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ITERATIVE APPROXIMATION OF FIXED POINTS OF A FINITE
FAMILY OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

Shuechin Huang

Abstract. The purpose of this paper is to use viscosity approximation methods
for a finite family of asymptotically nonexpansive mappings to establish the
necessary and sufficient conditions for the iterative sequence to converge to a
common fixed point of those mappings in uniformly convex Banach spaces.

1. INTRODUCTION

Let X be a Banach space, C a nonempty subset of X and T : C → C a mapping.
Then T is said to be a contraction on C with contractive constant α ∈ (0, 1) if
‖T (x) − T (y)‖ ≤ α‖x − y‖, for all x, y ∈ C; T is said to be nonexpansive
if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C and T is said to be uniformly L-
Lipschitzian (L > 0) if ‖T nx − T ny‖ ≤ L‖x − y‖, for all x, y ∈ C and for all
n ∈ N. If there exists a sequence {kn} of positive numbers with lim

n→∞ kn = 1 such
that ‖T nx−T ny‖ ≤ kn‖x− y‖, for all x, y ∈ C and for all n ∈ N, then T is said
to be asymptotically nonexpansive.

It is clear that an asymptotically nonexpansive mapping is uniformly L-Lip-
schitzian for some constant L > 0. The asymptotically nonexpansive mappings
introduced by Goebel and Kirk are important generalizations of nonexpansive map-
pings. Also, Goebel and Kirk [9] proved that if X is a uniformly convex Banach
space and C is a nonempty bounded and closed convex subset of X , then any
asymptotically nonexpansive mapping T : C → C has a nonempty fixed point set
Fix(T ). The extension of this result was established as well (see, e.g., [10,15,22]).
In particular, the iterative methods for approximating fixed points of asymptotically
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nonexpansive mappings have been studied and many nice results were presented
(see, e.g., [2,5,7,14,16-21]).

In [14], Lim and Xu established a path-convergence theorem for asymptoti-
cally nonexpansive mappings in uniformly smooth Banach spaces. Besides, C. E.
Chidume, J. Li and A. Udomene extended this result to real Banach spaces with
uniformly Gâteaux differentiable norm possessing uniform normal structure [7].

Theorem 1.1. (Lim and Xu [14]) Let X be a uniformly smooth Banach
space, C a nonempty closed convex and bounded subset of X , T : C → C an
asymptotically nonexpansive mapping with sequence {k n} ⊂ [1,∞). Let u ∈ C and
let {tn} be a sequence in (0, 1) such that lim

n→∞ tn = 1 and lim
n→∞(kn−1)/(kn−tn) =

0. Then for each n ∈ N there is a unique point xn ∈ C such that

xn =
(

1 − tn
kn

)
u + T nxn.

Suppose, in addition, that lim
n→∞ ‖xn−Txn‖ = 0. Then the sequence {xn} converges

to a fixed point of T .

It is remarkable that, by using viscosity approximation methods for a finite
family of nonexpansive mappings in Banach spaces, the necessary and sufficient
conditions for the iterative sequence to converge to a common fixed point of them
are recently obtained by Chang [6].

Theorem. (Chang [6]) Let X be a uniformly smooth Banach space, C a
nonempty closed convex subset of X , f : C → C a contraction, {T i}m

i=1 a finite

family of nonexpansive self-mappings of C with
m⋂

i=1
Fix(Ti) �= ∅ satisfying the

following conditions:
m⋂

i=1

Fix(Ti) = Fix(T1Tm · · ·T3T2) = · · · = Fix(Tm−1Tm−2 · · ·T1Tm)

= Fix(TmTm−1 · · ·T1) = Fix(S),

where S = TmTm−1 · · ·T1. Suppose that f(p) �= p, for all p ∈
m⋂

i=1
Fix(Ti). Let

{αn} be a sequence in [0, 1]. Define the iterative sequence {xn} iteratively by
x0 ∈ C,

xn+1 = αn+1f(xn) + (1 − αn+1)Tn+1xn, n ∈ N,

where Tn = Tnmodm. The sequence {xn} converges strongly to a common fixed

point of T1, T2, . . . , Tm if and only if lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞ and lim
n→∞ ‖xn −

Sxn‖ = 0.
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It is of great interest to know that a new implicit iteration scheme with perturbed
mapping for a finite family of nonexpansive self-mappings of a Hilbert space is
proposed by Zeng and Yao, and the necessary and sufficient conditions for the strong
convergence of this implicit iteration scheme are also established as well [24].

Theorem. (Zeng and Yao[24]) Let H be a real Hilbert space, F : H →
H a κ-Lipschitzian and η-strongly monotone mapping, {T i}m

i=1 a finite family

of nonexpansive self-mappings of H such that C =
m⋂

i=1
Fix(Ti) �= ∅. Let µ ∈

(0, 2η/κ2) and let {λn} ⊂ [0, 1) and {αn} ⊂ (0, 1) be the sequences such that
∞∑

n=1
λn < ∞ and α ≤ αn ≤ β, n ∈ N, for some α, β ∈ (0, 1). Let x0 ∈ H and let

{xn} be defined by

xn = αnxn−1 + (1 − αn)[Tnxn − λnµF (Tnxn)], n ∈ N,

where Tn = Tnmodm. Then {xn} converges strongly to a common fixed point of
T1, T2, . . . , Tm if and only if lim

n→∞ d(xn, C) = 0.

The purpose of this paper is to use viscosity approximation methods for a finite
family {Ti}m

i=1 of asymptotically nonexpansive self-mappings of a closed convex
subset C of a uniformly convex Banach space with sequences {ki+m(j−1)}∞j=1 ⊂
[1,∞) (1 ≤ i ≤ m) to establish the necessary and sufficient conditions for the
following iterative sequence to converge to a common fixed point ẑ of {Ti}m

i=1:

zn+1 =
(

1− tn
kn

)
f(zn) +

tn
kn

T jn
n̄ zn, n ∈ N,

where n̄ ≡ n modm, n = n̄+m(jn −1), z1 is a given point of C, f : C → C is a
contraction and {tn} is a sequence in (0, 1). Under some restrictions, this common
fixed point ẑ is, in fact, the unique solution of the variational inequality

〈f(ẑ) − ẑ, J(y − ẑ)〉 ≤ 0, for all y ∈
m⋂

i=1

Fix(Ti).

The author would like to thank Professor S. S. Chang, Professor W. Takahashi
and Professor J. C. Yao for very valuable comments and suggestions. And the author
particularly offers heartfelt thanks to the referee for suggesting to utilize Gornicki’s
demiclosedness principle.

2. PRELIMINARIES

Let X be a Banach space and let X ∗ be the dual space of X . Let J : X → 2X∗

be the normalized duality mapping defined by
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J(x) = {x∗ ∈ X∗ : 〈x, x∗〉 = ‖x‖ · ‖x∗‖, ‖x‖ = ‖x∗‖}, x ∈ X,

where 〈·, ·〉 denotes the duality pairing. If J is single-valued, J is odd, that is,
J(−x) = −J(x), x ∈ X . A Banach space X is said to admit a weakly sequentially
continuous normalized duality mapping J : X → 2X∗ if J is single-valued and
weak-to-weak∗ continuous. A Banach space X is said to be uniformly convex [1]
if for each ε > 0 there exists δ(ε) > 0 such that for x, y ∈ X with ‖x‖ ≤ 1 and
‖y‖ ≤ 1, ∥∥∥∥x + y

2

∥∥∥∥ ≤ 1 − δ(ε), whenever ‖x − y‖ ≥ ε.

A mapping f : E → X , where E ⊂ X , is said to be demiclosed at y ∈ X if,
for any sequence {xn} in E , the conditions xn → x ∈ E weakly and f(xn) → y
strongly together imply f(x) = y. Recall also that a Banach space X is said to
satisfy Opial’s condition [11] if whenever a sequence {xn} in X converges weakly
to x, then lim sup

n→∞
‖xn−x‖ < lim sup

n→∞
‖xn−y‖, for y �= x. Gossez and Lami Dozo

have shown that a Banach space with weakly sequentially continuous normalized
duality mapping must satisfy Opial’s condition [13, Theorem 1]. Specially, if X is
a reflexive Banach space which satisfies Opial’s condition, C is a closed convex
subset of X and T : C → C is a nonexpansive mapping, then I −T is demiclosed,
where I denotes the identity mapping of X [11, Theorem 10.3]. Most importantly,
Gornicki’s demiclosedness principle states that if X is a uniformly convex Banach
space satisfying Opial’s condition, C is a nonempty closed convex subset of X and
T : C → C is an asymptotically nonexpansive mapping, then I − T is demiclosed
at zero [12].

Let S = {x ∈ X : ‖x‖ = 1} be the unit sphere of X . We say that X is smooth
(or X has a Gâteaux differentiable norm) if the limit

(1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists for all x, y ∈ S; X is said to have a uniformly Gâteaux differentiable norm
if for each y ∈ X the limit (1) is attained uniformly in x ∈ S. If the limit (1)
exists and is attained uniformly in x, y ∈ S, X is said to be uniformly smooth. It is
well known that X is smooth if and only if the duality mapping J is single-valued
[8]; if X has a uniformly Gâteaux differentiable norm, then J is single-valued and
norm-to-weak∗, uniformly continuous on bounded subsets of X [8]. Let C be a
nonempty bounded subset of X and let diamC = sup{‖x− y‖ : x, y ∈ C} be the
diameter of C. For each x ∈ C, let r(x, C) = sup{‖x − y‖ : y ∈ C} so that the
Chebyshev radius of C relative to itself is defined by r(C) = inf{r(x, C) : x ∈ C}.
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The normal structure coefficient N (X) of X , cf. [1,3], is defined by

N (X) = inf
{

diamC

r(C)
: C is a bounded and closed convex subset of X

with diamC > 0
}

.

A space X is said to have uniform normal structure if N (X) > 1. It is worth
noting that every space with uniform normal structure is reflexive [11], and that all
uniformly convex or uniformly smooth Banach spaces have uniform normal structure
[1].

The following lemmas will be needed to prove our results.

Lemma 2.1. ([4]) Let X be a real Banach space. Then

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x+ y)〉,

for all x, y ∈ X and j(x + y) ∈ J(x + y).

Lemma 2.1. ([23]) Let {an} ba a sequence of nonnegative real numbers
satisfying the following condition:

an+1 ≤ (1− αn)an + σn, n ∈ N,

where each 0 < αn < 1 and
∞∑

n=1
αn = ∞. If either σn = o(αn), or lim sup

n→∞
σn ≤ 0,

then lim
n→∞ an = 0.

3. THE MAIN RESULTS

Let X be a real Banach space, C a nonempty closed convex subset of X ,
{Ti}m

i=1 a finite family of asymptotically nonexpansive self-mappings of C with
sequences {ki+m(j−1)}∞j=1 (1 ≤ i ≤ m), f : C → C a contraction with contractive
constant β ∈ (0, 1). We may always assume that kn ≥ 1, for all n ∈ N. Let
{tn} be a sequence in (0, 1) such that lim

n→∞ tn = 1. Throughout the rest of this
paper, for each n ∈ N, we denote n̄ ≡ n modm and jn = (n − n̄)/m + 1. Then
n = n̄ + m(jn − 1). Thus jn = 1 if 1 ≤ n ≤ m, jn = 2 if m + 1 ≤ n ≤ 2m, and
so on. Define a mapping Sn : C → C by

Sn(x) =
(

1 − tn
kn

)
f(x) +

tn
kn

T
jn
n̄ x.
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Then for x, y ∈ C we have

‖Sn(x) − Sn(y)‖ ≤
(

1− tn
kn

)
‖f(x)− f(y)‖+

tn
kn

‖T jn
n̄ x − T jn

n̄ y‖

≤
[
β

(
1 − tn

kn

)
+ tn

]
‖x − y‖.

In addition, suppose that β(1−tn/kn)+tn < 1. For example, if lim
n→∞(kn−1)/(kn−

tn) = 0, then

(2) lim
n→∞

1− tn
1− tn/kn

= lim
n→∞ kn

(
1 − kn − 1

kn − tn

)
= 1

and thus β(1 − tn/kn) + tn < 1, for all sufficiently large n. Then by Banach
Contraction Principle, Sn has a unique fixed point xn ∈ C, that is,

(3) xn =
(

1 − tn
kn

)
f(xn) +

tn
kn

T jn
n̄ xn.

Theorem 3.1. Let X be a uniformly convex Banach space with weakly sequen-
tially continuous normalized duality mapping J : X → X ∗, C a nonempty closed
convex subset of X , f : C → C a contraction with contractive constant β ∈ (0, 1),
{Ti}m

i=1 a finite family of asymptotically nonexpansive self-mappings of C with

sequences {ki+m(j−1)}∞j=1 ⊂ [1,∞) (1 ≤ i ≤ m) such that
m⋂

i=1
Fix(Ti) �= ∅. Let

{tn} be a sequence in (0, 1) such that lim
n→∞ tn = 1 and lim

n→∞(kn−1)/(kn−tn) = 0.

The sequence {xn} defined by (3) converges strongly to a point x̂ ∈
m⋂

i=1
Fix(Ti)

which is the unique solution of the variational inequality in
m⋂

i=1
Fix(Ti):

(4) 〈f(x̂) − x̂, J(y − x̂)〉 ≤ 0, for all y ∈
m⋂

i=1

Fix(Ti)

if and only if lim
n→∞ ‖xn − Tixn‖ = 0, for i = 1, . . . , m.

Proof. By (2), discarding a few terms if necessary, we may assume that there
exists a positive number δ < 1 such that

(5)
1 − tn

1 − (tn/kn)
> β + δ, for all n ∈ N.



Asymptotically Nonexpansive Mappings 651

Notice that the variational inequality (4) has at most one solution in
m⋂

i=1
Fix(Ti).

For, if u and v are two solutions of (4) in
m⋂

i=1
Fix(Ti), we have

〈f(u) − u, J(v − u)〉 ≤ 0,

〈f(v)− v, J(u − v)〉 ≤ 0.

Adding these two inequalities, we obtain

〈[u− f(u)]− [v − f(v)], J(u− v)〉 ≤ 0

which implies

(1 − β)‖u − v‖2 ≤ 〈[u− f(u)]− [v − f(v)], J(u− v)〉 ≤ 0.

Therefore u = v.
If the sequence {xn} converges strongly to x̂ ∈

m⋂
i=1

Fix(Ti) which is the unique

solution of the variational inequality (4) in
m⋂

i=1
Fix(Ti), then for i = 1, . . . , m,

‖xn − Tixn‖ ≤ ‖xn − x̂‖ + ‖Tix̂ − Tixn‖ ≤ (1 + ki)‖xn − x̂‖

and hence lim
n→∞ ‖xn − Tixn‖ = 0, for i = 1, . . . , m.

Conversely, suppose that lim
n→∞ ‖xn − Tixn‖ = 0, for i = 1, . . . , m. We first

prove that the sequence {xn} is bounded. Given u ∈
m⋂

i=1
Fix(Ti) it follows from

(3) that

‖xn − u‖2 =
〈(

1 − tn
kn

)
[f(xn) − u] +

tn
kn

(T jn
n̄ xn − T jn

n̄ u), J(xn − u)
〉

≤
(

1− tn
kn

)
‖f(xn) − f(u)‖ · ‖xn − u‖ +

tn
kn

· kn‖xn − u‖2

+
(

1 − tn
kn

)
〈f(u) − u, J(xn − u)〉

≤
[
β

(
1 − tn

kn

)
+ tn

]
‖xn − u‖2 +

(
1 − tn

kn

)
〈f(u)− u, J(xn − u)〉,

and so

(6)
[

1 − tn
1 − (tn/kn)

− β

]
‖xn − u‖2 ≤ 〈f(u)− u, J(xn − u)〉.
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By (5), the inequality (6) implies that

(7)
‖xn − u‖2 ≤ 1

δ
〈f(u) − u, J(xn − u)〉

≤ 1
δ
‖f(u) − u‖ · ‖xn − u‖, for n ∈ N

and thus
‖xn − u‖ ≤ 1

δ
‖f(u) − u‖, for n ∈ N.

This shows that {xn} is bounded.
On the other hand, given any subsequence {xnl

} of {xn}, since X is reflexive,
there is a subsequence of {xnl

}, still denoted by {xnl
}, converging weakly to a

point x̂ ∈ C. Since each I −Ti is demiclosed at zero and lim
nl→∞ ‖xnl

−Tixnl
‖ = 0,

we have x̂ − Tix̂ = 0 and so x̂ ∈
m⋂

i=1
Fix(Ti). Choosing u = x̂ in (7) and letting

nl → ∞, we obtain

lim sup
nl→∞

‖xnl
− x̂‖2 ≤ lim

nl→∞
1
δ
〈f(x̂) − x̂, J(xnl

− x̂)〉 = 0.

Therefore {xnl
} converges strongly to x̂.

Next, we shall prove that x̂ is a solution of the variational inequality (4) in
m⋂

i=1
Fix(Ti). Let y ∈

m⋂
i=1

Fix(Ti). It follows from (3) that

‖xn − y‖2 =
(

1 − tn
kn

)
〈f(xn)− xn, J(xn − y)〉+

(
1 − tn

kn

)
〈xn − y, J(xn − y)〉

+
tn
kn

〈T jn
n̄ xn − T jn

n̄ y, J(xn − y)〉

≤
(

1 − tn
kn

)
〈f(xn)− xn, J(xn − y)〉+

(
1 + tn − tn

kn

)
‖xn − y‖2

which implies that

(8) 〈f(xn) − xn, J(y − xn)〉 ≤ tn · kn − 1
kn − tn

‖xn − y‖2.

Observe that

(9)

|〈xn − f(xn), J(xn − y)〉 − 〈x̂ − f(x̂), J(x̂− y)〉|
= |〈 [xn − f(xn)]− [x̂ − f(x̂)], J(xn − y)〉

+〈x̂ − f(x̂), J(xn − y) − J(x̂ − y〉|
≤ ‖ [xn − f(xn)]− [x̂ − f(x̂)]‖ · ‖xn − y‖

+|〈x̂− f(x̂), J(xn − y)− J(x̂ − y)〉|.



Asymptotically Nonexpansive Mappings 653

Since {xnl
} converges strongly to x̂ and J is weak-to-weak∗ continuous, it follows

from (8) and (9) that

〈f(x̂) − x̂, J(y − x̂)〉 = lim
nl→∞〈f(xnl

) − xnl
, J(y − xnl

)〉 ≤ 0.

This shows that x̂ is a solution of the variational inequality (4) in
m⋂

i=1
Fix(Ti).

Consequently, any subsequence of {xn} has a strongly convergent subsequence
with limit x̂, and hence {xn} converges strongly to x̂.

Theorem 3.2. Let X be a uniformly convex Banach space with weakly sequen-
tially continuous normalized duality mapping J : X → X ∗, C a nonempty closed
convex subset of X , f : C → C a contraction with contractive constant β ∈ (0, 1),
{Ti}m

i=1 a finite family of asymptotically nonexpansive self-mappings of C with

sequences {ki+m(j−1)}∞j=1 ⊂ [1,∞) (1 ≤ i ≤ m) such that
m⋂

i=1
Fix(Ti) �= ∅. Let

{tn} be a sequence in (0, 1) such that lim
n→∞(kn − 1)/(kn − tn) = 0 and let {xn}

be a sequence defined by (3). Define the sequence {zn} iteratively by z1 ∈ C,

(10) zn+1 =
(

1− tn
kn

)
f(zn) +

tn
kn

T jn
n̄ zn, n ∈ N.

For any C, f and {Ti}m
i=1 as above, the sequences {xn} and {zn} both converge

strongly to a point x̂ ∈
m⋂

i=1
Fix(Ti) which is the unique solution of the variational

inequality (4) in
m⋂

i=1
Fix(Ti) if and only if the following conditions are satisfied:

(i) lim
n→∞ tn = 1;

(ii)
∞∑

n=1
[ 1− (tn/kn) ] = ∞;

(iii) lim
n→∞ ‖xn − Tixn‖ = 0 and lim

n→∞ ‖zn − Tizn‖ = 0, for i = 1, . . . , m.

Proof. Suppose that the sequences {xn} and {zn} both converge strongly to a

point x̂ of
m⋂

i=1
Fix(Ti) which is the unique solution of the variational inequality (4)

in
m⋂

i=1
Fix(Ti). Then for i = 1, . . . , m,

‖xn − Tixn‖ ≤ ‖xn − x̂‖ + ‖Tix̂ − Tixn‖ ≤ (1 + ki)‖xn − x̂‖ → 0 as n → ∞,



654 Shuechin Huang

and similarly

‖zn − Tizn‖ ≤ ‖zn − x̂‖ + ‖Tix̂ − Tizn‖ ≤ (1 + ki)‖zn − x̂‖ → 0 as n → ∞.

Hence condition (iii) holds.
On the other hand, for any n ∈ N, since ‖T jn

n̄ zn − x̂‖ = ‖T jn
n̄ zn − T jn

n̄ x̂‖ ≤
kn‖zn − x̂‖, it follows that lim

n→∞ T jn
n̄ zn = x̂. Letting f ≡ u ∈ C with u /∈

m⋂
i=1

Fix(Ti), by (10) we have

lim inf
n→∞

tn
kn

‖x̂− u‖ = lim inf
n→∞

tn
kn

‖T jn
n̄ zn − u‖ = lim inf

n→∞ ‖zn+1 − u‖ = ‖x̂− u‖

which implies that lim
n→∞ tn/kn = 1 and condition (i) holds.

To prove condition (ii) is satisfied, we may take C = {x ∈ X : ‖x‖ ≤ 1}
to be the closed unit ball and z1 �= 0. Set f ≡ 0 and Ti = −I : C → C, for
i = 1, . . . , m, so that it follows from (10) that

zn+1 = (−1)jn · tn
kn

· zn = · · · · · · = (−1)m(jn−1)jn/2+n̄jn

n∏
l=1

tl
kl

· z1.

Since 0 is the only common fixed point of Ti’s, we obtain zn → x̂ = 0 and

0 = lim
n→∞ ‖zn+1 − 0‖ = lim

n→∞

n∏
l=1

tl
kl

· ‖z1 − 0‖;

hence
∞∏

n=1
tn/kn = 0, that is,

∞∑
n=1

[ 1− (tn/kn) ] = ∞.

From the above discussion, conditions (i), (ii) and (iii) are seen to be necessary.
So we proceed to show their sufficiency. It follows from Theorem 3.1 that the

sequence {xn} converges strongly to a point x̂ ∈
m⋂

i=1
Fix(Ti) which is the unique

solution of the variational inequality (4) in
m⋂

i=1
Fix(Ti).

We will prove that the sequence {zn} is bounded. By (2), there exists a positive

number δ < 1 and n0 ∈ N such that
1 − tn

1 − (tn/kn)
> β + δ, for all n ≥ n0. Given
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u ∈
m⋂

i=1
Fix(Ti) it follows from (10) that for n ≥ n0,

‖zn+1 − u‖ ≤
(

1− tn
kn

)
‖f(zn) − f(u) + f(u) − u‖ +

tn
kn

‖T jn
n̄ zn − T jn

n̄ u‖

≤
[
β

(
1 − tn

kn

)
+ tn

]
‖zn − u‖ +

(
1 − tn

kn

)
‖f(u) − u‖

≤
[
1 − δ

(
1 − tn

kn

)]
‖zn − u‖+ δ

(
1 − tn

kn

)
· 1
δ
‖f(u) − u‖

≤ max{‖zn − u‖, 1
δ
‖f(u)− u‖}.

By induction we obtain

‖zn+1 − u‖ ≤ max{‖z1 − u‖, 1
δ
‖f(u) − u‖}, for n ≥ n0;

hence {zn} is bounded. The reflexivity of X asserts that there is a subsequence
{znl

} of {zn} which converges weakly to a point ẑ ∈ C. Since each I − Ti is
demiclosed at zero and lim

nl→∞ ‖znl
− Tiznl

‖ = 0, we have ẑ − Tiẑ = 0 and hence

ẑ ∈
m⋂

i=1
Fix(Ti). Since x̂ is the unique solution of (4) and J is weakly sequentially

continuous, we conclude that

(11)
lim supn→∞〈f(x̂)−x̂, J(zn−x̂)〉 = lim supnl→∞〈f(x̂)−x̂, J(znl

−x̂)〉
= 〈f(x̂)−x̂, J(ẑ−x̂)〉≤0.

To prove {zn} converges strongly to x̂, let γn = 1 − tn/kn, for n ∈ N so that
γn < 1/2 for all sufficiently large n. Thus 1− βγn > 1/2 for sufficiently large n.
It follows from (10) and Lemma 2.1 that

‖zn+1 − x̂‖2≤ (1−γn)2 ‖T jn
n̄ zn − x̂‖2+2γn〈f(zn)−x̂, J(zn+1−x̂)〉

≤ k2
n(1−γn)2 ‖zn−x̂‖2 + 2γn〈 f(zn)−f(x̂)+f(x̂)−x̂, J(zn+1−x̂) 〉

≤ k2
n(1−γn)2 ‖zn−x̂‖2+2βγn ‖zn−x̂‖ · ‖zn+1 − x̂‖

+2γn〈f(x̂)−x̂, J(zn+1−x̂)〉

≤ k2
n(1 − γn)2 ‖zn−x̂‖2+βγn

[ ‖zn−x̂‖2+‖zn+1−x̂‖2
]

+2γn 〈f(x̂)−x̂, J(zn+1−x̂)〉.
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Therefore

(12)
‖zn+1−x̂‖2 ≤ 1−(2−β)γn

1−βγn
‖zn−x̂‖2+

(k2
n−1)(1−2γn)+k2

nγ2
n

1−βγn
‖zn−x̂‖2

+
2γn

1−βγn
〈f(x̂)−x̂, J(zn+1−x̂)〉.

Since
1− (2− β)γn

1 − βγn
= 1 − 2(1− β)γn

1− βγn
< 1− 2(1− β)γn,

by (12) we have

‖zn+1 − x̂‖2 ≤ (1− αn)‖zn − x̂‖2 + σn,

where αn = 2(1 − β)γn,
∞∑

n=1
αn = ∞, and

σn =
(k2

n − 1)(1− 2γn) + k2
nγ2

n

1 − βγn
‖zn − x̂‖2 +

2γn

1 − βγn
〈f(x̂) − x̂, J(zn+1 − x̂)〉.

The boundedness of {zn} and the inequality (11) imply that lim sup
n→∞

σn ≤ 0. By

Lemma 2.2, lim
n→∞ ‖zn − x̂‖ = 0 obtains.

Remark. Such a sequence {tn} as in Theorem 3.1 and Theorem 3.2 always
exists. We take tn = min{1−(kn−1)1/2, 1−(1/n)} for example (see also [7,14]).

4. APPLICATIONS

When only one asymptotically nonexpansive mapping is considered, the equa-
tions (3) and (10) are reduced to the following iterative sequences respectively:

(13) xn =
(

1 − tn
kn

)
f(xn) +

tn
kn

T nxn, n ∈ N,

and

(14) zn+1 =
(

1 − tn
kn

)
f(zn) +

tn
kn

T nzn, n ∈ N.

The corresponding results are given as follows.

Theorem 4.1. Let X be a uniformly convex Banach space with weakly sequen-
tially continuous normalized duality mapping J : X → X ∗, C a nonempty closed
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convex subset of X , f : C → C a contraction, T : C → C an asymptotically non-
expansive mapping with sequence {kn} ⊂ [1,∞) such that Fix(T ) �= ∅. Let {tn}
be a sequence in (0, 1) such that lim

n→∞ tn = 1 and lim
n→∞(kn−1)/(kn−tn) = 0. The

sequence {xn} defined by (13) converges strongly to a point x̂ ∈ Fix(T ) which
is the unique solution of the variational inequality (4) in Fix(T ) if and only if
lim

n→∞ ‖xn − Txn‖ = 0.

Theorem 4.2. Let X be a uniformly convex Banach space with weakly sequen-
tially continuous normalized duality mapping J : X → X ∗, C a nonempty closed
convex subset of X , f : C → C a contraction, T : C → C an asymptotically
nonexpansive mapping with sequence {kn} ⊂ [1,∞) such that Fix(T ) �= ∅. Let
{tn} be a sequence in (0, 1) such that lim

n→∞(kn − 1)/(kn − tn) = 0 and let {xn}
and {zn} be the sequences defined by (13) and (4) respectively. For any C, f and
T , the sequences {xn} and {zn} both converge strongly to a point x̂ ∈ Fix(T )
which is the unique solution of the variational inequality (4) in Fix(T ) if and only
if the following conditions are satisfied:

(i) lim
n→∞ tn = 1;

(i)
∞∑

n=1
[ 1− (tn/kn) ] = ∞;

(iii) lim
n→∞ ‖xn − Txn‖ = 0 and lim

n→∞ ‖zn − Tzn‖ = 0.

Let X be a Banach space with uniformly Gâteaux differentiable norm. If X

satisfies Opial’s condition, then the normalized duality mapping J : X → X ∗ is
weakly sequentially continuous at zero [13, Theorem 2]. Therefore, with similar
approaches to Theorems 3.1 and 3.2, the following two results are established.

Theorem 4.3. Let X be a uniformly convex Banach space with uniformly
Gâteaux differentiable norm satisfying Opial’s condition, C a nonempty closed
convex subset of X , f : C → C a contraction, {T i}m

i=1 a finite family of asymptot-
ically nonexpansive self-mappings of C with sequences {k i+m(j−1)}∞j=1 ⊂ [1,∞)

(1 ≤ i ≤ m) such that
m⋂

i=1
Fix(Ti) �= ∅. Let {tn} be a sequence in (0, 1) such that

lim
n→∞ tn = 1 and lim

n→∞(kn − 1)/(kn − tn) = 0. The sequence {xn} defined by (3)

converges strongly to a point x̂ ∈
m⋂

i=1
Fix(Ti) which is the unique solution of the

variational inequality (4) in
m⋂

i=1
Fix(Ti) if and only if lim

n→∞ ‖xn − Tixn‖ = 0, for

i = 1, . . . , m.
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Proof. Since X is a uniformly convex Banach space satisfying Opial’s condi-
tion, each I − Ti is demiclosed at zero. Due to the weakly sequential continuity of
J at zero, the proof is identical to that of Theorem 3.1.

Theorem 4.4. Let X be a uniformly convex Banach space with uniformly
Gâteaux differentiable norm satisfying Opial’s condition, C a nonempty closed
convex subset of X , f : C → C a contraction with contractive constant β ∈ (0, 1),
{Ti}m

i=1 a finite family of asymptotically nonexpansive self-mappings of C with

sequences {ki+m(j−1)}∞j=1 ⊂ [1,∞) (1 ≤ i ≤ m) such that
m⋂

i=1
Fix(Ti) �= ∅. Let

{tn} be a sequence in (0, 1) such that lim
n→∞(kn − 1)/(kn − tn) = 0. Let {xn}

and {zn} be the sequences defined by (3) and (10) respectively. For any C, f and
{Ti}m

i=1 as above, the sequences {xn} and {zn} both converge strongly to a point

x̂ ∈
m⋂

i=1
Fix(Ti) which is the unique solution of the variational inequality (4) in

m⋂
i=1

Fix(Ti) if and only if the conditions (i)-(iii) in Theorem 3.2 are satisfied.

Proof. Applying the same argument as in Theorem 3.2, we only prove conditions
(i)-(iii) are sufficient. First, Theorem 4.3 asserts that the sequence {xn} converges

strongly to a point x̂ ∈
m⋂

i=1
Fix(Ti) which is the unique solution of the variational

inequality (4) in
m⋂

i=1
Fix(Ti).

On the other hand, the sequence {zn} is bounded as verified in Theorem 3.2,
and so has a weakly convergent subsequence {znl

} with limit ẑ ∈ C. Since each
I −Ti is demiclosed at zero and lim

nl→∞ ‖znl
−Tiznl

‖ = 0, we have ẑ−Tiẑ = 0 and

hence ẑ ∈
m⋂

i=1
Fix(Ti). The weakly sequential continuity of J at zero ensures that

(15) lim sup
n→∞

〈f(ẑ) − ẑ, J(zn − ẑ)〉 = lim sup
nl→∞

〈f(ẑ) − ẑ, J(znl
− ẑ)〉 = 0.

Furthermore, as shown in Theorem 3.2, to prove {zn} converges strongly to ẑ, let
γn = 1− tn/kn, for n ∈ N so that γn < 1/2 for all sufficiently large n. Replacing
x̂ with ẑ in (12) yields:

‖zn+1 − ẑ‖2 ≤ (1− αn)‖zn − ẑ‖2 + σn,

where αn = 2(1 − β)γn,
∞∑

n=1
αn = ∞, and

σn =
(k2

n − 1)(1− 2γn) + k2
nγ2

n

1− βγn
‖zn − ẑ‖2 +

2γn

1 − βγn
〈f(ẑ) − ẑ, J(zn+1 − ẑ)〉.
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The boundedness of {zn} and (15) imply that lim sup
n→∞

σn = 0. By Lemma 2.2, we

have lim
n→∞ ‖zn − ẑ‖ = 0, as claimed. In fact, ẑ = x̂. For, if y ∈

m⋂
i=1

Fix(Ti), apply

(10) and Lemma 2.1 again to obtain the inequality

‖zn+1 − x̂‖2 ≤ (1 − αn)‖zn − x̂‖2 + τn,

where

τn =
(k2

n − 1)(1− 2γn) + k2
nγ2

n

1 − βγn
‖zn − x̂‖2 +

2γn

1− βγn
〈f(x̂) − x̂, J(zn+1 − x̂)〉.

Note that x̂ is the unique solution of (4). Since {zn} converges strongly to ẑ and J
is norm-to-weak∗ continuous, we have

lim sup
n→∞

〈f(x̂) − x̂, J(zn − x̂)〉 = 〈f(x̂) − x̂, J(ẑ − x̂)〉 ≤ 0,

which implies that lim sup
n→∞

τn ≤ 0. By Lemma 2.2, lim
n→∞ ‖zn − x̂‖ = 0 holds,

completing the proof.
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