems of variational
inequalities. Cho et al. [3] introduced and studied a new system of nonlinear vari-
ational inequalities in Hilbert spaces. They proved some existence and uniqueness
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theorems of solutions for the system of nonlinear variational inequalities. They also
constructed an iterative algorithm for approximating the solution of the system of
nonlinear variational inequalities. For some more related works, we refer to [1,
4-7].

Furthermore, Fang Huang [8], Yan et al. [9] and Fang et al. [10] introduced and
studied some new systems of variational inclusions involving H-monotone opera-
tors and (H, η)-monotone operators in Hilbert space. Using the resolvent operator
associated with H-monotone operators or (H, η)- monotone operators, the authors
prove the existence and uniqueness of solutions for the new systems of variational
inclusions and constructed some new algorithms for approximating the solutions of
the systems and discuss the convergence of the iterative sequences generated by the
algorithms.

On the other hand, Verma [11] announced the notion of the A-monotone map-
pings and its applications to the solvability of systems of nonlinear variational in-
clusions. As Verma pointed out, “the class of the A-monotone mappings generalizes
the H-monotonicity. On the top of that, A-monotonicity originates from hemivaria-
tional inequalities and emerges as a major contributor to the solvability of nonlinear
variational problems on nonconvex settings”. As a matter of fact, some nice ex-
amples on A-monotone (or generalized maximal monotone) mappings can be found
in Naniewicz and Panagiotopoulos [12] and Verma [13]. Hemivariational inequal-
ities, which initiated and developed by Panagiotopoulos [14], are connected with
nonconvex energy functions and turned out to be useful tools proving the existence
of solutions of nonconvex constrained problems. We note that the A-monotonicity
is defined in terms of relaxed monotone mappings - a more general notion than
the monotonicity or strong monotonicity - which gives a significant edge over the
H-monotonicity.

Very recently, Lan et al. [15] introduced and studied a new system of nonlin-
ear A-monotone multivalued variational inclusions in Hilbert spaces. By using the
concept and properties of A-monotone mappings and the resolvent operator tech-
nique associated with A-monotone mappings due to Verma, the authors constructed
a new iterative algorithm for solving the system of nonlinear multivalued variational
inclusions associated with A-monotone mappings in Hilbert spaces and proved the
existence of solutions for the nonlinear multivalued variational inclusions and the
convergence of iterative sequences generated by the algorithms.

Inspired and motivated by the above works, the purpose of this paper is to in-
troduce a new concept of (A, η)-monotone operators, which generalizes the (H, η)-
monotonicity and A-monotonicity in Hilbert spaces and other some monotone op-
erators as special cases. We study some properties of (A, η)-monotone operators
and define resolvent operators associated with (A, η)-monotone operators. Then,
by using the new resolvent operator technique, we construct some new iterative
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algorithms for solving a new class of systems of nonlinear (A, η)-monotone opera-
tor inclusions involving non-monotone set-valued mappings in Hilbert spaces. We
also prove the existence of solutions for the nonlinear operator inclusion systems
and the convergence of iterative sequences generated by the algorithms. Our results
improve and generalize the corresponding results of [2-4, 8-10, 13, 15] and other
recent works.

2. PRELIMINARIES

Let X be a real Hilbert space endowed with a norm ‖ · ‖ and an inner product
〈·, ·〉, 2X denote the family of all the nonempty subsets of X and C(X ) the collection
of all closed subsets of X . If M : X → 2X is a set-valued mapping, then we denote
the effective domain Dom(M) of M as Dom(M) = {x ∈ X : M(x) �= ∅}.

In the sequel, let us recall some concepts and lemmas.

Definition 2.1. Let T, A : X → X be two single-valued operators. Then T is
said to be

(i) monotone if
〈T (x)− T (y), x− y〉 ≥ 0, ∀x, y ∈ X ;

(ii) strictly monotone if, T is monotone and

〈T (x)− T (y), x− y〉 = 0

if and only if x = y;
(iii) r-strongly monotone if there exists a constant r > 0 such that

〈T (x)− T (y), x− y〉 ≥ r‖x − y‖2, ∀x, y ∈ X ;

(iv) γ-strongly monotone with respect to A if there exists a constant γ > 0 such
that

〈T (x)− T (y), A(x)− A(y)〉 ≥ γ‖x− y‖2, ∀x, y ∈ X ;

(v) σ-cocoercive with respect to A if there exists a constant σ > 0 such that

〈T (x)− T (y), A(x)− A(y)〉 ≥ σ‖T (x)− T (y)‖2, ∀x, y ∈ X ;

(vi) m-relaxed cocoercive with respect to A if there exists a constant m > 0 such
that

〈T (x)− T (y), A(x)− A(y)〉 ≥ −m‖T (x)− T (y)‖2, ∀x, y ∈ X ;
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(vii) (α, ε)-relaxed cocoercive with respect to A if there exist constants α, ε > 0
such that

〈T (x)−T (y), A(x)−A(y)〉 ≥ −α‖T (x)−T (y)‖2+ε‖x−y‖2, ∀x, y ∈ X ;

(viii) s-Lipschitz continuous if there exists a constant s > 0 such that

‖T (x)− T (y)‖ ≤ s‖x − y‖, ∀x, y ∈ X .

Example 2.1. Let T : X → X be a nonexpansive mapping. Then I − T is
1
2 -cocoercive and γ-relaxed cocoercive with respect to I for 1

2 > −γ , where γ > 0.

Proof. For any two elements x, y ∈ X , we have

‖(I−T )(x)−(I−T )(y)‖2 = 〈(I−T )(x)−(I−T )(y), (I−T )(x)−(I−T )(y)〉

≤ 2[‖x−y‖2−〈x−y, T (x)−T (y)〉]

= 2〈x−y, (I−T )(x)−(I−T)(y)〉,

i.e.

〈(I − T )(x)− (I − T )(y), x− y〉 ≥ 1
2
‖(I − T )(x)− (I − T )(y)‖2

≥ −γ‖(I − T )(x)− (I − T )(y)‖2.

Therefore, I − T is (1
2)-cocoercive and γ-relaxed cocoercive with respect to I for

1
2 > −γ .

Example 2.2. Let T : X → X be an r-strongly monotone (and hence r-
expanding) mapping. Then T is (1, r + r2)-relaxed cocoercive with respect to I .

Proof. For any two elements x, y ∈ X , we have

‖T (x)− T (y)‖ ≥ r‖x − y‖,
〈T (x)− T (y), x− y〉 ≥ r‖x− y‖2,

and so

‖T (x)− T (y)‖2 + 〈T (x)− T (y), x− y〉 ≥ (r + r2)‖x− y‖2,

i.e., for all x, y ∈ X , we get

〈T (x)− T (y), x− y〉 ≥ (−1)‖T (x)− T (y)‖2 + (r + r2)‖x − y‖2.
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Therefore, T is (r + r2, 1)-relaxed cocoercive with respect to I .

Definition 2.2. A single-valued operator η : X × X → X is said to be
τ -Lipschitz continuous if there exists a constant τ > 0 such that

‖η(x, y)‖ ≤ τ‖x − y‖, ∀x, y ∈ X .

Definition 2.3. Let η : X × X → X and A, H : X → X be single-valued
operators. Then set-valued operator M : X → 2X is said to be

(i) ζ-H-Lipschitz continuous, if there exists a constant ζ > 0 such that

H(M(x), M(y)) ≤ ζ‖x − y‖, ∀x, y ∈ X ,

where H : 2X ×2X → (−∞, +∞)∪{+∞} is the Hausdorff pseudo-metric,
i.e.,

H(D, B) = max{sup
x∈D

inf
y∈B

‖x − y‖, sup
x∈B

inf
y∈D

‖x− y‖}, ∀D, B ∈ 2X .

Note that if the domain of H is restricted to closed subsets C(X ), then H is
the Hausdorff metric.

(ii) monotone if

〈u − v, x− y〉 ≥ 0, ∀x, y ∈ X , u ∈ M(x), v ∈ M(y);

(iii) η-monotone if

〈u − v, η(x, y)〉 ≥ 0, ∀x, y ∈ X , u ∈ M(x), v ∈ M(y);

(iv) strictly η-monotone if M is η-monotone and equality holds if and only if
x = y;

(v) r-strongly η-monotone if there exists a constant r > 0 such that

〈u − v, η(x, y)〉 ≥ r‖x − y‖2, ∀x, y ∈ X , u ∈ M(x), v ∈ M(y);

(vi) α-relaxed η-monotone if there exists a constant α > 0 such that

〈u− v, η(x, y)〉 ≥ −α‖x − y‖2, ∀x, y ∈ X , u ∈ M(x), v ∈ M(y);

(vii) maximal monotone if and only if M is monotone and for every x ∈ Dom(M)
and u ∈ E such that

〈u − v, x− y〉 ≥ 0, ∀y ∈ Dom(M), v ∈ M(y)

implies u ∈ M(x);
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(viii) maximal η-monotone if M is η-monotone and (I + ρM)(X ) = X for all
ρ > 0;

(ix) H-monotone if M is monotone and (H + ρM)(X ) = X for all ρ > 0;

(x) A-monotone with constant m if M is m-relaxed monotone and A + λM is
maximal monotone for all λ > 0.

(xi) (H, η)-monotone if M is η-monotone and (H + ρM)(X ) = X for every
ρ > 0.

Remark 2.1. (1) If η(x, y) = x−y for all x, y ∈ X , then the (H, η)-monotone
operator reduces to an H-monotone operator, which was first introduced by Fang
and Huang [16].

(2) Obviously, if m = 0, that is, M is 0-relaxed monotone, then the A-monotone
operator reduces to an H-monotone operator. Therefore, the class of A-monotone
mappings provides a unifying framework for classes of maximal monotone operators
and H-monotone operators. For details about these operators, we refer the reader
to [8, 9, 11, 15, 17, 18] and the references therein.

Example 2.3. [17, Theorem 5.1] Let X be a reflexive Banach space with
X ∗ its dual, and A : X → X ∗ be m − strongly monotone and B : X → X∗

be c-Lipschitz continuous. Let f : X → R be locally Lipschitz such that ∂f is
α-relaxed monotone. Then ∂f is (A − B)-monotone.

3. (A, η)-MONOTONE OPERATORS AND RESOLVENT OPERATORS

Definition 3.1. Let A : X → X , η : X × X → X be two single-valued
operators. Then a set-valued operator M : X → 2X is called (A, η)-monotone with
m if M is m-relaxed η-monotone and (A + ρM)(X ) = X for every ρ > 0.

Remark 3.1.

(1) If m = 0, then Definition 3.1 reduces to the definition of (H, η)-monotone
operators [10].

(2) When m = 0 and η(x, y) = x − y for all x, y ∈ X , Definition 3.1 reduces
to the definition of H-monotone operators [16], which includes many known
monotone operators as special cases (see, for example, [8, 9, 16, 18, 19] and
the references therein).

(3) When η(x, y) = x−y for all x, y ∈ X , Definition 3.1 reduces to the definition
of A-monotone operators [11, 15, 17].
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Theorem 3.1. Let A : X → X be an r-strongly η-monotone operator, M :
X → 2X be an (A, η)-monotone operator with m, and x, u ∈ X be given points.
If 〈u − v, η(x, y)〉 ≥ 0 holds for all (y, v) ∈ Graph (M), where Graph(M) =
{(a, b) ∈ X ×X : b ∈ M(a)}, then (x, u) ∈ Graph (M).

Proof. Since M is (A, η)-monotone with m, (A + ρM)(X ) = X holds for
every ρ > 0. Then there exists (x0, u0) ∈ Graph(M) such that

(3.1) A(x0) + ρu0 = A(x) + ρu.

Since M is m-relaxed η-monotone and A is r-strongly η-monotone, we have

−m‖x−x0‖2 ≤ ρ〈u−u0, η(x, x0)〉 = −〈A(x)−A(x0), η(x, x0)〉 ≤ −r‖x−x0‖2.

This implies that x = x0. From (3.1), we know that u = u0. Thus (x, u) ∈
Graph(M).

Remark 3.2. Theorem 3.1 generalizes and improves Proposition 2.1 of [16].

Theorem 3.2. Let A : X → X be an r-strongly η-monotone operator, M :
X → 2X be an (A, η)-monotone operator with m. Then the operator (A+ρM)−1

is single-valued.

Proof. For any given z ∈ X , and x, y ∈ (A + ρM)−1(z), it follows that
−A(x)+z ∈ ρM(x) and −A(y)+z ∈ ρM(y). Since M is m-relaxed η-monotone
and A is r-strongly η-monotone,

−m‖x − y‖2 ≤ 〈(−A(x) + z) − (−A(y) + z), η(x, y)〉
= −〈A(x)− A(y), η(x, y)〉 ≤ −r‖x − y‖2.

This implies that x = y. Thus (A + ρM)−1 is single-valued.

Remark 3.3. Theorem 3.2 generalizes and improves Theorem 2.1 of [16] and
Lemma 2.1 of [10], respectively.

Based on Theorem 3.2, we can define the resolvent operator Jρ,A
η,M associated

with an (A, η)-monotone operator M as follows:

Definition 3.2. Let A : X → X be a strictly η-monotone operator and M :
X → 2X be an (A, η)-monotone operator with constant m. The resolvent operator
Jρ,A

η,M : X → X is defined by

(3.2) Jρ,A
η,M (x) = (A + ρM)−1(x), ∀x ∈ X .
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Remark 3.4. The resolvent operators associated with (A, η)-monotone op-
erators include as special cases the corresponding resolvent operators associated
with (H, η)-monotone operators [10], H-monotone operators [16] and A-monotone
operators [11].

Theorem 3.3. Let η : X × X → X be τ -Lipschitz continuous, A : X → X
be a r-strongly η-monotone operator and M : X → 2X be an (A, η)-monotone
operator with m. Then the resolvent operator J ρ,A

η,M : X → X is τ
r−ρm -Lipschitz

continuous, i.e.,

‖Jρ,A
η,M (x)− Jρ,A

η,M (y)‖ ≤ τ

r − ρm
‖x − y‖, ∀x, y ∈ X ,

where ρ ∈ (0, r
m) is a constant.

Proof. For given x, y ∈ X , from (3.2), we have

Jρ,A
η,M (x) = (A + ρM)−1(x)

and
Jρ,A

η,M(y) = (A + ρM)−1(y).

It follows that
1
ρ
(x− A(Jρ,A

η,M(x))) ∈ M(Jρ,A
η,M(x))

and
1
ρ
(y − A(Jρ,A

η,M(y))) ∈ M(Jρ,A
η,M(y)).

Since M is m-relaxed η-monotone, we get

−m‖Jρ,A
η,M(x) − Jρ,A

η,M (y)‖2

≤ 1
ρ
〈x − A(Jρ,A

η,M(x))− (y − A(Jρ,A
η,M (y))), η(Jρ,A

η,M(y), Jρ,A
η,M(y))〉

=
1
ρ
〈x − y − (A(Jρ,A

η,M(x))− A(Jρ,A
η,M (y))), η(Jρ,A

η,M(x), Jρ,A
η,M(y))〉.

It follows that

τ‖x − y‖ · ‖Jρ,A
η,M(x)− Jρ,A

η,M(y)‖

≥ ‖x − y‖ · ‖η(Jρ,A
η,M(x), Jρ,A

η,M(y))‖
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≥ 〈x− y, η(Jρ,A
η,M(x), Jρ,A

η,M(y))〉

≥ 〈A(Jρ,A
η,M(x))− A(Jρ,A

η,M(y)), η(Jρ,A
η,M(x), Jρ,A

η,M(y))〉

−ρm‖Jρ,A
η,M(x)− J

ρ,A
η,M(y)‖2

≥ (r − ρm)‖Jρ,A
η,M(x)− J

ρ,A
η,M(y)‖2.

Therefore,

‖Jρ,A
η,M(x)−Jρ,A

η,M(y)‖ ≤ τ

r − ρm
‖x−y‖, ∀x, y ∈ X .

Remark 3.5. Theorem 3.3 extends Lemma 2 of [17], Theorem 2.2 of [16] and
Lemma 2.2 of [10].

4. VARIATIONAL INCLUSION SYSTEMS AND ITERATIVE ALGORITHMS

In this section, we shall introduce a new system of nonlinear (A, η)-monotone
operator inclusions involving non-monotone set-valued mappings and construct a
new iterative algorithm for solving this kind of system of nonlinear operator inclu-
sions in Hilbert spaces.

Let X1 and X2 be two real Hilbert spaces, S : X1×X2 → X1, T : X1×X2 → X2,
p : X1 → X1, q : X2 → X2, η1 : X1 × X1 → X1 and η2 : X2 × X2 → X2 be
single-valued operators, E : X1 → 2X1 , F : X2 → 2X2 be any two non-monotone
set-valued mappings. Let A1 : X1 → X1, A2 : X2 → X2, M : X1×X1 → 2X1 and
N : X2×X2 → 2X2 be any nonlinear mappings such that M(·, a) : X1 → 2X1 is an
(A1, η1)-monotone operator for all a ∈ X1 and N (·, b) : X2 → 2X2 is an (A2, η2)-
monotone operator for all b ∈ X2, f : X1 → X1, g : X2 → X2 be nonlinear
mappings with (f(X1),X1) ∩ Dom(M) �= ∅ and (g(X2),X2) ∩ Dom(N ) �= ∅,
respectively. Then the problem of finding (a, b) ∈ X1 × X2, u ∈ E(a), v ∈ F (b)
such that

(4.1)

{
0 ∈ S(p(a), v)+ M(f(a), a),

0 ∈ T (u, q(b)) + N (g(b), b)

is called a nonlinear (A, η)-monotone operator inclusion system involving non-
monotone set-valued mappings.

Some special cases of the problem (4.1) are as follows:
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(1) If M(a, b) = M(a) for all (a, b) ∈ X1 × X1 and N (x, y) = N (x) for
all (x, y) ∈ X2 × X2, then the problem (4.1) reduces to the following generalized
system of set-valued variational inclusion problem:

(4.2)

{
0 ∈ S(p(a), v)+ M(f(a)),

0 ∈ T (u, q(b)) + N (g(b)),

which is studied by Lan et al. [15] when M, N are A-monotone mappings.
(2) If p = q = f = g ≡ I , the identity mapping, then the problem (4.2) is

equivalent to the following system of set-valued variational inclusion problem:
Find (a, b) ∈ X1 × X2, u ∈ E(a), v ∈ F (b) such that

(4.3)

{
0 ∈ S(a, v)+ M(a),

0 ∈ T (u, b) + N (b),

which is considered by Huang and Fang [1].
(3) If E : X1 → X1 and F : X2 → X2 are two single-valued mappings, then the

problem (4.3) collapses to the following system of nonlinear variational inclusion
problem: find (a, b) ∈ X1 ×X2 such that

(4.4)

{
0 ∈ S(a, F (b)) + M(a),

0 ∈ T (E(a), b)+ N (b),

which is studied by Verma [11] and Fang et al. [10] with E = F = I .
(4) If M(x) = ∂φ(x) and N (y) = ∂ϕ(y) for all x ∈ X1 and y ∈ X2, where

φ : X1 → R ∪ {+∞} and ϕ : X2 → R ∪ {+∞} are two proper, convex and lower
semi-continuous functionals, and ∂φ and ∂ϕ denote the subdifferential operators of
φ and ϕ, respectively, then the problem (4.4) reduces to the following problem: find
(x, y) ∈ X1 × X2 such that

(4.5)

{ 〈S(a, F (b)), x− a〉 + φ(x)− φ(a) ≥ 0, ∀x ∈ X1,

〈T (E(x), y), y− b〉+ φ(y)− φ(b) ≥ 0, ∀y ∈ X2,

which is called a system of nonlinear mixed variational inequalities. Some special
cases of the problem (4.5) can be found in [7].

(5) Further, if E = F ≡ I , then the problem (4.5) reduces to the system of
nonlinear variational inequalities problem considered by Cho et al. [3].

(6) If M(x) = ∂δK1(x) and N (y) = ∂δK2(y) for all x ∈ K1 and y ∈ K2,
where K1 and K2, respectively, are nonempty closed convex subsets of X1 and X2,
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and ∂δK1 and ∂δK2 denote indicator functions of K1 and K2, respectively, then the
problem (4.5) becomes to determining an element (a, b) ∈ K1 × K2 such that

(4.6)

{ 〈S(a, F (b)), x− a〉 ≥ 0, ∀x ∈ K1,

〈T (E(a), b), y− b〉 ≥ 0, ∀y ∈ K2,

which is just the problem in [5] when E and F are single-valued and E = F ≡ I .
(7) If X1 = X2 = X , K1 = K2 = K , S(x, F (y)) = ρF (y) + x − y and

T (E(x), y) = λE(x) + y − x for all x, y ∈ X , where ρ > 0 and λ > 0 are two
constants, then the problem (4.6) is equivalent to finding an element (x, y) ∈ K×K

such that

(4.7)

{ 〈ρF (b) + a − b, x− a〉 ≥ 0, ∀x ∈ K,

〈λE(a) + b − a, y − b〉 ≥ 0, ∀y ∈ K,

which is the system of nonlinear variational inequalities considered by Verma [7]
with E = F .

(8) If x = y, E = F and ρ = λ, then the problem (4.7) reduces to the following
classical nonlinear variational inequality problem: find an element a ∈ K such that

〈F (a), z − a〉 ≥ 0, ∀z ∈ K.

Lemma 4.1. Let X1 and X2 be two real Hilbert spaces. Suppose that A 1 :
X1 → X1 and A2 : X2 → X2 are strictly η-monotone, M(·, t) : X1 → 2X1 is
(A1, η1)-monotone for all t ∈ X1 and N (·, ω) : X2 → 2X2 is (A2, η2)-monotone
for all ω ∈ X2. Let S : X1 × X2 → X1 and T : X1 × X2 → X2 be any two
single-valued mappings, p, f : X1 → X1 and q, g : X2 → X2 be any nonlinear
mappings with (f(X1),X1) ∩ Dom(M) �= ∅ and (g(X2),X2) ∩ Dom(N ) �= ∅,
respectively, and E : X1 → 2X1 , F : X2 → 2X2 be any two set-valued mappings.
Then a given element (a, b, u, v) ∈ X1 × X2 is a solution to the problem (4.1) if
and only if (a, b, u, v) satisfies

(4.8)




f(a) = Jρ,A1

η1,M (·,a)(A1(f(a))− ρS(p(a), v)),

g(b) = Jλ,A2

η2,N(·,b)(A2(g(b))− λT (u, q(b))),

where ρ > 0 and λ > 0 are two constants.
Remark 4.1. The equality (4.8) can be written as


a = a − f(a) + Jρ,A1

η1,M (·,a)
(A1(f(a))− ρS(p(a), v)),

b = b − g(b) + Jλ,A2

η2,N(·,b)(A2(g(b))− λT (u, q(b))),
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where ρ, λ > 0 are constants. This fixed point formulation enables us to suggest
the following iterative algorithm.

Algorithm 4.1. Assume that X1, X2, A1, A2, η1, η2, M , N , S, T , p, f , q, g,
E and F are the same as in the problem (4.1). For any given (a0, b0) ∈ X1 × X2,
we choose u0 ∈ E(a0), v0 ∈ F (b0) and let


a1 = a0 − f(a0) + Jρ,A1

η1,M (·,a0)
(A1(f(a0))− ρS(p(a0), v0)) + d0,

b1 = b0 − g(b0) + Jλ,A2

η2,N(·,b0)(A2(g(b0)) − λT (u0, q(b0))) + e0.

Since u0 ∈ E(a0) and v0 ∈ F (b0), for any a1 ∈ X1, b1 ∈ X2, by Nadler [20], there
exist u1 ∈ E(a1), v1 ∈ F (b1) such that{ ‖u0 − u1‖ ≤ (1 + 1)H1(E(a0), E(a1)),

‖v0 − v1‖ ≤ (1 + 1)H2(F (b0), F (b1)).

Let 


a2 = a1 − f(a1) + Jρ,A1

η1,M (·,a1)
(A1(f(a1))− ρS(p(a1), v1)) + d1,

b2 = y1 − g(b1) + J
λ,A2

η2,N(·,b1)(A2(g(b1)) − λT (u1, q(b1))) + e1.

Continuing this way, we can obtain sequences {an}, {bn} satisfying

(4.9)




an+1 = an − f(an) + Jρ,A1

η1,M (·,an)
(A1(f(an))− ρS(p(an), vn)) + dn,

bn+1 = bn − g(bn) + Jλ,A2

η2,N(·,bn)(A2(g(bn)) − λT (un, q(bn))) + en,

and choose un+1 ∈ E(an+1) and vn+1 ∈ F (bn+1) such that

(4.10)

{ ‖un − un+1‖ ≤ (1 + (n + 1)−1)H1(E(an), E(an+1)),

‖vn − vn+1‖ ≤ (1 + (n + 1)−1)H2(F (bn), F (bn+1)), ∀n ≥ 0,

where ρ, λ > 0 are constants, dn ∈ X1, en ∈ X2 (n ≥ 0) are errors to take into
account a possible inexact computation of the resolvent operator point and Hi(·, ·)
is the Hausdorff pseudo-metric on 2Xi for i = 1, 2.

Remark 4.2. If we choose suitable dn, en, A1, A2, η1, η2, M , N , S, T ,
p, f , q, g, E , F and X1, X2, then Algorithm 4.1 can be degenerated to a number
of algorithms involving many known algorithms which due to classes of variational
inequalities, complementarity problems, and variational inclusions (see, for example,
[1-4, 7-9, 11, 13-16]).
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5. EXISTENCE AND CONVERGENCE THEOREMS

In this section, we will prove the existence of solutions for problem (4.1) and
the convergence of iterative sequences generated by Algorithm 4.1.

Theorem 5.1. Let X1 and X2 be two real Hilbert spaces. Suppose that A 1 :
X1 → X1 is r1-strongly η-monotone and α1-Lipschitz continuous, and A2 : X2 →
X2 is r2-strongly η-monotone and α2-Lipschitz continuous, M(·, t) : X1 → 2X1

is (A1, η1)-monotone with constant m1 for all t ∈ X1 and N (·, z) : X2 → 2X2

is (A2, η2)-monotone with constant m2 for all z ∈ X2, S : X1 × X2 → X1 is a
single-valued mapping such that S(·, y) is (γ, r)-relaxed cocoercive with respect
to f1 and σ-Lipschitz continuous in the first variable and S(x, ·) is �-Lipschitz
continuous in the second variable for all (x, y) ∈ X 1 × X2, T : X1 × X2 → X2

is a nonlinear mapping such that T (x, ·) is (δ, s)-relaxed cocoercive with respect
to g2 and β-Lipschitz continuous in the second variable and T (·, y) is ι-Lipschitz
continuous in the first variable for all (x, y) ∈ X 1 × X2, where f1 : X1 → X1 is
defined by f1(x) = A1 ◦ f(x) = A1(f(x)) for all x ∈ X1 and g2 : X2 → X2 is
defined by g2(x) = A2 ◦ g(x) = A2(g(x)) for all x ∈ X2. Let η1 : X1 × X1 →
X1 be τ1-Lipschitz continuous, η2 : X2 × X2 → X2 be τ2-Lipschitz continuous,
p : X1 → X1 be κ-Lipschitz continuous, q : X2 → X2 be ς-Lipschitz continuous,
f : X1 → X1 be π-strongly monotone and ε-Lipschitz continuous, g : X 2 → X2

be �-strongly monotone and ε-Lipschitz continuous, E : X 1 → C(X1) be ξ-
H1-Lipschitz continuous, F : X2 → C(X2) be ζ-H2-Lipschitz continuous. If, in
addition, there exist positive constants ρ and λ such that

(5.1) ‖Jρ,A1

η1,M (·,x)
(t) − Jρ,A1

η1,M (·,y)
(t)‖ ≤ µ‖x − y‖, ∀x, y, t ∈ X1,

(5.2) ‖Jλ,A2

η2,N(·,x)
(t) − Jλ,A2

η2,N(·,y)
(t)‖ ≤ ν‖x − y‖, ∀x, y, t ∈ X2,

(5.3)




k1 = µ +
√

1 − 2π + ε2 +
τ1

√
α2

1ε
2 − 2ρr + 2ργκ2 + ρ2σ2κ2

r1 − ρm1
< 1,

k2 = ν +
√

1 − 2� + ε2 +
τ2

√
α2

2ε
2 − 2λs + 2λδς2 + λ2β2ς2

r2 − λm2
< 1,

ρ < min{ r1

m1
,

r1(1−k2)
τ1ζ�+m1(1−k2)

}, λ < min{ r2

m2
,

r2(1−k1)
τ2ξι+m2(1−k1)

},
∞∑
i=1

‖di − di−1‖ k−i < ∞,

∞∑
i=1

‖ei − ei−1‖ k−i < ∞, ∀k ∈ (0, 1),

lim
n→∞ dn = lim

n→∞ en = 0,
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then the iterative sequences {an}, {bn}, {un} and {vn} generated by Algorithm 4.1
converge strongly to a∗, b∗, u∗ and v∗, respectively, and (a∗, b∗, u∗, v∗) is a solution
of the system of nonlinear set-valued variational inclusion problem (4.1).

Proof. It follows from (4.9), (5.1) and Theorem 3.3 that

‖an+1 − an‖
= ‖an − f(an) + J

ρ,A1

η1,M (·,an)(A1(f(an))− ρS(p(an), vn)) + dn

−{an−1 − f(an−1)

+J
ρ,A1

η1,M (·,an−1)
(A1(f(an−1))− ρS(p(an−1), vn−1)) + dn−1}‖

≤ ‖an − an−1 − (f(an) − f(an−1))‖
+‖Jρ,A1

η1,M (·,an)(A1(f(an))− ρS(p(an), vn))

−Jρ,A1

η1,M (·,an−1)
(A1(f(an))− ρS(p(an), vn))‖

+‖Jρ,A1

η1,M (·,an−1)
(A1(f(an))− ρS(p(an), vn))

−Jρ,A1

η1,M (·,an−1)
(A1(f(an−1))− ρS(p(an−1), vn−1))‖+ ‖dn − dn−1‖

≤ ‖an − an−1 − (f(an) − f(an−1))‖+ µ‖an − an−1‖

+ τ1
r1−ρm1

‖A1(f(an))− A1(f(an−1))− ρ[S(p(an), vn) − S(p(an−1), vn)]‖

+ ρτ1
r1−ρm1

‖S(p(an−1), vn)− S(p(an−1), vn−1)‖+ ‖dn − dn−1‖.

Since f is π-strongly monotone and ε-Lipschitz continuous, F is ζ-H2-Lipschitz
continuous, A1 is α1-Lipschitz continuous, p is κ-Lipschitz continuous and S(·, y)
is (γ, r)-relaxed cocoercive with respect to f1 and σ-Lipschitz continuous in the
first variable and S(x, ·) is �-Lipschitz continuous in the second variable for all
(x, y) ∈ X1 × X2, from (4.10) we get

(5.5)

‖an − an−1 − (f(an) − f(an−1))‖2

= ‖an−an−1‖2−2〈an−an−1, f(an)−f(an−1)〉+‖f(an)−f(an−1)‖2

≤ (1− 2π + ε2)‖an − an−1‖2,

(5.6)

‖S(p(an−1), vn) − S(p(an−1), vn−1)‖
≤ �‖vn − vn−1‖ ≤ �(1 + n−1)H2(F (bn), F (bn−1))

≤ ζ�(1 + n−1)‖bn − bn−1‖
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and

(5.7)

‖A1(f(an))− A1(f(an−1)) − ρ[S(p(an), vn) − S(p(an−1), vn)]‖2

=‖A1(f(an))−A1(f(an−1))‖2+ρ2‖S(p(an), vn)−S(p(an−1), vn)‖2

−2ρ〈S(p(an), vn) − S(p(an−1), vn), A1(f(an))− A1(f(an−1))〉
≤ α2

1‖f(an) − f(an−1)‖2 + ρ2σ2‖p(an)− p(an−1)‖2

−2ρ[−γ‖p(an) − p(an−1)‖2 + r‖an − an−1‖2]

≤ (α2
1ε

2 − 2ρr + 2ργκ2 + ρ2σ2κ2)‖an − an−1‖2.

From (5.4)-(5.7), we have

(5.8)

‖an+1 − an‖
≤ [µ +

√
1 − 2π + ε2

+
τ1

r1 − ρm1

√
α2

1ε
2 − 2ρr + 2ργκ2 + ρ2σ2κ2]‖an − an−1‖

+
ρτ1ζ�

r1 − ρm1
(1 + n−1)‖bn − bn−1‖ + ‖dn − dn−1‖

v = k1‖an − an−1‖+ θn‖bn − bn−1‖ + ‖dn − dn−1‖,

where

k1 = µ +
√

1 − 2π + ε2 +
τ1

√
α2

1ε
2 − 2ρr + 2ργκ2 + ρ2σ2κ2

r1 − ρm1
,

θn =
ρτ1ζ�

r1 − ρm1
(1 + n−1).

Similarly, by the assumptions of g, E, A2, q, T (·, ·), we can obtain

(5.9)

c‖bn − bn−1 − (g(bn) − g(bn−1))‖2 ≤ (1− 2� + ε2)‖bn − bn−1‖2,

‖T (un, q(bn)) − T (un−1, q(bn))‖
≤ ι‖un − un−1‖ ≤ ι(1 + n−1)H1(E(an), E(an−1))

≤ ξι(1 + n−1)‖an − an−1‖,
‖A2(g(bn))−!A2(g(bn−1))−λ[T (un−1, q(bn))−T (un−1, q(bn−1))]‖2

≤ (α2
2ε

2 − 2λs + 2λδς2 + λ2β2ς2)‖bn − bn−1‖2,
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and

(5.10)

‖bn+1 − bn‖
≤ ‖bn − bn−1 − (g(bn) − g(bn−1))‖ + ν‖bn − bn−1‖

+
τ2

r2λm2
‖A2(g(bn))− A2(g(bn−1))

−λ[T (un−1, q(bn))− T (un−1, q(bn−1))]‖
+ λτ2

r2−λm2
‖T (un, q(bn))− T (un−1, q(bn))‖+ ‖en − en−1‖

≤ [ν +
√

1 − 2� + ε2

+ τ2
r2−ρm2

√
α2

2ε
2 − 2λs + 2λδς2 + λ2β2ς2]‖bn − bn−1‖

+ λτ2ξι
r2−ρm2

(1 + n−1)‖an − an−1‖ + ν‖en − en−1‖
= k2‖bn − bn−1‖ + ϑn‖an − an−1‖ + ν‖en − en−1‖,

where

k2 = ν +
√

1 − 2� + ε2 +
τ2

√
α2

2ε
2 − 2λs + 2λδς2 + λ2β2ς2

r2 − λm2
,

ϑn =
λτ2ξι

r2 − λm2
(1 + n−1).

Now (5.8) and (5.10) imply that

(5.11)

‖an+1 − an‖ + ‖bn+1 − bn‖
≤ (k1 + ϑn)‖an − an−1‖+ (θn + k2)‖bn − bn−1‖

+(‖dn − dn−1‖+ ‖en − en−1‖)
≤ tn(‖an−an−1‖+‖bn−bn−1‖)+(‖dn−dn−1‖+‖en − en−1‖),

where
tn = max{k1 + ϑn, θn + k2}, ∀n ≥ 1.

Letting t = max{k1 + ϑ, θ + k2}, where

θ =
ρτ1ζ�

r1 − ρm1
, ϑ =

λτ2ξι

r2 − λm2
,

then tn → t, an → a and bn → b as n → ∞. From condition (5.3), we know that
0 < t < 1 and hence there exist n0 > 0 and t0 ∈ (t, 1) such that tn ≤ t0 for all
n ≥ n0. Therefore, it follows from (5.11) that

‖an+1 − an‖ + ‖bn+1 − bn‖

≤ tn0 (‖an − an−1‖ + ‖bn − bn−1‖) + (‖dn − dn−1‖ + ‖en − en−1‖), ∀n ≥ n0.
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This implies that

‖an+1 − an‖ + ‖bn+1 − bn‖

≤ tn−n0
0 (‖an0+1 − an0‖ + ‖bn0+1 − bn0‖)

+
n−n0∑
j=1

tj−1
0 �n−(j−1) +

n−n0∑
j=1

tj−1
0 ln−(j−1), ∀n ≥ n0,

where �n = ‖dn − dn−1‖, ln = ‖en − en−1‖ for all n > n0. Hence, for any
m ≥ n > n0, we have

(5.12)

‖am − an‖ + ‖bm − bn‖

≤
m−1∑
i=n

(‖ai+1 − ai‖ + ‖bi+1 − bi‖)

≤
m−1∑
i=n

ti−n0
0 (‖an0+1 − an0‖ + ‖bn0+1 − bn0‖)

+µ
m−1∑
i=n

[
i−n0∑
j=1

tj−1
0 ιi−(j−1)] + ν

m−1∑
i=n

[
i−n0∑
j=1

tj−1
0 li−(j−1)]

≤
m−1∑
i=n

ti−n0
0 (‖an0+1 − an0‖ + ‖bn0+1 − bn0‖)

+
m−1∑
i=n

ti0[
i−n0∑
j=1

ιi−(j−1)

t
i−(j−1)
0

] +
m−1∑
i=n

ti0[
i−n0∑
j=1

li−(j−1)

t
i−(j−1)
0

].

Since
∞∑
i=1

�i k−i < ∞ and
∞∑
i=1

li k−i < ∞ for all k ∈ (0, 1), and t0 < 1, it follows

from (5.12) that ‖am − an‖ → 0 and ‖bm − bn‖ → 0, as n → ∞, and so {an}
and {bn} are both Cauchy sequences in X1 and X2, respectively. Thus, there exist
a∗ ∈ X1 and b∗ ∈ X2 such that an → a∗ and bn → b∗ as n → ∞.

Now we prove that un → u∗ ∈ E(a∗) and vn → v∗ ∈ F (b∗). In fact, it
follows from (5.6) and (5.9) that {un} and {vn} are also Cauchy sequences. Let
un → u∗ and vn → v∗, respectively. In the sequel, we will show that u∗ ∈ E(a∗)
and v∗ ∈ F (b∗). Noting un ∈ E(an), we have

d(u∗, E(a∗)) = inf{‖un − z‖ : z ∈ E(a∗)}
≤ ‖u∗ − un‖ + d(un, E(a∗))

≤ ‖u∗ − un‖ + H(E(an), E(a∗))

≤ ‖u∗ − un‖ + ξ‖an − a∗‖ → 0.
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Hence d(u∗, E(a∗)) = 0 and therefore u∗ ∈ E(a∗). Similarly, we can prove that
v∗ ∈ F (b∗).

By continuity, (4.9) and limn→∞ dn = limn→∞ en = 0, it is easy to see that
a∗, b∗, u∗, v∗ satisfy the following relation


f(a∗) = Jρ,A1

η1,M (A1(f(a∗))− ρS(p(a∗), v∗)),

g(b∗) = Jλ,A2
η2,N (A2(g(b∗)) − λT (u∗, q(b∗))).

It follows from Lemma 4.1 that (a∗, b∗, u∗, v∗) is a solution of the system of gen-
eralized set-valued variational inclusion problem (4.1).

Remark 5.1. If M, N are (H, η)-monotone operators, H-monotone operators
or A-monotone mappings, respectively, then from Theorem 5.1, we can get the
existence and convergence results of solutions for the problems (4.2)-(4.7). Our
results improve and generalize many known corresponding results of [2-4, 8-10, 13,
15].
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