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ALGORITHM OF SOLUTIONS FOR A SYSTEM OF GENERALIZED
MIXED IMPLICIT QUASI-VARIATIONAL INCLUSIONS
INVOLVING h-η-MAXIMAL MONOTONE MAPPINGS

Xie-Ping Ding1, Chinsan Lee2 and Su-Jane Yu3

Abstract. In this paper, we introduce a new class of h-η-maximal monotone
mappings and a new system of generalized mixed implicit quasi-variational in-
clusions involving set-valued mappings and h-η-maximal monotone mappings.
By using resolvent operator technique of h-η-maximal monotone mappings, A
new iterative algorithm to compute approximate solutions of the system is
suggested and analyzed. The convergence of the iterative sequence generated
by the new algorithm is also proved. These results generalize many known
results in literature.

1. INTRODUCTION

Variational inequality theory has become very effective and powerful tool for
studying a wide range of problems arising in differential equations, mechanics, con-
tact problems in elasticity, optimization and control problems, management science,
operations research, general equilibrium problems in economics and transportation,
unilateral, obstacle, moving, etc. Hassouni and Moudafi [12] introduced and stud-
ied a class of mixed type variational inequalities with single-valued mappings which
was called variational inclusions. Since then, many authors have obtained important
extensions and generalizations of the results in [1] from various different directions,
see [1-11,13-18,20-24]. Verma [26,27] introduced and studied some system of vari-
ational inequalities and some iterative algorithms to compute approximate solutions

Received October 30, 2006.
Communicated by J. C. Yao.
2000 Mathematics Subject Classification: 49J40, 49J53, 47J20.
Key words and phrases: System of generalized mixed implicit quasi-variational inclusions, h-η-
Maximal monotone, Resolvent operator, Iterative algorithm, Hilbert space.
1The research of this author was supported by the NSF of Sichuan Education Department of China
(2003A081), SZD0406 and National Center for Theoretical Sciences (South).
2This research was partially supported by a grant from the National Science Council.

577



578 Xie-Ping Ding, Chinsan Lee and Su-Jane Yu

was also suggested and analyzed in Hilbert spaces. Fang and Huang [11] introduced
a class of H-monotone operators and studied a new class of variational inclusions
involving H-monotone operators.

Inspired and motivated by recent research works in this field, in this paper, we
introduce a new class of h-η-maximal monotone mappings and a new system of gen-
eralized mixed implicit quasi-variational inclusions involving set-valued mappings
and h-η-maximal monotone mappings. By using resolvent operator technique of h-η
maximal monotone mappings, A new iterative algorithm to compute approximate
solutions is suggested and analyzed. The convergence of the sequences of approx-
imate solutions generated by the new algorithm to exact solution is also proved.
These results are new and improve and generalize many known results in the fields.

2. PRELIMINARIES

Let H be a real Hilbert space with a norm ‖ · ‖ and an inner product 〈·, ·〉. Let
2H and CB(H) denote the family of all nonempty subsets of H and the family
of all nonempty bounded closed subsets of H respectively. Let H̃(·, ·) denote the
Hausdorff metric on CB(H) defined by

H̃(A,B) = max{supa∈Ad(a, B), supb∈Bd(A, b)}, ∀ A,B ∈ CB(H),

where d(a, B) = infb∈B ‖ a− b ‖: b ∈ B} and d(A, b) = infa∈A ‖ a− b ‖ .

Definition 2.1. [20] A mapping η : H ×H → H is said to be

(i) monotone if
〈x− y, η(x, y)〉 ≥ 0, ∀x, y ∈ H ;

(ii) strictly monotone if η is monotone and the equality holds if and only if x = y;

(iii) αη-strongly monotone if there exists a constant αη > 0 such that

〈x− y, η(x, y)〉 ≥ αη‖x− y‖2, ∀ x, y ∈ H ;

(iv) Lη-Lipschitz continuous if there exists a constant Lη > 0 such that

‖η(x, y)‖ ≤ Lη‖x− y‖, ∀ x, y ∈ H.

Definition 2.2. Let h : H → H and η : H × H → H be single-valued
mappings. h is said to be

(i) η-monotone if

〈h(x) − h(y), η(x, y)〉 ≥ 0, ∀ x, y ∈ H ;
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(ii) η-strictly monotone if h is η-monotone and

〈h(x)− h(y), η(x, y)〉= 0 if and only if x = y;

(iii) αh-η-strongly monotone if there exists a constant αh > 0 such that

〈h(x)− h(y), η(x, y)〉 ≥ αh‖x− y‖2, ∀ x, y ∈ H ;

(iv) Lipschitz continuous if there exists a constant Lh > 0 such that

‖h(x)− h(y)‖ ≤ Lh‖x− y‖, ∀ x, y ∈ H.

It is clear that if h = I , the identity mapping on H , then the notions (i), (ii) and
(iii) in definition 2.2 reduce to (i), (ii) and (iii) in Definition 2.1, respectively.

Definition 2.3. [17] Let η : H × H → H be a single-valued mapping and
M : H → 2H be a set-valued mapping. M is said to be

(i) η-monotone if

〈u− v, η(x, y)〉 ≥ 0, ∀ x, y ∈ H, u ∈M(x), v ∈M(y);

(ii) η-maximal monotone if M is η-monotone and (I + ρM)(H) = H for all
ρ > 0, where I is the identity mapping on H .

Definition 2.4. Let h : H → H and η : H×H → H be single-valued mappings
and M : H → 2H be a set-valued mapping. M is said to be h-η-maximal monotone
if M is η-monotone and (h+ ρM)(H) = H for all ρ > 0.

Remark 2.1. It is clear that if h = I , the identity mapping, the concept of I-η-
maximal monotone mapping coincides with that of η-maximal monotone mapping
defined in [17]. If η(x, y) = x − y for all x, y ∈ H , the concept of h-η-maximal
monotone mapping reduces to that of h-maximal monotone mapping (which is called
h-monotone operator in [11]).

Definition 2.5. [7,8,17] Let η : H × H → H and ϕ : H → R
⋃{+∞} be

a proper functional. ϕ is said to be η-subdifferentiable at a point x ∈ H if there
exists a point f ∗ ∈ H such that

ϕ(y)− ϕ(x) ≥ 〈f∗, η(y, x)〉, ∀ y ∈ H,

where f∗ is called a η-subdifferential of ϕ at x. The set of all η-subdifferential of
ϕ at x is denoted by ∆ϕ(x). The mapping ∆ϕ : H → 2H defined by

∆ϕ(x) = {f∗ ∈ H : ϕ(y)− ϕ(x) ≥ 〈f∗, η(y, x)〉, ∀ y ∈ H}
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is said to be η-subdifferential of ϕ at x.

Proposition 2.1. [7,8,17] Let η : H × H → H be continuous and strongly
monotone with constant r > 0 such that η(x, y) = −η(y, x) for all x, y ∈ H ,
and for any given x ∈ H , the function h(y, u) = 〈x− u, η(y, u)〉 is 0-diagonally
quasi-concave in y (see [7]) . Let ϕ : H → R

⋃{+∞} be a lower semicontinuous
η-subdifferentiable proper functional. Then ∆ϕ : H → 2 H is η-maximal monotone,
i.e., for any ρ > 0, (I + ρ∆ϕ)(H) = H .

Proposition 2.2. Let h : H → H be a η-strictly monotone mapping and
M : H → 2H be h-η-maximal monotone. Then M is η-maximal monotone.

Proof. Since M is η-monotone, by Proposition 1 of Lee et al. [17], it is
sufficient to prove

〈u− v, η(x, y)〉 ≥ 0, ∀ (y, v) ∈ Gr(M) implies u ∈M(x),

where Gr(M) = {(x, u) ∈ H ×H : u ∈M(x)} denotes the graph of M . Suppose
that M is not maximal η-monotone, then there exists (x0, u0) /∈ Gr(M) such that

〈u0 − v, η(x0, y)〉 ≥ 0, ∀ (y, v) ∈ Gr(M).

By assumption that for any ρ > 0, (h + ρM)(H) = H , there exists (x1, u1) ∈
Gr(M) such that

h(x1) + ρu1 = h(x0) + ρu0.

It follows that

ρ〈u0 − u1, η(x0, x1)〉 = −〈h(x0) − h(x1), η(x0, x1)〉 ≥ 0.

Since h is strict η-monotone, we must have x0 = x1 and so u0 = u1. Hence
(x0, u0) ∈ Gr(M) which is a contradiction. Therefore M is η-maximal monotone.

Remark 2.2. Proposition 2.2 unifies and generalizes Proposition 2.1 of Fang
and Huang [11].

Example 1. Let H = R, and h, η and M be defined as follows: h(x) =
x3, η(x, y) = x2 − y2, M(x) = {x2}, ∀ x, y ∈ R. Then M is h-η-maximal
monotone, but not η-maximal monotone.

Proof. By the definitions of h,η and M , we have

〈M(x)−M(y), η(x, y)〉 = (x2 − y2)2 ≥ 0, ∀ x, y ∈ R.



Involving h-η-Maximal Monotone Mappings 581

Hence M is η-monotone. Since for any ρ > 0, we have

(h+ ρM)(x) = x3 + ρx2, ∀ x ∈ R.

It is easy to see that (h + ρM)(R) = R. So M is h-η-maximal monotone. Since
(I +M)(x) = x+ x2 ∈ [−1

4 ,+∞) for all x ∈ R, therefore (I +M)(R) 
= R and
hence M is not η-maximal monotone.

Example 2. Let H = R, and h, η and M be defined as follows: h(x) =
x2, η(x, y) = |xy|(x − y), M(x) = {x}, ∀ x, y ∈ R. Then M is η-maximal
monotone, but not h-η-maximal monotone.

Proof. By the definitions of h, η and M , we have

〈M(x)−M(y), η(x, y)〉= |xy|(x− y)2 ≥ 0, ∀ x, y ∈ R.

Hence M is η-monotone. For all ρ > 0, we have

(I + ρM)(x) = (1 + ρ)x, ∀ x ∈ R.

It is easy to see that (I + ρM)(R) = R and hence M is η-maximal monotone.
Since

(h+M)(x) = x2 + x ∈ [−1
4
,+∞), ∀ x ∈ R,

we have (h+M)(R) 
= R and so M is not h-η-maximal monotone.

Theorem 2.1. Let η : H ×H → H . Let h : H → H be η-strictly monotone
and M : H → 2H is h-η-maximal monotone. Then for any ρ > 0, the inverse
operator (h+ ρM)−1 : H → H is single-valued.

Proof. For any given u ∈ H , let x, y ∈ (h+ ρM)−1(u). Then we have

u− h(x) ∈ ρM(x) and u− h(y) ∈ ρM(y).

Since M is η-monotone, we have

0 ≤ 〈u− h(x)− (u− h(y)), η(x, y)〉= −〈h(x) − h(y), η(x, y)〉.

It follows from the strict η-monotonicity of h that x = y. Therefore (h+ ρM)−1 a
single-valued mapping.

Remark 2.3. If η(x, y) = x− y for all x, y ∈ H , then Theorem 2.1 reduces to
Theorem 2.1 of Fang and Huang [11].
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Definition 2.6. Let η : H×H → H and let h : H → H be η-strictly monotone
and M : H → 2H be h-η-maximal monotone. The resolvent operator Rh

M,ρ : H →
H of M is defined by

Rh
M,ρ(x) = (h+ ρM)−1(x), ∀ x ∈ H.

Theorem 2.2. Let η : H ×H → H be Lη-Lipschitz continuous, h : H → H be
αh- η-strongly monotone and M : H → 2H be h-η-maximal monotone. Then the
resolvent operator Rh

M,ρ of M is Lη

αh
-Lipschitz continuous, i.e.,

‖Rh
M,ρ(x)−Rh

M,ρ(y)‖ ≤ Lη

αh
‖x− y‖, ∀ x, y ∈ H.

Proof. By the definition of the resolvent operator Rh
M,ρ of M , for any x, y ∈ H ,

we have

Rh
M,ρ(x) = (h+ ρM)−1(x) and Rh

M,ρ(y) = (h+ ρM)−1(y).

It follows that
1
ρ
(x− h(Rh

M,ρ(x))) ∈M(Rh
M,ρ(x)) and

1
ρ
(y − h(Rh

M,ρ(y))) ∈M(Rh
M,ρ(y)).

Since M is η-monotone, we have

〈x− h(Rh
M,ρ(x))− (y − h(Rh

M,ρ(y))), η(R
h
M,ρ(x), R

h
M,ρ(y))〉 ≥ 0.

It follows that

Lη‖x− y‖‖Rh
M,ρ(x) −Rh

M,ρ(y)‖ ≥ ‖x− y‖‖η(Rh
M,ρ(x), R

h
M,ρ(y))‖

≥ 〈x− y, η(Rh
M,ρ(x), R

h
M,ρ(y))〉

≥ 〈h(Rh
M,ρ(x))− h(Rh

M,ρ(y)), η(R
h
M,ρ(x), R

h
M,ρ(y))〉

≥ αh‖Rh
M,ρ(x)− Rh

M,ρ(y)‖2.

It follows that

‖Rh
M,ρ(x)−Rh

M,ρ(y)‖ ≤ Lη

αh
‖x− y‖, ∀ x, y ∈ H.

Remark 2.4. If η(x, y) = x− y for all x, y ∈ H , then Theorem 2.2 reduces to
Theorem 2.2 of Fang and Huang [11].

Definition 2.7. Let N : H×H → H be a single-valued mapping and A : H →
CB(H) be set-valued mappings.
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(i) N (·, ·) is said to be αN -strongly monotone with respect to A in first argument
if there exists αN > 0 such that

〈N (u1, v)−N (u2, v), x1 − x2〉 ≥ αN‖x1 − x2‖2, ∀ x1, x2,

v ∈ H, u1 ∈ A(x1), u2 ∈ A(x2),

(ii) N (·, ·) is said to be LN -Lipschitz continuous in first argument if there exists
LN > 0 such that

‖N (u1, v)−N (u2, v)‖ ≤ LN‖u1 − u2‖, ∀ u1, u2, v ∈ H,

(iii) (Ref. 24) N (·, ·) is said to be mixed Lipschitz continuous with respect to first
and second arguments if there exist r1, r2 > 0 such that

‖N (u1, v1)−N (u2, v2)‖ ≤ r1‖u1−u2‖+r2‖v1−v2‖, ∀ ui, vi ∈ H, i = 1, 2,

(iv) A is said to be LA-Lipschitz continuous if there exists LA > 0 such that

H̃(A(x), A(y)) ≤ LA‖x− y‖, ∀x, y ∈ H.

Let h1, h2, : H → H andN1, N2, η1, η2, Q : H×H → H be single-valued map-
pings, and M1 : H×H → 2H and M2 : H×H → 2H be h1-η1-maximal monotone
and h2-η2-maximal monotone in first argument respectively. Let A,B, C,D, E :
H → CB(H) be set-valued mappings.

Throughout this paper, we will consider the following system of generalized
mixed implicit quasi-variational-like inclusion problems (SGMIQV LIP ): find
(x̂, ŷ) ∈ H × H , û ∈ A(x̂), v̂ ∈ B(ŷ), ŵ ∈ C(ŷ), d̂ ∈ D(x̂) and ê ∈ E(x̂) such
that

(2.1)

{
0 ∈ h1(x̂) − x̂+ ρN1(û, v̂) + ρQ(x̂, ŷ) + ρM1(x̂, ŵ),

0 ∈ h2(ŷ) − γN2(d̂, x̂) + γM2(ŷ, ê),

where ρ > 0 and γ > 0 are two constants.

Special Cases

(I) If h2 is the identity mapping, N2(d, x) = x
γ for all d, x ∈ H , M2 ≡ 0, and

Q(x, y) = x
ρ , then the SGMIQVLIP (2.1) reduces to the following generalized

mixed implicit quasi-variational-like inclusion problem ( GMIQV LIP ): find
x̂ ∈ H , û ∈ A(x̂), v̂ ∈ B(x̂) and ŵ ∈ C(x̂) such that

(2.2) 0 ∈ h1(x̂) + ρN1(û, v̂) + ρM1(x̂, ŵ),
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where ρ > 0 is a constant.

Clearly, the variational inclusion (3.1) studied by Fang and Huang (Ref. 11)
is very special case of the GMIQV LIP (2.2). The problem (2.2) includes many
generalized mixed implicit quasi-variational inclusions, generalized mixed implicit
quasi-variational inequalities as special cases.

(II) If h1, h2 are both the identity mapping, N2(d, x) = x
γ for all d, x ∈ H ,

M2 ≡ 0, η1(x, y) = x−y for all x, y ∈ H , and M1 is maximal monotone, then the
GMIQV LIP (2.1) reduces to the following multivalued quasi-variational inclusion
problem ( MQV IP ): find x̂ ∈ H , û ∈ A(x̂), v̂ ∈ B(x̂) and ŵ ∈ C(x̂) such that

(2.3) 0 ∈ N1(û, v̂) +Q(x̂, x̂) +M1(x̂, ŵ).

The MQV IP (2.3) with C being single-valued mapping and Q ≡ 0 was intro-
duced and studied by Moudafi and Noor [18] which has many important applications
in pure and applied sciences. Indeed, a number of problems arising in structural anal-
ysis, mechanics, composite problems, and economics, see, for example [1-18,20-25].

(III) If h1 and h2 are both the identity mapping, and M1 and M2 are η1-
maximal monotone and η2-maximal momotone in first argument respectively, then
the SGMIQV LIP (2.1) reduces to the following SGMIQV LIP : find (x̂, ŷ) ∈
H ×H , û ∈ A(x̂), v̂ ∈ B(ŷ), ŵ ∈ C(ŷ), d̂ ∈ D(x̂) and ê ∈ E(x̂) such that

(2.4)

{
0 ∈ N1(û, v̂) +Q(x̂, ŷ) +M1(x̂, ŵ),

0 ∈ ŷ − γN2(d̂, x̂) + γM2(ŷ, ê),

where γ > 0 is a constant.

(IV) If C and E are both single-valued mappings, then the SGMIQV LIP

(2.4) is equivalent to the following system of generalized mixed quasi-variational-
like inclusion problems ( SGMQVLIP ) : find (x̂, ŷ) ∈ H × H , û ∈ A(x̂),
v̂ ∈ B(ŷ) and d̂ ∈ D(x̂) such that

(2.5)

{
0 ∈ N1(û, v̂) +Q(x̂, ŷ) +M1(x̂, C(ŷ)),

0 ∈ ŷ − γN2(d̂, x̂) + γM2(ŷ, E(x̂)),

where γ > 0 is a constant.

(V) Let ϕ : H ×H → R
⋃{+∞} and ψ : H ×H → R

⋃{+∞} be such that
for each fixed w ∈ H , ϕ(·, w) and ψ(·, w) are both lower semicontinuous, and are
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η1-subdiffrentiable and η2-sundifferentiable proper functionals respectively where
η1 and η2 satisfy the conditions in Proposition 2.1. Then, for each fixed w ∈ H ,
∆ϕ(·, w) and ∆ψ(·, w) are η1-maximal monotone and η2-maximal monotone respec-
tively by Proposition 2.1. Let M1(·, w) = ∆ϕ(·, w) and M2(·, e) = ∆ψ(·, e) for all
w, e ∈ H respectively. By Definition 2.5, it is easy to see that the SGMIQV LIP

(2.4) reduces to the following system of generalized mixed implicit quasi-variational-
like inclusion problems: find (x̂, ŷ) ∈ H × H , û ∈ A(x̂), v̂ ∈ B(ŷ), ŵ ∈ C(ŷ),
d̂ ∈ D(x̂) and ê ∈ E(x̂) such that

(2.6)

{ 〈N1(û, v̂) +Q(x̂, ŷ), η1(x, x̂)〉 ≥ ϕ(x̂, ŵ) − ϕ(x, ŵ), ∀ x ∈ H,

〈ŷ − γN2(d̂, x̂), η2(y, ŷ)〉 ≥ γψ(ŷ, ê) − γψ(y, ê), ∀ y ∈ H,
where γ > 0 is a constant.

(VI) If C(y) = {y} and E(x) = {x} for all y, x ∈ H , then the SGMIQV IP

(2.6) reduces to the following system of generalized mixed quasi-variational-like
inclusion problem: find (x̂, ŷ) ∈ H ×H , û ∈ A(x̂), v̂ ∈ B(ŷ) and d̂ ∈ D(x̂) such
that

(2.7)

{ 〈N1(û, v̂) +Q(x̂, ŷ), η1(x, x̂)〉 ≥ ϕ(x̂, ŷ) − ϕ(x, ŷ), ∀ x ∈ H,
〈ŷ − γN2(d̂, x̂), η2(y, ŷ)〉 ≥ γψ(ŷ, x̂) − γψ(y, x̂), ∀ y ∈ H,

where γ > 0 is a constant.

(VII) If K1 : H → 2H and K2 : H → 2H are two set-valued mappings
such that for each x, y ∈ H , K1(y) and K2(x) are both closed convex subsets of
H , η1(x, y) = η2(x, y) = x − y for all x, y ∈ H , and ϕ(·, y) = IK1(y)(·) and
ψ(·, x) = IK2(x)(·) are the indicator function of K1(y) and K2(x) respectively, i.e.,

IK1(y)(u) =

{
0, if u ∈ K1(y),

+∞, otherwise,

IK2(x)(u) =

{
0, if u ∈ K2(x),

+∞, otherwise,

then the SGMQVLIP (2.7) reduces to the following system of generalized non-
linear mixed quasi-variational inequality problems: find (x̂, ŷ) ∈ K1(ŷ) × K2(x̂),
û ∈ A(x̂), v̂ ∈ B(ŷ) and d̂ ∈ D(x̂) such that

(2.8)
{ 〈N1(û, v̂) +Q(x̂, ŷ), x− x̂〉 ≥ 0, ∀ x ∈ K1(ŷ),

〈ŷ − γN2(d̂, x̂), y − ŷ〉 ≥ 0, ∀ y ∈ K2(x̂),
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where γ > 0 is a constant.

In brief, for appropriate and suitable choices of h1, h2, η1, η2, A,B, C,D, E,
M1 and M2, it is easy to see that the SGMIQVLIP (2.1) includes a number of
systems of generalized mixed implicit quasi-variational-like inclusions, systems of
generalized mixed implicit quasi-variational-like inequalities, generalized mixed im-
plicit quasi-variational-like inclusions and generalized mixed quasi-variational-like
inequalities studied by many authors as special cases, for example, see [1-18,20-28].

From the definition of resolvent operator of h-η-maximal monotone mapping,
we have the following result.

Theorem 2.3 (x̂, ŷ) ∈ H ×H , û ∈ A(x̂), v̂ ∈ B(ŷ), w̄ ∈ C(ŷ), d̂ ∈ D(x̂) and
ê ∈ E(x̂) is a solution of the SGMIQVLIP (2.1) if and only if

x̂ = Rh1
M1(·,ŵ),ρ[x̂− ρN1(û, v̂)− ρQ(x̂, ŷ)] and ŷ = Rh2

M2(·,ê),γ [γN2(d̂, x̂)],

where Rh1

M1(·,ŵ),ρ
(u) = (h1(·) + ρM(·, ŵ))−1(u) and Rh2

M2(·,ê),γ(u) = (h2(·) +
γ(M2(·, ê))−1(u).

3. EXISTENCE AND ALGORITHM

In order to compute approximate solutions of the SGMIQVLIP (2.1), we
suggest the following iterative algorithm.

Algorithm 3.1 For any given x0 ∈ H and λ ∈ (0, 1], take any d0 ∈ D(x0) and
e0 ∈ E(x0). Let

(3.1) y0 = Rh2

M2(·,e0),γ
[γN2(d0, x0)].

Take any u0 ∈ A(x0), v0 ∈ B(y0) and w0 ∈ C(y0). Let

(3.2) x1 = (1− λ)x0 + λRh1

M1(·,w0),ρ
[x0 − ρN1(u0, v0) − ρQ(x0, y0)].

By Nadler [19], there u1 ∈ A(x1), d1 ∈ D(x1) and e1 ∈ E(x1) such that

‖u1 − u0‖ ≤ (1 + 1)H̃(A(x1), A(x0)),

‖d1 − d0‖ ≤ (1 + 1)H̃(D(x1), D(x0)),

‖e1 − e0‖ ≤ (1 + 1)H̃(E(x1), E(x0)).

Let

(3.3) y1 = Rh2
M2(·,e1),γ

, [γN2(d1, x1)],
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By Nadler [19], there exist v1 ∈ B(y1) and w1 ∈ C(y1) such that

‖v1 − v0‖ ≤ (1 + 1)H̃(B(y1), B(y0)),

‖w1 −w0‖ ≤ (1 + 1)H̃(C(y1), C(y0)).

Following this way, we can define sequences {xn}, {yn}, {un}, {vn}, {wn}, {dn}
and {en} as follows:

(3.4)




un ∈ A(xn), vn ∈ B(yn), wn ∈ C(yn), dn ∈ D(xn), en ∈ E(xn),

‖un+1 − un‖ ≤ (1 + 1
n+1 )H̃(A(xn+1), A(xn)),

‖vn+1 − vn‖ ≤ (1 + 1
n+1 )H̃(B(yn+1), B(yn)),

‖wn+1 −wn‖ ≤ (1 + 1
n+1 )H̃(C(yn+1), C(yn)),

‖dn+1 − dn‖ ≤ (1 + 1
n+1 )H̃(D(xn+1), D(xn)),

‖en+1 − en‖ ≤ (1 + 1
n+1 )H̃(E(xn+1), E(xn)),

yn = Rh2

M2(·,en),γ
[γN2(dn, xn)],

xn+1 = (1− λ)xn + λRh1

M1(·,wn),ρ
[xn − ρN1(un, vn) − ρQ(xn, yn)],

n = 0, 1, 2, · · · .

Theorem 3.1 Let η1, η2 : H × H → H be Lη1-Lipshitz continuous and Lη2-
Lipschitz continuous respectively. Let h1, h2 : H → H be αh1 -η1-strongly mono-
tone and αh2 -η2-strongly monotone respectively. Let M1,M2 : H × H → 2H be
h1-η1-maximal monotone and h2-η2-maximal monotone in first argument respec-
tively. Let A,B, C,D, E : H → CB(H) be Lipachitz continuous with Lipschitz
constants LA, LB, LC , LD and LE . Let N1, N2, Q : H ×H → H be such that

(i) N1(·, ·) is αN1 -strongly monotone in first argument with respect to A, r1-
Lipschitz continuous in first argument, and r2-Lipschitz continuous in second
argument,

(ii) N2(·, ·) is mixed Lipschith continuous with constants k1, k2 > 0,
(iii) Q(·, ·) is mixed Lipschitz continuous with constants s1, s2 > 0.

Assume that there exist ρ, γ, δ, µ > 0 satisfying

(3.5) ‖Rh1

M1(·,w1),ρ
(u) −Rh1

M (·,w2),ρ
(u)‖ ≤ δ‖w1 −w2‖, ∀ w1, w2, u ∈ H,

(3.6) ‖Rh2
M2(·,e1),γ

(u)− Rh2
M2(·,e2),γ

(u)‖ ≤ µ‖e1 − e2‖, ∀ e1, e2, u ∈ H.
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If
(3.7)


δLC < 1, r2LB + s1 + s2 < r1LA, αh1(1− δLC) < Lη1,

αN1 > L−1
η1
αh1(1 − δLC)(r2LB + s1 + s2)

+
√

[r21L
2
A − (r2LB + s1 + s2)2](1 − L−2

η1 α
2
h1

(1− δLC)2),

|ρ− αN1 − L−1
η1
αh1(1− δLC)(r2LB + s1 + s2)

r21L
2
A − (r2LB + s2 + s2)2

|

<

√
[αN1

−L−1
η1 (1−δLC)(r2LB+s1+s2)]2−(r2

1L2
A−(r2LB+s1+s2)2)(1−L−2

η1 α2
h1

(1−δLC)2)

r2
1L2

A−(r2LB+s1+s2)2
,

µLE < 1, 0 < γ <
αh2(1− µLE)
Lη2(k1LD + k2)

,

Then there exist (x̂, ŷ) ∈ H ×H , û ∈ A(x̂), v̂ ∈ B(ŷ), ŵ ∈ C(ŷ), d̂ ∈ D(x̂)
and ê ∈ E(x̂) such that

(3.8)

{
0 ∈ h1(x̂) − x̂+ ρN1(û, v̂) + ρQ(x̂, ŷ) + ρM1(x̂, ŵ),

0 ∈ h2(ŷ) − γN2(d̂, x̂) + γM2(ŷ, ê),

and the iterative sequences generated by the Algorithm 3.1 satisfy: xn → x̂, yn → ŷ,
un → û, vn → v̂, wn → ŵ, dn → d̂ and en → ê.

Proof. For convenience’ sake, write

an = ‖xn − ρN1(un, vn)− ρQ(xn, yn)‖.
By the Algorithm 3.1, (3.5) and Theorem 2.2, we have

(3.9)

‖xn+1 − xn‖
= ‖(1− λ)xn + λRh1

M1(·,wn),ρ[xn − ρN1(un, vn)− ρQ(xn, yn)]

−(1 − λ)xn−1 − λRh1

M1(·,wn−1),ρ
[xn−1

−ρN1(un−1, vn−1) − ρQ(xn−1, yn−1)]‖
≤ (1− λ)‖xn − xn−1‖ + λ‖Rh1

M1(·,wn),rho(an) − Rh1

M (·,wn)ρ(an−1)‖
+λ‖Rh1

M (·,wn),ρ(an−1)− Rh1

M (·,wn−1),ρ
(an−1)‖

≤ (1− λ)‖xn − xn−1‖ + λLη1
αh1

‖an − an−1‖ + λδ‖wn − wn−1‖
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(3.10)

‖an − an−1‖
≤ ‖xn − ρN1(un, vn) − ρQ(xn, yn)

−(xn−1 − ρN1(un−1, vn−1) − ρQ(xn−1, yn−1))‖
≤ ‖xn − xn−1 − ρ(N1(un, vn) −N1(un−1, vn))‖

+ρ‖N1(un−1, vn)−N1(un−1, vn−1)‖+ρ‖Q(xn, yn)−Q(xn−1, yn−1)‖.
Since N1(·, ·) is αN1-strongly monotone in first argument with respect to A and
r1-Lipschitz continuous in first argument, and A is LA-Lipschitz continuous, by
(3.4), we have

(3.11)

‖xn − xn−1 − ρ(N1(un, vn) −N1(un−1, vn))‖2

= ‖xn − xn−1‖2 − 2ρ〈N1(un, vn) −N1(un−1, vn), xn − xn−1〉
+ρ2‖N1(un, vn)−N1(un−1, vn)‖2

≤ ‖xn − xn−1‖2 − 2ραN1‖xn − xn−1‖2 + ρ2r21‖un − un−1‖2

≤ (1 − 2ραN1)‖xn − xn−1‖2 + ρ2r21(1 + 1
n )2[H̃(A(xn), A(xn−1))]2

≤ [1 − 2ραN1 + ρ2r21L
2
A(1 + 1

n )2]‖xn − xn−1‖2.

Since N1(·, ·) is r2-Lipschitz continuous in second argument and B is LB-
Lipschitz continuous, by (3.4), we have

(3.12)
‖N1(un−1, vn)−N1(un−1, vn−1)‖
≤ r2‖vn − vn−1‖ ≤ r2LB(1 + 1

n )‖yn − yn−1‖.
Since Q(·, ·) is mixed Lipschitz continuous with constants s1 and s2, we have

(3.13) ‖Q(xn, yn) −Q(xn−1, yn−1)‖ ≤ s1‖xn − xn−1‖+ s2‖yn − yn−1)‖.
From (3.10)-(3.13) it follows that

(3.14)
‖an − an−1‖ ≤ [

√
1− 2ραN1 + ρ2r21L

2
A(1 + 1

n )2 + ρs1]‖xn − xn−1‖
+(ρr2LB(1 + 1

n ) + ρs2)‖yn − yn−1‖.
Since C is LC-Lipschitz continuous, by (3.4), we have

(3.15) ‖wn −wn−1‖ ≤ (1 +
1
n

)H̃(C(yn), C(yn−1)) ≤ LC(1 +
1
n

)‖yn − yn−1‖.
By (3.9),(3.14) and (3.15), we obtain

(3.16)

‖xn+1 −xn‖ ≤ (1− λ)‖xn − xn−1‖+ λLη1
αh1

(
√

1 − 2ραN1 + ρ2r21L
2
A(1 + 1

n)2 + ρs1)‖xn − xn−1‖
+(λLη1

αh1
(ρr2LB(1 + 1

n ) + ρs2) + λδLC(1 + 1
n))‖yn − yn−1‖.
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Note that N2 is mixed Lipschitz continuous with constants k1, k2 > 0, D and E
are Lipschitz continuous, by(3.4) and (3.6), we have

(3.17)

‖yn − yn−1‖ = ‖Rh2

M2(·,en),γ
[γN2(dn, xn)]

−Rh2

M2(·,en−1),γ
[γN2(dn−1, xn−1)]‖

≤ ‖Rh2

M2(·,en),γ
[γN2(dn, xn)]

−Rh2

M2(·,en),γ [γN2(dn−1, xn−1)]‖
+‖Rh2

M2(·,en),γ[γN2(dn−1, xn−1)]

−Rh2
M2(·,en−1),γ

[γN2(dn−1, xn−1)]‖
≤ γLη2

αh2
(‖N2(dn, xn)

−N1(dn−1, xn−1)‖) + µ‖en − en−1‖
≤ γLη2

αh2
(k1‖dn − dn−1‖ + k2‖xn − xn−1‖)

+µ(1 + 1
n)H̃(E(xn), E(xn−1))

≤ [γLη2
αh2

(k1LD(1 + 1
n) + k2)

+µ(1 + 1
n)LE]‖xn − xn−1‖

= σn‖xn − xn−1‖,

where σn = γLη2
αh2

(k1LD(1+ 1
n )+k2)+µ(1+ 1

n)LE → σ = γLη2
αh2

(k1LD+k2)+µLE

whenever n → ∞. The condition(3.7) implies σ < 1 and so σn < 1 for sufficient
large n. By (3.17), for sufficient n, we have

(3.18) ‖yn − yn−1‖ ≤ σn‖xn − xn−1‖ < ‖xn − xn−1‖.

It follows from (3.17) and (3.18) that for sufficient large n,

‖xn+1 − xn‖ ≤ (1− (1 − θn)λ)‖xn − xn−1‖,

where

θn =
Lη1

αh1

(

√
1 − 2ραN1 + ρ2r21L

2
A(1 +

1
n

)2+ρ(r2LB(1+
1
n

)+s1+s2))+δLc(1+
1
n

).

Hence we have

θn → θ =
Lη1

αh1

(
√

1 − 2ραN1 + ρ2r21L
2
A + ρ(r2LB + s1 + s2))+ δLC , as n→ ∞.
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By (3.7), we have θ < 1. So there exists θ0 < 1 such that for sufficiently large n,
θn < θ0 and

‖xn+1 − xn‖ ≤ (1− (1− θ0)λ)‖xn − xn−1‖.
It follows that {xn} is a Cauchy sequence. Let xn → x̂ as n → ∞. By (3.18),
{yn} is also a Cauchy sequence. Let yn → ŷ as n → ∞. The condition (3.4) and
Lipschitz continuity of A,B, C,D, E imply that {un}, {vn}, {wn}, {dn} and {en}
are all Cauchy sequences. Let un → û, vn → v̂, wn → ŵ, dn → d̂ and en → ê
respectively. By (3.4), we have

d(û, A(x̂)) ≤ ‖û− un‖ + d(un, A(x̂)) ≤ ‖û− un‖ + H̃(A(xn), A(x̂))

≤ ‖û− un‖ + LA‖xn − x̂‖ → 0,

and so û ∈ A(x̂). Similarly, we can show that v̂ ∈ B(ŷ), ŵ ∈ C(ŷ), d̂ ∈ D(x̂) and
ê ∈ E(x̂). By (3.4), we have

yn = Rh2

M2(·,en),γ
[γN2(dn, xn)],

xn+1 = (1− λ)xn + λRh1

M1(·,wn),ρ
[xn − ρN1(un, vn) − ρQ(xn, yn)].

By Theorem 2.2 and the assumptions in Theorem 3.1, letting n→ ∞ in the above
equalities, we can obtain

ŷ = Rh2

M2(·,ê),γ[γN2(d̂, x̂)],

x̂ = Rh1

M1(·,ŵ),ρ
[x̂− ρN1(û, v̂) − ρQ(x̂, ŷ)].

By Theorem 2.3, (x̂, ŷ, û, v̂, ŵ, d̂, ê) is a solution of the SGMIQV IP (2.1). This
completes the proof.
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