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A THIRD ORDER EQUATION ARISING IN THE FALLING FILM

Yung-Jen Lin Guo

Abstract. We study a third-order differential equation arising in the study
of falling film on a coated vertical fibre. We first provide some properties
of solutions to this third-order equation. Then we prove some nonexistence
results of global solution to this equation under certain boundary condition at
infinity.

1. INTRODUCTION

In this paper, we shall study the following third order ordinary differential equa-
tion

(1.1) φ′′′(y) + φ′(y) + g(φ(y)) = 0, φ(y) > 0, y ∈ R,

where g is a nonlinear function satisfying the following condition

(1.2) g′ > 0 in (0,∞), g(0+) = −∞, g(1) = 0, g(+∞) ∈ (0,∞).

The equation (1.1) arises in the study of a falling film on a coated vertical fibre.
If we denote by h = h(x, t) the thickness of the falling film on the coated vertical
fibre with the positive x-axis pointing downward, then h satisfies the following
fourth order parabolic partial differential equation:

(1.3) ht + [δh3(hxxx + hx) +
2
3
h3]x = 0, x ∈ R, t > 0,

where δ is a positive constant which measures the ratio of curvature-driven flow of
the Rayleigh instability to the gravity-driven mean flow. For more detailed physical
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background and the derivation of (1.3), we refer the reader to [3, 2, 5] and the
references cited therein.

In the study of the above falling film problem, it is important and interesting to
find traveling wave solutions of (1.3) in the form h(x, t) := φ(x − ct) with wave
speed c ≥ 0. If we set y := x − ct, then h satisfies (1.3) if and only if φ satisfies

−cφ′ + [δφ3(φ′′′ + φ′) +
2
3
φ3]′ = 0 in R.

Assuming h(x, t) → 1 as x → ±∞, then, by an integration, φ satisfies (1.1) with
g given by

(1.4) g(φ) =
1
δ
[
2
3
− cφ−2 − (

2
3
− c)φ−3].

We note that g(1) = 0 and g(+∞) = 2/(3δ) for all c. Note that g satisfies (1.2)
when c ∈ [0, 2/3].

The study of third-order differential equations has attracted a lot of attentions
for the past years. These equations arise in many different applications, such as the
free convection problem in boundary layer theory [4] and the problem of coating
and draining flows [1, 6, 7].

In this paper, we shall prove some nonexistence results for global solutions of
(1.1) with the boundary condition φ(±∞) = 1, under the condition (1.2). There is
a simple application of this result to the falling film problem. That is, a traveling
wave solution of (1.3) exists only if the wave speed is bigger than 2/3.

This paper is organized as follows. In the next section, we shall give some
properties of solutions of (1.1). Then we prove some nonexistence results of global
solution of (1.1).

2. PRELIMINARY

In this section, we provide some properties of solutions of (1.1).

Lemma 2.1. Suppose that φ is a solution of (1.1) with φ(y 0) = 1 and φ′ > 0
in (y0,∞) for some y0 ∈ [−∞,∞). Then φ(y) → ∞ as y → ∞.

Proof. Let l := limy→∞ φ(y). Then l > 1. Suppose for contradiction that
l < ∞. By an integration of (1.1), we obtain

(2.1) φ′′(y) − φ′′(z) + φ(y)− φ(z) +
∫ y

z
g(φ(s))ds = 0.

Taking a fixed z > y0 and letting y → ∞ in (2.1), we see that φ′′(y) → −∞ as
y → ∞, contradicting the fact that φ′ > 0 in R. Hence l = ∞ and the lemma
follows.



Third Order Equation 639

Lemma 2.2. There is no solution of (1.1) with φ(y0) = 1 and φ′ > 0 in
(y0,∞) for some y0 ∈ [−∞,∞).

Proof. Suppose that there is a solution φ with φ(y0) = 1 and φ′ > 0 in (y0,∞)
for some y0 ∈ [−∞,∞). Then by Lemma 2.2, we have φ(y) → ∞ as y → ∞.
Since φ′ > 0 in (y0,∞), we can invert φ = φ(y) as y = y(φ). We introduce the
function

u(φ) = [φ′(y)]2, y = y(φ).

Then u = u(φ) > 0 for φ ∈ (1,∞) and u satisfies the second order ODE:

(2.2) u′′ = −2 − g(φ)
2√
u

, φ ∈ (1,∞).

Since g > 0 in (1,∞), we have u′′ < −2 in (1,∞). This implies that u vanishes
at some finite φ0, a contradiction. Hence the lemma is proved.

As a corollary of Lemma 2.2, we obtain the following property of solution of
(1.1).

Corollary 2.3. Let φ be a solution of (1.1) with φ(y 0) = 1 and φ′ > 0 in
(y0, y0 + δ) for some y0 ∈ [−∞,∞) and δ > 0. Then φ′ vanishes at some finite
point y > y0.

Next, we study the asymptotic behavior of global solution of (1.1) as x → ±∞.

Lemma 2.4. Suppose that l := limx→∞ φ(x) exists. Then l = 1.

Proof. Suppose that l �= 1. Then we may choose z sufficiently large such that
g(φ(y)) has a fixed sign for all y ≥ z. Thus the limit

I :=
∫ ∞

z
g(φ(s))ds

exists and is either∞ or −∞. It follows from (2.1) that the limit L := limy→∞ φ′′(y)
also exists and either L = ∞, if I = −∞, or L = −∞, if I = ∞.

Now, if L = ∞, then φ′(y) → ∞ as y → ∞ and so l = ∞. This implies
that I = ∞, a contradiction. If L = −∞, then φ′(y) → −∞ as y → ∞. This
implies that φ vanishes at some finite y, contradicting to the fact that φ > 0 on R.
Therefore, l = 1 and the lemma follows.

Similarly, we can prove that

Lemma 2.5. If the limit l := limx→−∞ φ(x) exists and l < ∞, then l = 1.
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3. MAIN RESULTS

In this section, we shall derive the nonexistence of certain global solutions of
(1.1).

Theorem 3.1. There is no global solution φ of (1.1) with φ < 1 in R.

Proof. Suppose that there is a global solution φ of (1.1) with φ < 1 in R. Let

l+ := lim sup
y→∞

φ(y), l− := lim sup
y→−∞

φ(y).

We claim that l+ = l− = 1.
If l+ < 1, then there is a z > 0 such that φ(y) ≤ (1 + l+)/2 for all y ≥ z.

Hence ∫ ∞

z
g(φ(s))ds = −∞

and so φ′′(y) → ∞ as y → ∞ by (2.1). Then φ′(y) → ∞ as y → ∞ and φ(y) > 1
for all y sufficiently large, a contradiction to the above inequality. Therefore, we
have l+ = 1.

Similarly, l− = 1. Note that the same argument leads that

(3.3)
∫ ∞

z
g(φ(s))ds > −∞,

∫ z

−∞
g(φ(s))ds > −∞

for any z ∈ R. Hence it follows from (2.1) that φ′′ is bounded in R.
Next, we claim that φ′(y) > 0 for all y sufficiently large, φ′(y) < 0 for all −y

sufficiently large, and so limy→±∞ φ(y) = 1.
Suppose on the contrary that there is a sequence {yn} such that yn → ∞ and

φ′(yn) = 0 for all n ≥ 1. We may assume that φ′′(y2k) ≥ 0 and φ′′(y2k+1) ≤ 0 for
all k ≥ 1 and φ(y2k+1) → 1 as k → ∞. Introduce

(3.4) Φ1(y) := Φ1(y; φ) = φ′′(y)[φ(y)− 1] − 1
2
[φ′(y)]2 +

1
2
[φ(y)− 1]2.

Note that

(3.5) Φ′
1(y) = −g(φ(y))[φ(y)− 1].

Hence Φ1 is monotone decreasing in y. Set

L+ := lim
y→∞ Φ1(y).

Note that φ′′ is bounded. Since Φ1(y2k+1) ≥ [φ(y2k+1) − 1]2/2 > 0 for all k,
we have L+ ∈ [0,∞). Since φ(y2k+1) → 1 as k → ∞ and φ′′ is bounded, we
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have Φ1(y2k+1) → 0 as k → ∞. Hence L+ = 0. Similarly, by taking a sequence
yn → −∞ such that φ(yn) → 1 as n → ∞ and using the fact that φ′′ is bounded,
we get that

L− := lim
y→−∞ Φ1(y) = lim

n→∞ Φ1(yn) = lim
n→∞{−1

2
[φ′(yn)]2} ≤ 0.

This contradicts the decreasing property of Φ1. Therefore, φ can only have finitely
many critical points in (0,∞). Then limy→∞ φ(y) = 1 and φ′(y) > 0 for all y

sufficiently large.
Similarly, φ′(y) < 0 for all −y sufficiently large and limy→−∞ φ(y) = 1.
Now, we can choose a sequence {yn} such that yn → ±∞ and φ′(yn) → 0 as

n → ±∞. Since φ′′ is bounded, it follows that Φ1(yn) → 0 as n → ±∞. This
again contradicts the decreasing property of Φ1. This completes the proof of the
theorem.

Theorem 3.2. There is no global solution φ of (1.1) with φ > 1 in R and φ
is bounded in (−∞, 0).

Proof. The proof is similar to the one for Theorem 3.1 and we omit it.

As a consequence of Theorems 3.1 and 3.2, we have

Corollary 3.3. Any global solution of (1.1) which is bounded in (−∞, 0) must
take the value 1.

Notice that any global solution of (1.1) with φ(−∞) = 1 is bounded in (−∞, 0).

Lemma 3.4. Let φ be a nontrivial global solution of (1.1). Then any point y 0

with φ(y0) = 1 cannot be an accumulation point of the set Σ := {y | φ(y) = 1}.

Proof. Otherwise, there is a distinct sequence {yn} ⊂ Σ such that yn → y0

as n → ∞. Then φ′(y0) = 0. Hence Φ1(y0) = 0. Since Φ1(yn) ≤ 0 for all n, it
follows from the decreasing property of Φ1 that yn > y0 for all n.

On the other hand, since φ is nontrivial, φ′′(y0) �= 0. If φ′′(y0) > 0, then
φ(y) > 1 for all y > y0 with y − y0 small, a contradiction. If φ′′(y0) < 0, then
φ(y) < 1 for all y > y0 with y − y0 small, again a contradiction. The lemma
follows.

Lemma 3.5. Let φ be a global solution of (1.1) which is bounded in (−∞, 0).
Then there is a sequence yn such that yn → ∞ and φ(yn) = 1 for all n.

Proof. Set ȳ := sup{y | φ(y) = 1}. We claim that ȳ = ∞.
On the contrary, we assume that ȳ < ∞. Then φ(ȳ) = 1.
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Case 1. φ(y) > 1 for all y > ȳ. Then φ′(ȳ) ≥ 0 and φ′′(ȳ) > 0 if φ′(ȳ) = 0.
By Corollary 2.3, there is the smallest y0 > ȳ such that φ′(y0) = 0, φ′′(y0) ≤ 0,
and φ′(y) < 0 for all y > y0 with y − y0 small. Recall that Φ1(ȳ) ≤ 0. Then
φ′(y) < 0 for all y > y0. Otherwise, we have φ′′(y1) ≥ 0 for the smallest critical
point y1 > y0. Note that φ(y1) > 1. This implies that Φ1(y1) > 0, a contradiction.
Therefore, φ′(y) < 0 for all y > y0. It follows from Lemma 2.4 that φ(y) → 1 as
y → ∞.

By (2.1), we have 0 <
∫ ∞
ȳ g(φ(s))ds < ∞ and φ′′ is bounded in [ȳ,∞). Hence

the limit L+ := limy→∞ Φ1(y) exists and is equal to zero. But, Φ1(ȳ) ≤ 0 and
Φ1 is decreasing, we have L+ < 0. This contradiction implies that this case is
impossible.

Case 2. φ(y) < 1 for all y > ȳ. This case is also impossible by the same
argument as in Case 1.

We conclude that ȳ = ∞. This completes the proof.
We are ready to state and prove the main theorem of this paper as follows.

Theorem 3.6. There is no nontrivial bounded global solution φ of (1.1) such
that (φ, φ′, φ′′)(∞) = (1, 0, 0). In particular, there is no nontrivial global solution
of (1.1) with (φ, φ′, φ′′)(±∞) = (1, 0, 0).

Proof. Suppose that φ is a nontrivial bounded global solution of (1.1) such that
(φ, φ′, φ′′)(∞) = (1, 0, 0). By Corollary 3.3, there is y0 ∈ R such that φ(y0) = 1.
Then Φ1(y0) ≤ 0. From Lemmas 3.4 and 3.5 it follows that there is a sequence
zn → ∞ such that φ′(zn) = 0 for all n. Then Φ1(zn) → 0 as n → ∞, contradicting
the decreasing property of Φ1. The theorem follows.
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