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ON GENERALIZED VECTOR IMPLICIT VARIATIONAL
INEQUALITIES AND COMPLEMENTARITY PROBLEMS

Lu-Chuan Ceng and Sangho Kum

Abstract. In this paper, two generalized vector implicit variational inequalities
and three generalized vector implicit complementarity problems are introduced
with a general order in ordered Banach spaces and the equivalence between
them is studied under certain assumptions. Furthermore, some existence theo-
rems for the generalized vector implicit variational inequalities are derived by
using Lin’s result (1986) and Nadler’s result (1969). We affirmatively answer
the open question proposed by Rapcsak (2000). Our results are the extension
and improvement of the corresponding results in Huang and Li (2006).

1. INTRODUCTION

It is well known that Giannessi (1980) first introduced and studied the vector
variational inequality in a finite-dimensional Euclidean space, which is the vector-
valued version of the variational inequality of Hartman and Stampacchia. Through-
out over last 20 years development, existence theorems for solutions of vector vari-
ational inequalities in various situations have been extensively studied by many
authors. The reader is referred to Chen and Craven (1989), Chen and Yang (1990),
Giannessi (2000), Huang, Li and Thompson (2003), Rapcsak (2000), Yang (1993),
Yang (1997), Yang and Goh (1997), Huang and Li (2006), Konnov and Yao (1997),
Zeng and Yao (2007) and the references therein. Vector variational inequalities have
many important applications in various problems, for example, vector optimization
(see Yang (1997)), approximate vector optimization (see Chen and Craven (1989)),
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vector equilibria (see Giannessi (2000) and Huang, Li and Thompson (2003)), vec-
tor traffic equilibria (see Yang and Goh (1997)) and abstract economical equilibria
(see Shen (2001)).

On one hand, Chen and Yang (1990) defined a vector variational inequality and
three vector complementarity problems, i.e., the weak, positive and strong vector
complementarity problems in ordered Banach spaces and proved the existence theo-
rem for them. And also, the equivalence between them was established under some
additional assumptions. Subsequently, Yang (1993) analyzed the relations among
vector variational inequalities, vector complementarity problems, minimal element
problems, and fixed point problems. Recently, Rapcsak (2000) introduced the weak
order in Banach spaces. By virtue of this new order, Rapcsak (2000) introduced
a vector variational inequality and three vector complementarity problems and dis-
cussed some relations between them. At the end of the paper, Rapcsak (2000) put
forth an open question, i.e., in the case of ordering (2.1), the existence of a solution
to (VVIP) or (WVCP) (see Section 3).

On the other hand, Huang and Li (2006) introduced two vector implicit vari-
ational inequalities and three vector implicit complementarity problems, i.e., the
weak, positive and strong vector implicit complementarity problems with a general
order in ordered Banach spaces, and established the equivalence between them un-
der certain conditions. Furthermore, they proved some existence theorems for two
vector implicit variational inequalities. There is no doubt that they answered the
open question proposed by Rapcsak (2000).

In this paper, two generalized vector implicit variational inequalities and three
generalized vector implicit complementarity problems are introduced with a general
order in ordered Banach spaces and the equivalence between them is studied under
certain assumptions. Furthermore, some existence theorems for two generalized
vector implicit variational inequalities are derived by using Lin’s result (1986) and
Nadler’s result (1969). We affirmatively answer the open question proposed by
Rapcsak (2000). Our results are the extension and improvement of the corresponding
results in Huang and Li (2006).

2. PRELIMINARIES

In this section, we recall some notations, definitions and results, which are
essential for our main results.

Let Y be a real Banach space. A nonempty subset P of Y is said to be a convex
cone if (i) P + P ⊆ P ; (ii) λP ⊆ P for all λ > 0. A cone P is called pointed if P
is convex and P ∩ (−P ) = {0}. An ordered Banach space (Y, P ) is a real Banach
space Y with an order defined by a closed convex cone P ⊆ Y with apex at the
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origin, in the form of

y ≤P x ⇔ x − y ∈ P, ∀x, y ∈ Y

and
y �≤P x ⇔ x − y �∈ P, ∀x, y ∈ Y.

If the interior of P , say intP , is nonempty, then a weak order in Y is also defined
by

y �≤intP x ⇔ x − y �∈ intP, ∀x, y ∈ Y.

We will use the following notation to denote the same order relation:

y ≤P x ⇔ x ≥P y

and
y �≤P x ⇔ x �≥P y, y �≤intP x ⇔ x �≥intP y.

Let (X, K) and (Y, P ) be two ordered Banach spaces with intP �= ∅. Denote
by L(X, Y ) the set of all linear continuous mappings from X to Y . The weak
(intP )-dual cone Kw+

intP of K is defined by

Kw+

intP = {q ∈ L(X, Y ) : 〈q, x〉 �≤(int)P 0, ∀x ∈ K},

where the subscript intP means that the weak order �≤intP is defined by intP , and
the value of q ∈ L(X, Y ) at x ∈ K is denoted by 〈q, x〉. The strong (P )-dual cone
Ks+

P of K is defined by

Ks+

P = {q ∈ L(X, Y ) : 0 ≤P 〈q, x〉, ∀x ∈ K}.

It is obvious that Kw+

intP and Ks+

P are nonempty, since the null linear mapping
belongs to Kw+

intP and Ks+

P . It is easy to see that Ks+

P ⊆ Kw+

intP if P is pointed. If
Y = R and P = R+, then the weak (intP ) and strong (P )-dual cones of K are
reduced to the usual dual cone K∗ of K given by

Kw+

intP = Ks+

P = K∗ = {q ∈ L(X, Y ), ∀x ∈ K}.

Let D ⊆ Y be a convex cone. Rapcsak (2000) introduced the following order

(2.1) y ≤D x ⇔ x − y ∈ D, ∀x, y ∈ Y.

Since clD is a closed convex cone, we can define the order induced by clD;

y �≤clD x ⇔ x − y �∈ clD, ∀x, y ∈ Y
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where clD denotes the closure of D. This order satisfies the following properties:

y �≤D x ⇔ y + w �≤D x + w, ∀x, y, w ∈ Y ;

y �≤D x ⇔ λy �≤D λx, ∀x, y ∈ Y and λ > 0.

Similarly, a weak (D)-dual Kw+

D of K is defined by

Kw+

D = {q ∈ L(X, Y ) : 〈q, x〉 �≤D 0, ∀x ∈ K}.
A strong (clD)-dual cone Ks+

clD of K is defined by

Ks+

clD = {q ∈ L(X, Y ) : 0 ≤clD 〈q, x〉, ∀x ∈ K},
where clD denotes the closure of D. Moreover, Rapcsak (2000) introduced the
following binary relation:

(2.2) y =D 0, ∈ Y ⇔
{

y ∈ Fr(clD) ∪ Fr(−clD) \ (−D)and

−y ∈ Fr(clD) ∪ Fr(−clD) \ (−D),

where FrA denotes the frontier of A. By this relation, the set of zero points with
respect to a convex cone D is nonempty if Fr(clD) \D is nonempty. We note that

y =D 0, y ∈ Y ⇔ λy =D 0, y ∈ Y, λ > 0.

3. GENERALIZED VECTOR IMPLICIT VARIATIONAL INEQUALITIES AND

COMPLEMENTARITY PROBLEMS

Let (X, K) and (Y, P ) be two ordered Banach spaces with intP �= ∅, and
D a convex cone in Y . Let T : X → 2L(X,Y ), A : L(X, Y ) → L(X, Y ) and
g : K → K be a mapping. In this paper, we consider two kinds of generalized
vector implicit variational inequality problems and three kinds of generalized vector
implicit complementarity problems as follows:

1. Generalized weak vector implicit variational inequality problem (in short,
GWVIVIP): find x∗ ∈ K such that 〈As∗, y − g(x∗)〉 �≤D 0, ∀y ∈ K, for
some s∗ ∈ Tx∗.

2. Generalized strong vector implicit variational inequality problem (in short,
GSVIVIP): find x∗ ∈ K such that 〈As∗, y − g(x∗)〉 ≥clD 0, ∀y ∈ K, for
some s∗ ∈ Tx∗.

3. Generalized weak vector implicit complementarity problem (in short, GWVICP):
find x∗ ∈ K such that As∗ ∈ Kw+

D and 〈As∗, g(x∗)〉 =D 0, for some
s∗ ∈ Tx∗.
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4. Generalized positive vector implicit complementarity problem (in short,
GPVICP): find x∗ ∈ K such that As∗ ∈ Ks+

clD and 〈As∗, g(x∗)〉 =D 0, for
some s∗ ∈ Tx∗.

5. Generalized strong vector implicit complementarity problem (in short,
GSVICP): find x∗ ∈ K such that As∗ ∈ Ks+

clD and 〈As∗, g(x∗)〉 = 0, for
some s∗ ∈ Tx∗.

Special Cases. (I) If A = I the identity mapping of L(X, Y ), and T = f
a single valued mapping from X into L(X, Y ), then the above (GWVIVIP), (GS-
VIVIP), (GWVICP), (GPVICP) and (GSVICP) reduce to the following (WVIVIP),
(SVIVIP), (WVICP), (PVICP) and (SVICP), respectively:

1. Weak vector implicit variational inequality problem (in short, WVIVIP): find
x∗ ∈ K such that 〈f(x∗), y − g(x∗)〉 �≤D 0, ∀y ∈ K .

2. Strong vector implicit variational inequality problem (in short, SVIVIP): find
x∗ ∈ K such that 〈f(x∗), y − g(x∗)〉 ≥clD 0, ∀y ∈ K .

3. Weak vector implicit complementarity problem (in short, WVICP): find x∗ ∈
K such that f(x∗) ∈ Kw+

D and 〈f(x∗), g(x∗)〉 =D 0.

4. Positive vector implicit complementarity problem (in short, PVICP): find x∗ ∈
K such that f(x∗) ∈ Ks+

clD and 〈f(x∗), g(x∗)〉 =D 0.

5. Strong vector implicit complementarity problem (in short, SVICP): find x∗ ∈
K such that f(x∗) ∈ Ks+

clD and 〈f(x∗), g(x∗)〉 = 0.

The above (WVIVIP), (SVIVIP), (WVICP), (PVICP) and (SVICP) have been
considered and studied by Huang and Li (2006).

(II) If g is the identity mapping on K, then the above (WVIVIP), (WVICP),
(PVICP) and (SVICP) reduce to the following (VVIP), (WVCP), (PVCP) and
(SVCP), respectively:

1. Vector variational inequality problem (in short, VVIP): find x∗ ∈ K such that
〈f(x∗), y − x∗〉 �≤D 0, ∀y ∈ K.

2. Weak vector complementarity problem (in short, WVCP): find x∗ ∈ K such
that f(x∗) ∈ Kw+

D and 〈f(x∗), x∗〉 =D 0.

3. Positive vector complementarity problem (in short, PVCP): find x∗ ∈ K such
that f(x∗) ∈ Ks+

clD and 〈f(x∗), x∗〉 =D 0

4. Strong vector complementarity problem (in short, SVCP): find x∗ ∈ K such
that f(x∗) ∈ Ks+

clD and 〈f(x∗), x∗〉 = 0



626 Lu-Chuan Ceng and Sangho Kum

The above (VVIP), (WVCP), (PVCP) and (SVCP) have been considered and
studied by Rapcsak (2000). At the end of Rapcsak (2000), an open question is
proposed, i.e., in the case of ordering (2.1), the existence problem of a solution to
(VVIP) or (WVCP). Furthermore, if D is an open convex cone, then (WVIVIP),
(WVICP), (PVICP) and (SVICP) reduce to (VVIP), (WVCP), (PVCP) and (SVCP),
respectively, which have been considered and studied by Chen and Yang (1990) and
Yang (1993).

Definition 3.1. See Rapcsak (2000). A convex cone D is acute if clD is
pointed. A convex cone D is correct if

clD + {D \ (D ∩ (−D))} ⊆ D.

Lemma 3.1. See Rapcsak (2000). If D ⊆ Y is a convex cone, then for any
x, y ∈ Y ,

(1) 0 �≤D y and x ≤D y imply that 0 �≤D x;
(2) y �≤D 0 and y ≤D x imply that x �≤D 0.

Lemma 3.2. See Huang and Li (2006). If D ⊆ Y is an acute cone and 0 �∈ −D,
then

(1) y ≥clD 0 implies that y �≤D 0, ∀y ∈ Y ;
(2) Ks+

clD ⊆ Kw+

D .

Theorem 3.1. Let D ⊆ Y be an acute convex cone with apex at the origin.

(i) If x∗ solves (GSVIVIP) and 0 �∈ −D, then x∗ solves (GWVIVIP).
(ii) If x∗ solves (GWVIVIP) and 〈As∗, g(x∗)〉 ∈ Fr(clD) ∪ Fr(−clD) where

s∗ ∈ Tx∗ is an element associated with x∗ in the definition of (GWVIVIP),
then x∗ solves (GWVICP).

(iii) If x∗ solves (GWVICP), 〈As∗, g(x∗)〉 ∈ Fr(−clD)\ (−D), 0 �∈ −D and −D

is correct where s∗ ∈ Tx∗ is an element associated with x∗ in the definition
of (GWVICP), then x∗ solves (GWVIVIP).

(iv) If x∗ solves (GPVICP) and 0 �∈ −D, then x∗ solves (GWVICP).
(v) If x∗ solves (GSVICP) and 0 �∈ −D, then x∗ solves (GPVICP).
(vi) If x∗ solves (GSVICP) and 0 �∈ −D, then x∗ solves (GWVIVIP).

Proof. (i) Let x∗ ∈ K be a solution of (GSVIVIP), i.e., x∗ ∈ K such that

〈As∗, y − g(x∗)〉 ≥clD 0, ∀y ∈ K,
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for some s∗ ∈ Tx∗. Since D is an acute cone and 0 �∈ −D, from Lemma 3.2 we
derive

〈As∗, y − g(x∗)〉 �≤D 0, ∀y ∈ K,

which implies that x∗ is a solution of (GWVIVIP).
(ii) Let x∗ ∈ K be a solution of (GWVIVIP), i.e., x∗ ∈ K such that

(3.1) 〈As∗, y − g(x∗)〉 �≤D 0, ∀y ∈ K,

for some s∗ ∈ Tx∗. Let y = x + g(x∗) for any x ∈ K. Since K is a convex cone,
we know that y ∈ K and thus

〈As∗, x〉 �≤D 0,

which implies that As∗ ∈ Kw+

D .
Since y = (1 + λ)g(x∗), λ > −1, belongs to K , it follows from (3.1) that

λ〈As∗, g(x∗)〉 = 〈As∗, λg(x∗)〉 �≤D 0, λ ∈ (−1, +∞),

from which it follows that

(3.2) 〈As∗, g(x∗)〉 �∈ D and 〈As∗, g(x∗)〉 �∈ −D.

By the assumption that 〈As∗, g(x∗)〉 ∈ Fr(clD)∪Fr(−clD), we have −〈As∗, g(x∗)〉
∈ Fr(clD) ∪ Fr(−clD). It follows from (2.2) and (3.2) that

〈As∗, g(x∗)〉 =D 0,

which shows that x∗ is a solution of (GWVICP).
(iii) Let x∗ ∈ K be a solution of (GWVICP), i.e., x∗ ∈ K such that

(3.3) As∗ ∈ Kw+

D and 〈As∗, g(x∗)〉 =D 0 for some s∗ ∈ Tx∗.

Since As∗ ∈ L(X, Y ) and K ⊆ X , we have

(3.4) 〈As∗, y − g(x∗)〉 = 〈As∗, y〉 − 〈As∗, g(x∗)〉, ∀y ∈ K

and from assumption, we obtain

(3.5) 0 ≤clD −〈As∗, g(x∗)〉.

If 〈As∗, g(x∗)〉 = 0, then it follows from (3.3) and (3.4) that the conclusion holds.
Suppose that 〈As∗, g(x∗)〉 �= 0, and

(3.6) 〈As∗, y〉 �≤clD 0, ∀y ∈ K.
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Then, from (3.5) we obtain

(3.7) 〈As∗, y〉 ≤clD 〈As∗, y − g(x∗)〉.

Thus, by Lemma 3.1, combining (3.6) with (3.7) yields that

(3.8) 〈As∗, y − g(x∗)〉 �≤clD 0, ∀y ∈ K.

A consequence of (3.8) is that

〈As∗, y − g(x∗)〉 �≤D 0, ∀y ∈ K,

i.e., x∗ is a solution of (GWVIVIP). Assume 〈As∗, g(x∗)〉 �= 0 and there exists an
y ∈ K such that 〈As∗, y〉 ≤clD 0. Clearly 〈As∗, y〉 /∈ −D because As∗ ∈ Kw+

D . If
〈As∗, y− g(x∗)〉 ∈ −D, then from assumptions 〈As∗, g(x∗)〉 ∈ Fr(−clD) \ (−D),
0 �∈ −D (i.e., D ∩ (−D) = ∅), and the correctness of the cone −D, we have

〈As∗, y〉 = 〈As∗, y − g(x∗)〉+ 〈As∗, g(x∗)〉 ∈ −D − clD ⊆ −D,

which is a contradiction. Thus 〈As∗, y − g(x∗)〉 �≤D 0 for an y ∈ K satisfying
〈As∗, y〉 ≤clD 0. For an y ∈ K such that 〈As∗, y〉 �≤clD 0, using the argument
appeared in (3.6), (3.7) and (3.8), we see that 〈As∗, y−g(x∗)〉 �≤D 0. This implies
that x∗ is a solution of (GWVIVIP).

(iv) Let x∗ ∈ K be a solution of (GPVICP), i.e., x∗ ∈ K such that

As∗ ∈ Ks+

clD and 〈As∗, g(x∗)〉 =D 0 for some s∗ ∈ Tx∗.

Since D is an acute cone and 0 �∈ −D, then it follows from Lemma 3.2 that

As∗ ∈ Kw+

D ,

which shows that x∗ is also a solution of (GWVICP).
(v) Let x∗ ∈ K be a solution of (GSVICP), i.e., x∗ ∈ K such that

As∗ ∈ Ks+

clD and 〈As∗, g(x∗)〉 = 0 for some s∗ ∈ Tx∗.

Note that D is an acute cone and 0 �∈ −D, then it follows from relation (2.2) that

〈As∗, g(x∗)〉 =D 0,

which shows that x∗ is also a solution of (GPVICP).
(vi) Let x∗ ∈ K be a solution of (GSVICP), i.e., x∗ ∈ K such that

As∗ ∈ Ks+

clD and 〈As∗, g(x∗)〉 = 0 for some s∗ ∈ Tx∗.
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Since D is an acute cone and 0 �∈ −D, then by Lemma 3.2 we have that

〈As∗, y − g(x∗)〉 = 〈As∗, y〉 − 〈As∗, g(x∗)〉 �≤D 0,

which implies that x∗ is also a solution of (GWVIVIP). This completes the proof.

If A = I the identity mapping of L(X, Y ), and T = f a single valued map-
ping from X into L(X, Y ), then the following corollary follows immediately from
Theorem 3.1.

Corollary 3.1. (Huang and Li [12, Theorem 3.1]). Let D ⊆ Y be an acute
convex cone with apex at the origin.

(i) If x∗ solves (SVIVIP) and 0 �∈ −D, then x∗ solves (WVIVIP).
(ii) If x∗ solves (WVIVIP) and 〈f(x∗), g(x∗)〉 ∈ Fr(clD) ∪ Fr(−clD), then x∗

solves (WVICP).
(iii) If x∗ solves (WVICP), 〈f(x∗), g(x∗)〉 ∈ Fr(−clD)\ (−D), 0 �∈ −D and −D

is correct, then x∗ solves (WVIVIP).
(iv) If x∗ solves (PVICP) and 0 �∈ −D, then x∗ solves (WVICP).
(v) If x∗ solves (SVICP) and 0 �∈ −D, then x∗ solves (PVICP).
(vi) If x∗ solves (SVICP) and 0 �∈ −D, then x∗ solves (WVIVIP).

If A = I the identity mapping of L(X, Y ), and T = f a single valued mapping
from X into L(X, Y ), and g is the identity mapping on K , then the following
corollary follows immediately from Theorem 3.1.

Corollary 3.2. (Huang and Li [12, Remark 3.2]). Let D ⊆ Y be an acute
convex cone with apex at the origin.

(i) If x∗ solves (SVVIP) and 0 �∈ −D, then x∗ solves (WVVIP).
(ii) If x∗ solves (WVVIP) and 〈f(x∗), x∗〉 ∈ Fr(clD)∪Fr(−clD), then x∗ solves

(WVCP).
(iii) If x∗ solves (WVCP), 〈f(x∗), x∗〉 ∈ Fr(−clD) \ (−D), 0 �∈ −D and −D is

correct, then x∗ solves (WVVIP).
(iv) If x∗ solves (PVCP) and 0 �∈ −D, then x∗ solves (WVCP).
(v) If x∗ solves (SVCP) and 0 �∈ −D, then x∗ solves (PVCP).
(vi) If x∗ solves (SVCP) and 0 �∈ −D, then x∗ solves (WVVIP).

Lemma 3.3. (Lin [6]). Let K be a nonempty, convex subset of a Hausdorff
topological vector space X , and A be a nonempty subset of K × K . Suppose the
following assumptions hold:
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(i) for each x ∈ K, (x, x) ∈ A;
(ii) for each y ∈ K, Ay = {x ∈ K : (x, y) ∈ A} is closed in K;
(iii) for each x ∈ K, Ax = {y ∈ K : (x, y) �∈ A} is convex or empty;
(iv) there exists a nonempty compact convex subset C of K such that B = {x ∈

K : (x, y) ∈ A, ∀y ∈ C} is compact in K .

Then there exists x∗ ∈ K such that {x∗} × K ⊆ A.

Lemma 3.4. (Nadler [13]). Let (X, ‖ · ‖) be a normed space and H be the
Hausdorff metric on the collection CB(X) of all nonempty, closed and bounded
subsets of X , induced by the metric d(x, y) = ‖x− y‖, which is defined by

H(U, V ) = max{sup
x∈U

inf
y∈V

‖x− y‖, sup
y∈V

inf
x∈U

‖x − y‖}),

for U and V in CB(X). If U and V are compact sets in X , then for each x ∈ U ,
there exists y ∈ V such that

‖x − y‖ ≤ H(U, V ).

Definition 3.2. Let T : X → 2L(X,Y ) be a nonempty compact-valued multi-
function.

(i) T is said to be H-continuous at a point x0 ∈ X , i.e., limx→x0 H(Tx, Tx0) =
0, if for any given ε > 0, there exists δ > 0 such that H(Tx, Tx0) < ε

whenever ‖x− x0‖ < δ. T is said to be H-continuous if T is H-continuous
at each point x ∈ X .

(ii) T is said to be H-Lipschitz continuous if there exists η > 0 such that

H(Tx, Ty) ≤ η‖x− y‖, ∀x, y ∈ X.

Remark 3.1. It is well known that the concept of H-Lipschitz continuity for
vector valued multifunctions is usually used for guaranteeing the convergence of
iterative algorithms for set-valued variational inequalities and set-valued variational
inclusions; see Chang (2000), Zeng, Guu and Yao (2005), and Zeng, Schaible
and Yao (2005). It is easy to see that the H-Lipschitz continuity implies the H-
continuity. Moreover, it is clear that if T is a single valued mapping from X into
L(X, Y ) then the concept of H-continuity coincides with the one of usual continuity.

In order to establish the existence theorem of (GWVIVIP), we first prove the
following existence theorem of (GSVIVIP).

Theorem 3.2. Let A : L(X, Y ) → L(X, Y ) and g : K → K be continuous,
and T : X → 2L(X,Y ) be a nonempty compact-valued multifunction which is H-
continuous. Assume that for each x ∈ K, the set {y ∈ K : 〈As, y − g(x)〉 �∈
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clD, ∀s ∈ Tx} is convex or empty, and 〈As, x − g(x)〉 ∈ clD for all x ∈ K and
s ∈ Tx. Further assume that there exists a nonempty, compact and convex subset
C of K, such that for each x ∈ K \ C there exists y ∈ C satisfying

〈As, y − g(x)〉 �∈ clD,

for all s ∈ Tx. Then (GSVIVIP) has a solution. In particular, the solutions set of
(GSVIVIP) is closed.

Proof. Set

A = {(x, y) ∈ K × K : 〈As, y − g(x)〉 ∈ clD for some s ∈ Tx}.
We divide the proof of the theorem into four steps.

Step 1. For each x ∈ K, (x, x) ∈ A, since 〈As, x−g(x)〉 ∈ clD for all x ∈ K

and s ∈ Tx.

Step 2. Ay = {x ∈ K : (x, y) ∈ A} is closed in K for all y ∈ K . In fact,
let {xα} be a net in Ay such that xα → x0 ∈ K . Since xα ∈ Ay , we know that
〈Asα, y − g(xα)〉 ∈ clD for some sα ∈ Txα. Since T is a nonempty compact-
valued multifunction, Txα and Tx0 are compact subsets of L(X, Y ). Hence by
Lemma 3.4 for sα ∈ Txα we can find an s̄α ∈ Tx0 such that

‖sα − s̄α‖ ≤ H(Txα, Tx0).

Since Tx0 is compact, without loss of generality we may assume that s̄α → s0 ∈
Tx0. Moreover, we have

‖sα − s0‖ ≤ ‖sα − s̄α‖+ ‖s̄α − s0‖
≤ H(Txα, Tx0) + ‖s̄α − s0‖.

Note that T is H-continuous. Thus we have sα → s0. Also, observe that

(3.9)

‖〈Asα, y − g(xα)〉 − 〈As0, y − g(x0)〉‖
≤ ‖〈Asα, y − g(xα)〉 − 〈Asα, y − g(x0)〉‖
+‖〈Asα, y − g(x0)〉 − 〈As0, y − g(x0)〉‖
= ‖〈Asα, g(xα) − g(x0)〉‖ + ‖〈Asα − As0, y − g(x0)〉‖
≤ ‖Asα‖‖g(xα) − g(x0)‖+ ‖Asα − As0‖‖y − g(x0)‖.

Since A : L(X, Y ) → L(X, Y ) and g : K → K are continuous, Asα → As0 and
g(xα) → g(x0). Hence from (3.9) it follows that

〈Asα, y − g(xα)〉 → 〈As0, y − g(x0)〉.
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From the closedness of clD we obtain 〈As0, y − g(x0)〉 ∈ clD for some s0 ∈ Tx0,
and hence x0 ∈ Ay .

Step 3. From assumption, for each x ∈ K we have

Ax = {y ∈ K : (x, y) �∈ A}
= {y ∈ K : 〈As, y − g(x)〉 �∈ clD, ∀s ∈ Tx}

is convex or empty.

Step 4. Let B = {x ∈ K : (x, y) ∈ A, ∀y ∈ C}. We show that B is
compact in C. By assumption, for each x ∈ K \ C, there exists y ∈ C such that
〈As, y − g(x)〉 �∈ clD for all s ∈ Ax, that is, (x, y) �∈ A, which implies x �∈ B.
Thus, we have B ⊆ C. Since B = ∩y∈CAy , Ay is closed, and C is compact, B is
a compact subset of K.

From the above four steps and Lemma 3.3, there exists x∗ ∈ K such that
{x∗} × K ⊆ A, that is,

〈As∗, y − g(x∗)〉 ∈ clD, ∀y ∈ K,

for some s∗ ∈ Tx∗.
We claim that the solutions set of (GSVIVIP) is closed. Indeed, the proof of the

assertion is very similar to that in Step 2. However, for the sake of completeness, we
still present its proof. Let {x∗

n} ⊆ K be a sequence of solutions of (GSVIVIP) such
that x∗

n → x̂ ∈ K as n → ∞. Then for each n ≥ 1 there exists some s∗n ∈ Tx∗
n

such that
〈As∗n, y − g(x∗

n)〉 ∈ clD, ∀y ∈ K.

Since T is a nonempty compact-valued multifunction, Tx∗
n and T x̂ are compact

subsets of L(X, Y ). Hence by Lemma 3.4 for s∗n ∈ Tx∗
n we can find an ŝn ∈ T x̂

such that
‖s∗n − ŝn‖ ≤ H(Tx∗

n, T x̂).

Since T x̂ is compact, without loss of generality we may assume that ŝn → ŝ ∈ T x̂.
Moreover, we have

‖s∗n − ŝ‖ ≤ ‖s∗n − ŝn‖ + ‖ŝn − ŝ‖
≤ H(Tx∗

n, T x̂) + ‖ŝn − ŝ‖.

Note that T is H-continuous. Thus we have s∗n → ŝ. Also, observe that
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‖〈As∗n, y − g(x∗
n)〉 − 〈Aŝ, y − g(x̂)〉‖

≤ ‖〈As∗n, y − g(x∗
n)〉 − 〈As∗n, y − g(x̂)〉‖

+‖〈As∗n, y − g(x̂)〉 − 〈Aŝ, y − g(x̂)〉‖
= ‖〈As∗n, g(x∗

n) − g(x̂)〉‖+ ‖〈As∗n − Aŝ, y − g(x̂)〉‖
≤ ‖As∗n‖‖g(x∗

n) − g(x̂)‖ + ‖As∗n − Aŝ‖‖y − g(x̂)‖.
Since A : L(X, Y ) → L(X, Y ) and g : K → K are continuous, As∗n → Aŝ and
g(x∗

n) → g(x̂). Hence from the last inequality it follows that

〈As∗n, y − g(x∗
n)〉 → 〈Aŝ, y − g(x̂)〉.

From the closedness of clD we obtain 〈Aŝ, y − g(x̂)〉 ∈ clD for some ŝ ∈ T x̂, and
hence x̂ is a solution of (GSVIVIP). This shows that the solutions set of (GSVIVIP)
is closed.

If A = I the identity mapping of L(X, Y ), and T = f a single valued map-
ping from X into L(X, Y ), then the following corollary follows immediately from
Theorem 3.2.

Corollary 3.3. See Theorem 3.2 in Huang and Li (2006). Assume that f : X →
L(X, Y ) and g : K → K are continuous, and the set {y ∈ K : 〈f(x), y− g(x)〉 �∈
clD} is convex or empty for each x ∈ K , and assume that 〈f(x), x− g(x)〉 ∈ clD
for all x ∈ K. If there exists a nonempty, compact and convex subset C of K, such
that for each x ∈ K \ C there exists y ∈ C such that

〈f(x), y − g(x)〉 �∈ clD,

then, (SVIVIP) has a solution. Furthermore, the solutions set of (SVIVIP) is closed.

Theorem 3.3. Let D be an acute cone with apex at the origin and 0 �∈ −D.
Let A : L(X, Y ) → L(X, Y ) and g : K → K be continuous, and T : X →
2L(X,Y ) be a nonempty compact-valued multifunction which is H-continuous. If all
assumptions in Theorem 3.2 hold, then (GWVIVIP) has a solution.

Proof. It follows from Theorems 3.1 (i) and 3.2 that the conclusion holds. This
completes the proof.

If A = I the identity mapping of L(X, Y ), and T = f a single valued map-
ping from X into L(X, Y ), then the following corollary follows immediately from
Theorem 3.3.
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Corollary 3.4. See Theorem 3.3 in Huang and Li (2006). Let D be an acute
cone with apex at the origin and 0 �∈ −D. Let f : X → L(X, Y ) and g : K → K
be continuous. If all assumptions in Corollary 3.3 hold, then (WVIVIP) has a
solution.

Theorem 3.4. Let D be an acute cone with apex at the origin and 0 �∈ −D. Let
A : L(X, Y ) → L(X, Y ) and g : K → K be continuous, and T : X → 2L(X,Y )

be a nonempty compact-valued multifunction which is H-continuous. Suppose that
all assumptions in Theorem 3.3 hold and that 〈As ∗, g(x∗)〉 ∈ Fr(clD)∪Fr(−clD)
for any solution x∗ of (GWVIVIP), where s∗ ∈ Tx∗ is a corresponding element to
x∗ in the definition of (GWVIVIP). Then (GWVICP) has a solution.

Proof. It follows from Theorems 3.1 (ii) and 3.3 that the conclusion holds.
This completes the proof.

If A = I the identity mapping of L(X, Y ), and T = f a single valued map-
ping from X into L(X, Y ), then the following corollary follows immediately from
Theorem 3.4.

Corollary 3.5. See Theorem 3.4 in Huang and Li (2006). Let D be an acute
cone with apex at the origin and 0 �∈ −D. Let f : X → L(X, Y ) and g : K → K
be continuous. If 〈f(x∗), g(x∗)〉 ∈ Fr(clD) ∪ Fr(−clD) for any solution x∗ of
(WVIVIP), and all assumptions in Corollary 3.4 hold, then (WVICP) has a solution.

Remark 3.2. If g is the identity mapping on K in Corollaries 3.4 and 3.5, then
we obtain the existence theorems of solutions for (VVIP) and (WVCP). Thus, we
give an affirmative answer to the open question proposed by Rapcsak (2000).
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