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RELATIONS BETWEEN DISTRIBUTION COSINE FUNCTIONS AND
ALMOST-DISTRIBUTION COSINE FUNCTIONS

Marko Kostić and Pedro J. Miana

Abstract. In this paper, we give connections between distribution cosine func-
tions (defined in [10]) and almost-distribution cosine functions (introduced in
[13]). We prove several equalities involving trigonometric convolution prod-
ucts and distribution cosine functions as well as some relations between dis-
tribution cosine functions and ultradistribution semigroups.

1. INTRODUCTION AND PRELIMINARIES

The class of distribution cosine functions is introduced in [10] as a unification
of the concept of (local) α−times integrated cosine functions, α ≥ 0. By applying
fractional integration and derivation, several results on equivalence between almost-
distribution cosine functions and global α−times integrated cosine functions with
corresponding growth order are proved in [13]. In this paper, we obtain necessary
and sufficient conditions under a closed linear operator A generates an almost-
distribution cosine function in terms of distribution cosine functions. In order to
do that, we employ our results from [13] and [10]. In the last section, we relate
distribution cosine functions to ultradistribution semigroups and prove an extension
of [6, Theorem 3.1] obtained by V. Keyantuo. The paper is illustrated by some
examples and can be viewed as a continuation of [13] and [10].

Let us introduce the terminology of distribution spaces used in the paper and
the basic definitions from [13] and [10].

The space of all compactly supported C∞-functions from R into C is denoted
by D. It is equipped with the usual inductive limit topology. Its dual is D′. We
assume that D′ is supplied with strong topology; D0 is the subspace of D which
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consists of the elements supported by [0,∞). In the sequel, we assume that E is a
complex Banach space in this paper. Further on, D′(L(E)) = L(D, L(E)) is the
space of continuous linear functions from D into L(E) equipped with the topology
of uniform convergence on bounded subsets of D; D′

0(L(E)) is the subspace of
D′(L(E)) consisted of elements supported by [0,∞).

Let K ⊂ R and DK := {ϕ ∈ D : suppϕ ⊂ K}. Recall, if k ∈ N0, then the
distribution δ (k) is defined by δ(k)(ϕ) = (−1)kϕ(k)(0), ϕ ∈ D.

Let D+ := {f ∈ C∞([0,∞)) : f is compactly supported}. Define K : D →
D+ by K(ϕ)(t) = ϕ(t), t ≥ 0, ϕ ∈ D. We know that D+ is an (LF) space and
due to the theorem of R. T. Seeley [15], there exists a linear continuous operator
Λ : D+ → D satisfying KΛ = ID+.

We use the convolution product ∗0 of measurable complex valued functions f

and g : f ∗0 g(t) =:
t∫
0

f(t − s)g(s)ds. If f, g ∈ D+, put f ◦ g(t) :=
∞∫
t

f(s −
t)g(s)ds, t ≥ 0. Clearly, f ◦ g ∈ D+. The cosine convolution product f ∗ c g is
defined by f ∗c g := 1

2 (f ∗0 g + f ◦ g + g ◦ f); the sine convolution product by
f ∗s g := 1

2 (f ∗0 g − f ◦ g − g ◦ f) and the sine-cosine convolution product by
f ∗sc g := 1

2(f ∗0 g − f ◦ g + g ◦ f). Notice, f ∗c g, f ∗s g, f ∗sc g ∈ D+, see for
example [16].

Hereafter we assume that A is a closed linear operator. Its domain, range and
null space are denoted by D(A), R(A) and Ker(A), respectively; [D(A)] denotes
the Banach space D(A) equipped with the graph norm.

We need the next short review from [10]. Let α ∈ D[−2,−1] be a fixed test

function with
∞∫

−∞
α(x)dx = 1. Then, with α chosen in this way, for every fixed

ϕ ∈ D we define I(ϕ) ∈ D by

I(ϕ)(x) :=

x∫
−∞

[ϕ(t)− α(t)

∞∫
−∞

ϕ(u)du]dt, x ∈ R.

Recall, I(ϕ) ∈ D, I(ϕ′) = ϕ and d
dxI(ϕ)(x) = ϕ(x) − α(x)

∞∫
−∞

ϕ(u)du, x ∈ R.

Next, we define a primitive of G ∈ D′(L(E)), G−1, by G−1(ϕ) := −G(I(ϕ)), ϕ ∈
D. We have G−1 ∈ D′(L(E)) and (G−1)′ = G; more precisely, −G−1(ϕ′) =
G(I(ϕ′)) = G(ϕ), ϕ ∈ D. We know that suppG ⊂ [0,∞) implies suppG−1 ⊂
[0,∞).

Now we repeat the definition of a distribution cosine function, (DCF) in short,
and its generator ([10]). An element G ∈ D ′

0(L(E)) is called a pre-(DCF) if it
satisfies

(DCF1) : G−1(ϕ ∗0 ψ) = G−1(ϕ)G(ψ)+G(ϕ)G−1(ψ), ϕ, ψ ∈ D,
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and it is called a distribution cosine function, in short (DCF), if it additionally
satisfies

(DCF2) : x = y = 0 if and only if G(ϕ)x+G−1(ϕ)y = 0 for all ϕ ∈ D0.

If G is a (DCF), then its generator (A,D(A)) is defined by

(1) {(x, y) ∈ E2 : G−1(ϕ′′)x = G−1(ϕ)y for all ϕ ∈ D0},
where x ∈ D(A) and Ax := y. Because of (DCF2), A is a function and it is easy
to see that A is a closed linear operator in E. Moreover, if ψ ∈ D and x ∈ E, then
G(ψ)A ⊂ AG(ψ), G(ψ)x ∈ D(A), G−1(ψ)x ∈ D(A) and the next equalities are
valid: AG(ψ)x = G(ψ ′′)x + ψ′(0)x, AG−1(ψ)x = −G(ψ′)x − ψ(0)x, see [10,
Proposition 2.7]. The exponential region E(α, β) := {η + iξ : η ≥ β, |ξ| ≤ eαη}
is introduced in [1]. If n ∈ N, then we define E n(α, β) by En(α, β) := {zn : z ∈
E(α, β)}. Recall [10], a closed linear operator A generates a (DCF) iff there are
constants α, β, M > 0 and n ∈ N0 so that

E2(α, β) ⊂ ρ(A) and ‖R(λ : A)‖ ≤M(1 + |λ|)n , λ ∈ E2(α, β).

If G is a (DCF), then we know that ϕ(t) = ψ(t), t ≥ 0, for some ϕ, ψ ∈ D,
implies G(ϕ) = G(ψ).

Operator cosine functions in any Banach space define distribution cosine func-
tions. Differential operators in Euclidean spaces generate (global) α-times integrated
cosine functions which define distribution cosine functions, see examples in [5].
More elaborate examples appear in [10, Section 6] and in the forth section of this
paper.

2. CONVOLUTION PRODUCTS AND DISTRIBUTION COSINE FUNCTIONS

We starts proving an analogue of a formula cos(t + s) = cos(t) cos(s) −
sin(t) sin(s) for distribution cosine functions.

Proposition 2.1. LetG be a distribution cosine function generated by (A,D(A)).
Then

G(ϕ ∗0 ψ)x = G(ϕ)G(ψ)x+ AG−1(ϕ)G−1(ψ)x, ϕ, ψ ∈ D, x ∈ E.

Proof. Notice, if ϕ, ψ ∈ D, then (ϕ ∗0ψ)′(t) = ϕ′ ∗0 ψ(t)+ϕ(0)ψ(t), t ∈ R.
Since A generates the distribution cosine function G and G(ϕ) = −G−1(ϕ′), ϕ ∈
D, we have

G(ϕ ∗0 ψ)x = −ϕ(0)G−1(ψ)x−G−1(ϕ′ ∗0 ψ)x

= G(ϕ)G(ψ)x+ (−ϕ(0)−G(ϕ′))G−1(ψ)x

= G(ϕ)G(ψ)x+AG−1(ϕ)G−1(ψ)x,
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for any x ∈ E.

In the next theorem we characterize pre-distribution cosine functions by convo-
lution products.

Theorem 2.2. Let G ∈ D′
0(L(E)) satisfyG(ϕ)G(ψ) = G(ψ)G(ϕ), ϕ, ψ ∈ D.

Then the following are equivalent:

(i) G is a pre-(DCF) and G−1(Λ(f ◦ g − g ◦ f)) = G(Λ(f))G−1(Λ(g)) −
G−1(Λ(f))G(Λ(g)), for all f, g ∈ D+.

(ii) G−1(Λ(f ∗sc g)) = G−1(Λ(f))G(Λ(g)), for all f, g ∈ D+.

Proof. (i) ⇒ (ii). Note, f ∗0 g(t) = (g ∗sc f + f ∗sc g)(t), (f ◦ g− g ◦ f)(t) =
(g ∗sc f −f ∗sc g)(t) and Λ(f ∗0 g)(t) = Λ(f)∗0 Λ(g)(t), for t ≥ 0 and f, g ∈ D+.
Moreover, G−1(ϕ) = 0 if ϕ ∈ D(−∞,0] and we obtain

G−1(Λ(g ∗sc f + f ∗sc g)) = G−1(Λ(f))G(Λ(g))+G(Λ(f))G−1(Λ(g)),

G−1(Λ(g ∗sc f − f ∗sc g)) = G(Λ(f))G−1(Λ(g))−G−1(Λ(f))G(Λ(g)).

It, in turn, implies G−1(Λ(f ∗sc g)) = G−1(Λ(f))G(Λ(g)) for all f, g ∈ D+. (In
this direction, we do not use G(ϕ)G(ψ) = G(ψ)G(ϕ), ϕ, ψ ∈ D).

(ii) ⇒ (i). Fix ϕ, ψ ∈ D. SinceG(ϕ)G(ψ) = G(ψ)G(ϕ),we haveG−1(ϕ)G(ψ) =
G(ψ)G−1(ϕ). As K(ϕ)∗0K(ψ)(t) = (K(ψ)∗scK(ϕ)+K(ϕ)∗scK(ψ))(t) for t ≥ 0,
then

G−1(ϕ∗0ψ) = G−1(Λ(K(ϕ)∗0K(ψ))) = G−1(Λ(K(ψ)∗scK(ϕ)+K(ϕ)∗scK(ψ)))

=G−1(ΛK(ϕ))G(ΛK(ψ))+G−1(ΛK(ψ))G(ΛK(ϕ))=G−1(ϕ)G(ψ)+G−1(ψ)G(ϕ)

= G−1(ϕ)G(ψ)+G(ϕ)G−1(ψ).

Hence, G is a pre-(DCF). Since G(ϕ)G(ψ) = G(ψ)G(ϕ), ϕ, ψ ∈ D, the second
equality follows from the assumption (ii):

G−1(Λ(f ◦ g − g ◦ f)) = G−1(Λ(g ∗sc f − f ∗sc g))

= G(Λ(f))G−1(Λ(g))−G−1(Λ(f))G(Λ(g)),

for all f, g ∈ D+.

3. DISTRIBUTION COSINE FUNCTIONS AND ALMOST-DISTRIBUTION COSINE FUNCTIONS

We need the definition of an almost-distribution cosine function and its generator,
see [13]. An element G ∈ L(D+, L(E)) is called an almost-distribution cosine
function if it satisfies
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(i) G(f ∗c g) = G(f)G(g), f, g ∈ D+, and

(ii)
⋂

f∈D+
Ker(G(f)) = {0}.

The generator A of G is defined by A := {(x, y) ∈ E2 : G(f)y = G(f ′′)x +
f ′(0)x, for all f ∈ D+}. It is known that A is a closed linear operator. Further
on, G(f)A ⊂ AG(f), G(f)x ∈ D(A) and AG(f)x = G(f ′′)x+f ′(0)x, f ∈ D+.
Recall, a global n-times integrated cosine function (Cn(t))t≥0 defines an almost-
distribution cosine functions G (cf. [13]) by

G(f)x = (−1)n

∞∫

0

f (n)(t)Cn(t)xdt, x ∈ E, f ∈ D+.

Theorem 3.1. Let G be a (DCF) generated by A. Then GΛ is an almost-
distribution cosine function generated by A.

Proof. First of all, we have GΛ ∈ L(D+, L(E)). Since G is a (DCF) generated
by A, it follows

⋂
ϕ∈D0

Ker(G(ϕ)) = {0} ([10]). Hence, the condition (ii) in the

definition of an almost-distribution cosine function is fulfilled. In order to prove
(i), let us fix f, g ∈ D+. Suppose

(2) suppf ∪ suppg ∪ (suppf + suppg) ∪ supp(f ◦ g) ∪ supp(g ◦ f) ⊂ [0, a],

for some a ∈ (0,∞). This implies supp(f ∗c g) ⊂ [0, a] and supp(Λ(f ∗c g)) ⊂
(−∞, a]. Due to [10, Theorem 3.6], there exists an n ∈ N such that A is the
generator of an n-times integrated cosine function (Cn(t))t∈[0,2a). Then the proof
of [10, Theorem 3.2] and [10, Corollary 3.11] imply

G(ϕ)x = (−1)n

∞∫

0

ϕ(n)(t)Cn(t)xdt, x ∈ E, ϕ ∈ D(−∞,2a).

Therefore,

GΛ(f∗cg) = (−1)n

∞∫

0

(Λ(f∗cg))(n)(t)Cn(t)xdt = (−1)n

∞∫

0

(f∗cg)(n)(t)Cn(t)xdt.

Clearly, GΛ(f) = (−1)n
∞∫
0

f (n)(t)Cn(t)xdt. Hence, we have to prove

(3) (−1)n

∞∫

0

(f ∗c g)(n)(t)Cn(t)xdt=(−1)n

∞∫

0

f (n)(t)Cn(t)

∞∫

0

g(n)(s)Cn(s)xdsdt.
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This can be obtained as in the proof of [13, Theorem 4] with α = n ∈ N. We want
only to notice that (2) implies that Fubini theorem can be applied in the proofs of
[14, Proposition 1.1] and [13, Theorem 4]. Let B be the generator of GΛ. We will
prove A = B. Suppose (x, y) ∈ A. Then G−1(ϕ′′)x = G−1(ϕ)y, for all ϕ ∈ D0.
We will show

(4) GΛ(f)y = GΛ(f ′′)x+ f ′(0)x, for all f ∈ D+,

which implies (x, y) ∈ B and A ⊂ B. Fix an f ∈ D+. Taking into account [10,
Proposition 2.7], we have

GΛ(f)y = GΛ(f)Ax = AG(Λ(f))x = G((Λ(f))′′)x+ (Λ(f))′(0)x.

Since (Λ(f))′′(t) = Λ(f ′′)(t), t ≥ 0, one can continue as follows

= G(Λ(f ′′))x+ f ′(0)x,

and (4) holds. Suppose now (x, y) ∈ B. Then we know

(5) GΛ(f)y = GΛ(f ′′)x+ f ′(0)x, ∀f ∈ D+.

One must prove that G−1(ϕ′′)x = G−1(ϕ)y, ϕ ∈ D0. Suppose suppϕ ⊂ [0, b],
for some b > 0. An analysis made in Introduction of [10] gives that suppI(ϕ) ⊂
[−2, b]. Note, d2

dt2 I(ϕ)(t) = ϕ′(t) − α′(t)
∞∫

−∞
ϕ(u)du, t ∈ R, and consequently,

d2

dt2
I(ϕ)(t) = ϕ′(t), t ≥ 0. Then I(ϕ)(t) = Λ(K(I(ϕ)))(t), t ≥ 0, (K(I(ϕ)))′(0) =

ϕ(0) − α(0)
∞∫

−∞
ϕ(u)du = ϕ(0) = 0 and Λ((K(I(ϕ)))′′)(t) = (I(ϕ))′′(t) =

ϕ′(t), t ≥ 0. Now one obtains from (5):

G−1(ϕ)y = −G(I(ϕ))y = −G(Λ(K(I(ϕ))))y

= −(GΛ((K(I(ϕ)))′′)x+ (K(I(ϕ)))′(0)x)

= −GΛ((K(I(ϕ)))′′)x = −G(ϕ′)x = G−1(ϕ′′)x,

which gives (x, y) ∈ A and ends the proof.

Corollary 3.2. Let G be a (DCF) generated by A. Then

G(Λ(f ∗s g)) = AG−1(Λ(f))G−1(Λ(g)), f, g ∈ D+.

Proof. Take f, g ∈ D+. Since f ∗0 g = f ∗c g + f ∗s g, we apply Proposition
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2.1 and Theorem 3.1 to obtain the equality.

Relations between distribution cosine functions and equations of convolution
type are analyzed in [10]. The use of [10, Theorem 3.10] enables one to briefly
prove the following and to show directly some other results (see for example [10,
Proposition 4.10]):

Theorem 3.3. Let G1 be an almost-distribution cosine function generated by
A. Then A is the generator of a (DCF) G given by G(ϕ) = G1(K(ϕ)), ϕ ∈ D.

Proof. Note, if suppϕ ⊂ (−∞, 0), then K(ϕ) = 0 in D+, which clearly
implies suppG ⊂ [0,∞) and G ∈ D ′

0(L(E)). Recall, G(f)A ⊂ AG(f), G(f)x ∈
D(A), and AG(f)x = G(f ′′)x+ f ′(0)x, f ∈ D+; see [13, p. 178]. We want to
prove that

(6)
AG(ϕ)x = G(ϕ′′)x+ ϕ′(0)x, x ∈ E, ϕ ∈ D, and

G(ϕ)Ax = G(ϕ′′)x+ ϕ′(0)x, x ∈ D(A), ϕ ∈ D.

Let x ∈ E and ϕ ∈ D. Then AG(ϕ)x = AG1(K(ϕ))x = G1((K(ϕ))′′)x +
ϕ′(0)x = G1(K(ϕ′′))x + ϕ′(0)x = G(ϕ′′)x + ϕ′(0)x. Since G1A ⊂ AG1, the
second equality in (6) can be proved similarly. It is evident that (6) implies G ∈
D′

0(L(E, [D(A)])). Moreover,

G ∗ P = δ′ ⊗ Id[D(A)] and P ∗G = δ′ ⊗ IdE,

where we use the terminology given in [10, Section 3]: P = δ′′ ⊗ I − δ ⊗
A ∈ D′

0(L([D(A)], E)), Id[D(A)] denotes the inclusion D(A) → E and (δ (k) ⊗
Id[D(A)])(ϕ)x = (−1)kϕ(k)(0)x, (δ(k) ⊗ I)(ϕ)x = (−1)kϕ(k)(0)x, (δ⊗A)(ϕ)x =
ϕ(0)Ax, ϕ ∈ D, x ∈ D(A), k ∈ N0 and (δ′ ⊗ IdE)(ϕ)x = −ϕ′(0)x, ϕ ∈
D, x ∈ E. An application of [10, Theorem 3.10] gives that G is a (DCF) generated
by A.

Corollary 3.4. Every almost-distribution cosine function is uniquely deter-
mined by its generator.

Proof. Suppose G1 and G2 are almost-distribution cosine functions generated
by a closed linear operator A. Put Gi(ϕ) := Gi(K(ϕ)), ϕ ∈ D, i = 1, 2. Due to
Theorem 3.3, G1 and G2 are distribution cosine functions generated by A and one
can use [10, Corollary 3.11] in order to obtain that G1 = G2, i.e., G1(K(ϕ)) =
G2(K(ϕ)), ϕ ∈ D. Since K : D → D+ is a surjective mapping, we have G1 = G2.

This ends the proof.
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We note that the definition of a (local) α-times integrated cosine function
(Cα(t))t∈[0,τ ), 0 < τ ≤ ∞, is taken in the sense of [10, Definition 1.1]. The
next result follows from [10, Theorem 3.6, Proposition 3.12], Theorem 3.1 and
Theorem 3.3:

Theorem 3.5. Let A be a closed linear operator. Then the next assertions
are equivalent:

(i) A is the generator of a (DCF).
(ii) A is the generator of an almost-distribution cosine function.
(iii) There exist τ > 0 and n ∈ N such that A is the generator of an n-times

integrated cosine function on [0, τ).
(iv) For every τ > 0 there is an n ∈ N such that A is the generator of an n-times

integrated cosine function on [0, τ).
(v) ρ(A) �= ∅ and there exist λ ∈ ρ(A), n ∈ N and τ ∈ (0,∞] such that A is

the generator of an R(λ : A)n-cosine function on [0, τ).
(vi) There are constants α, β, M > 0 and n ∈ N0 so that

E2(α, β) ⊂ ρ(A) and ‖R(λ : A)‖ ≤M(1 + |λ|)n , λ ∈ E2(α, β).

Some other equivalent conditions can be found in [10].

4. AN APPLICATION

The main aim of this section is to present some new relations between distribu-
tion cosine functions and ultradistribution semigroups of [2, 3] and [9]. We recall
the basic notions and notations from the theory of ultradistribution spaces and ultra-
distribution semigroups. In this section, we always assume that (Mp)p is a sequence
of positive numbers, M0 = 1, such that the following conditions are fulfilled:

(M.1) M2
p ≤Mp+1Mp−1, p ∈ N,

(M.2) Mp ≤ AHp min0≤i≤pMiMp−i, p ∈ N, for some A, H > 0,

(M.3’)
∑∞

p=1
Mp−1

Mp
<∞.

Let s > 1. The Gevrey sequences (p!s), (pps) or (Γ(1 + ps)) satisfy the above
conditions. The associated function of (Mp) is defined by M(ρ) := supp∈N0

ln ρp

Mp
,

ρ > 0; M(0) := 0. We know that there exists a sufficiently small ε > 0 so
that M(ρ) = 0 if ρ ∈ [0, ε]. Furthermore, M : [0,∞) → [0,∞) is increasing,
lim

ρ→∞
M (ρ)

ρk = 0, lim
ρ→∞

(lnρ)k

M (ρ) = 0, k ∈ N and, for every Gevrey sequence, there

exists a constant Cs > 0 such that the associated function satisfies lim
ρ→∞

M (ρ)

Csρ
1
s

= 1.
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We refer to [7] for the fundamental facts concerning projective and inductive
limits of locally convex spaces. Let us introduce now the basic ultradistribution
type spaces used in this paper. For more details, see [7-9]. Let K be a compact
subset of R and h > 0. The space DMp,h

K is consisted of all functions φ ∈ C∞(R)

with suppφ ⊂ K and ||φ||Mp,h := sup{hp|φ(p)(t)|
Mp

: t ∈ K, p ∈ N0} < ∞. Recall,

(DMp,h
K , ||φ||Mp,h) is a Banach space and the spaces D(Mp)

K and D{Mp}
K are defined as

follows: D(Mp)
K :=proj limh→∞DMp,h

K and D{Mp}
K :=ind limh→0DMp,h

K . Let (Kn)
be a sequence of compact subsets of R with smooth boundary such that

⋃
n∈N

Kn = R

and that Kn ⊂ (Kn+1)◦. Then we define the space of Beurling ultradifferentiable
functions D(Mp) = D(Mp)(R) := ind limn→∞D(Mp)

Kn
and the space of Roumieu

ultradifferentiable functions D{Mp} = D{Mp}(R) :=ind limn→∞D{Mp}
Kn

. Note only
that these definitions do not depend on the choice of a sequence (Kn). With the
notation ∗ for both cases of brackets, we denote by D′∗(E) := L(D∗(R), E) the
space of continuous linear functions from D∗(R) into E; D′∗

0 (E) denotes the space
of elements in D′∗(E) which are supported by [0,∞). We refer to [8] for the
definition of convolution of vector valued ultradifferentiable functions and vector
valued ultradistributions. The next definition of an ultradistribution semigroup of
∗-class and its generator was employed by H. Komatsu in [9].

Definition 4.1. Let A be a closed linear operator. An elementG ∈ D′∗
0 (L(E))

is an ultradistribution semigroup of ∗-class generated byA ifG ∈ D′∗
0 (L(E, [D(A)]))

satisfies
G ∗ P = δ′ ⊗ Id[D(A)] and P ∗G = δ′ ⊗ IdE.

If k > 0 and C > 0, put Ωk,C := {λ ∈ C : Re(λ) ≥M(k|λ|) + C}.

Lemma 4.2. ([9]) A closed linear operator A is the generator of an ultra-
distribution class of the Beurling class (Roumieu class) if and only if there exist
k > 0 and C > 0 (for every k > 0 there exists a suitable Ck > 0) such that
Ωk,C ⊂ ρ(A) (Ωk,Ck

⊂ ρ(A)) and that ||R(λ : A)|| ≤ CeM (k|λ|), λ ∈ Ωk,C

(||R(λ : A)|| ≤ Cke
M (k|λ|), λ ∈ Ωk,Ck

).

Let (Np) and (Rp) be sequences of positive numbers which satisfy (M.1). Fol-
lowing Z. Chou (cf. for example [7, Definition 3.9, p. 53]), we write Np ≺ Rp if
and only if, for every δ ∈ (0,∞), sup

p∈N0

Npδp

Rp
<∞.

Now we are able to state the main result of this section. It is a generalization
of [6, Theorem 3.1] where the corresponding result is proved for the class of dense
exponential distribution cosine functions (see [10]). Furthermore, we want to give
more precise information concerning a corresponding sequence (Mp) and to clarify
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some differences between the Beurling case and the Roumieu case (see Example
4.4 given below).

Theorem 4.3. Suppose that a closed linear operatorA generates a distribution
cosine function. If (Mp) additionally satisfies M p ≺ p!s, for some s ∈ (1, 2), then
±iA generate (Mp)-ultradistribution semigroups of ∗-class.

Proof. We will prove the assertion only for iA since the same arguments
work for −iA. Due to Theorem 3.5, there exist α, β, M > 0 and n ∈ N such
that E2(α, β) ⊂ ρ(A) and that ||R(λ : A)|| ≤ M(1 + |λ|)n, λ ∈ E2(α, β). Put
Γ′ := ∂E2(α, β) and Γ := iΓ′. Then it can be easily seen that Γ′ = Γ

′
1 ∪ Γ

′
2 ∪ Γ

′
3,

where:
(1) Γ

′
1 is a part of the parabola {x + iy : x = β2 − y2

4β2}; further on, Γ
′
1 is

contained in some compact subset of C,

(2) Γ
′
2 = {t2 − e2αt + 2teαti : t ≥ β} and Γ

′
3 = {t2 − e2αt − 2teαti : t ≥ β}.

This implies that, for every c ∈ (1
2 , 1), we have

(7) lim
λ∈Γ, |λ|→∞

|Im(λ)|c
|Re(λ)| = ∞.

It is clear that the curve Γ divides the complex plane into two disjunct open sets.
Denote by Ω one of such two sets which contains a ray (ω,∞), for some ω > 0.
Fix a k > 0. Since Ω ⊂ ρ(iA) and ||R(· : iA)|| is polynomially bounded on Ω, the
proof will be completed if one shows that there exists a suitable Ck > 0 with

(8) {λ ∈ C : Re(λ) ≥M(k|λ|) + Ck} ⊂ Ω.

Note, (7) implies that, for every c ∈ (1
2 , 1), there exists a sufficiently large Kc > 0

satisfying

(9) {λ ∈ C : Re(λ) ≥ |Im(λ)|c +Kc} ⊂ Ω.

Choose an s ∈ (1, 2) with Mp ≺ p!s. Then an application of [7, Lemma 3.10]
gives that there exists a constant Ck,s > 0 with ρ

1
s ≤ M(kρ) + lnCk,s, ρ ≥ 0.

Moreover, there exists a suitable K 1
s
> 0 such that (9) holds with c = 1

s . Now it is
straightforward to see that (8) is valid with Ck = lnCk,s + K 1

s
. Indeed, if λ ∈ C

and Re(λ) ≥ M(k|λ|) + lnCk,s +K 1
s
, then Re(λ) ≥ |λ| 1s + K 1

s
, and due to (9),

λ ∈ Ω.

Since

(10) lim
ξ→+∞

Γ(ξ)

ξξ− 1
2 e−ξ

=
√

2π,
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a Gevrey type sequence (Mp) fulfills the assumption of Theorem 4.3 if and only if
s ∈ (1, 2). The next illustrative example shows that Theorem 4.3 does not hold in
the case of a general sequence (Mp).

Example 4.4. Let E := Lp(R), 1 ≤ p <∞ and m(x) = (1− x2

4 )+ix, x ∈ R.

Define a closed linear operator A on E by: Af(x) = m(x)f(x), x ∈ R, D(A) :=
{f ∈ E : mf ∈ E}. As a matter of routine, one can check that A generates a dense
exponential (DCF) (cf. [10]) and that σ(iA) = {x+ (1 − x2

4 )i : x ∈ R}. Suppose
now Mp = p!2. We will show that iA generates an ultradistribution semigroup of
the Beurling class and that iA is not the generator of an ultradistribution semigroup
of the Roumieu class. First of all, we know that there exist constants ω > 0,
a > 0 and b > 0 with aρ1/2 ≤ M(ρ), ρ ≥ ω and M(ρ) ≤ bρ1/2, ρ ≥ 0. The
consideration is over if one shows that

(11)
∂Ωk,C ∩ σ(iA) = ∅, for every k ∈ ( 4

a2 ,∞)

and a sufficiently large C > 0, and that

(12) ∂Ωk,C ∩ σ(iA) �= ∅, for every k ∈ (0,
4
b2

) and C > 0.

Let k ∈ ( 4
a2 ,∞). Choose a C ≥ ω

k . In order to obtain (11), note that, if x + iy ∈
∂Ωk,C , then x ≥ C, k

√
x2 + y2 ≥ kx ≥ kC ≥ ω. Thus, x = M(k

√
x2 + y2) +

C ≥ a
√
k 4
√
x2 + y2 + C. This estimate ensures one to see that for a sufficiently

large C > 0, the curve ∂Ωk,C lies above the graph of the function f(x) =

−
√

(x−C)4

a4k2 − x2; moreover, f(x) ∼ − x2

a2k
, x → +∞. Therefore, the choice of

k implies that there exists a suitable β > 0 such that a part of the parabola
y = − x2

a2k
, x ≥ β has the empty intersection with σ(iA). It immediately implies (11)

while (12) follows similarly from the facts that, for every k ∈ (0, 4
b2

) and C > 0, the
interior of the parabola y = − x2

b2k
is strictly contained in that of y = − x2

4 and that,
for x+ iy ∈ ∂Ωk,C , we have x = M(k

√
x2 + y2) +C ≤ b

√
k 4
√
x2 + y2 +C. At

the end of this analysis, we point out that the implication: G is an ultradistribution
semigroup of ∗-class ⇒ ⋂

ϕ∈D∗
0

Kern(G(ϕ)) = {0}, is not true in general (see [3]

and [11]). In the case of densely defined operators, the concept of regular ultra-
distribution semigroups of Beurling class was introduced by I. Cioranescu in [3]
for this purpose. An application of [3, Proposition 2.6] gives that the operator iA,
considered above, generates a regular ultradistribution semigroup of (p2p)-class G
(cf. [3] for the notion), i.e.,

⋂
ϕ∈D∗

0

Kern(G(ϕ)) = {0} and
⋃

ϕ∈D∗
0

Im(G(ϕ)) is dense

in E. Similarly, if Mp = p!s, s > 2, then it can be proved that iA does not generate
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an ultradistribution semigroup of the Beurling, resp., Roumieu class. Evidently, the
same assertions are valid for −iA.
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