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OPERATORS WITH NUMERICAL RANGE IN A
GIVEN CLOSED HALF PLANE

Wai-Shun Cheung1, Chi-Kwong Li2 and Leiba Rodman3

Abstract. Various characterizations are given of real and complex Hilbert
space operators with the numerical range in a given closed half plane.

1. INTRODUCTION

Let H be a complex Hilbert space, and B(H) be the algebra of bounded linear
operators acting on H. The numerical range of an operator A ∈ B(H) is defined
and denoted by

W (A) = {(Ax, x) ∈ C : x ∈ H, ‖x‖ = 1}.
It is easy to see that

(1.1) W (A) = {((Px, x), (Qx, x)) ∈ R2 : x ∈ H, ‖x‖ = 1},
where

P =
1
2
(A + A∗) and Q =

1
2i

(A − A∗)

are the real and imaginary parts of A, respectively.
In this note we characterize the operators A whose numerical ranges lie in a

given closed half plane. By applying a shift A �→ A + λI for a suitable scalar λ,
we may assume that the half plane is defined by a line passing through the origin.
Thus, we are interested in the following property:

(1.2) W (A) ⊂ {(x, y) ∈ R2 : ax + by ≥ 0},
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for some fixed a, b ∈ R not both zero. Note that the sectorial operators, that
is the operators A with the property that (1.2) holds with 0 replaced by some
positive number ε, are well known and widely used in differential equations (see,
for example, [5], [3]). By analogy, we say that an operator A with the property
(1.2) is weakly sectorial.

We consider also a real Hilbert space Hr, and the real algebra B(Hr) of linear
bounded operators on Hr . In this case one defines the real joint numerical range
W (P, Q) of an ordered pair of selfadjoint operators P, Q ∈ B(Hr) by a formula
analogous to (1.1), i. e.,

Wr(P, Q) = {((Px, x), (Qx, x)) ∈ R2 : x ∈ Hr, ‖x‖ = 1}.

We characterize the pairs (P, Q) for which the real joint numerical range lies in
a closed half plane that passes through the origin, in other words, the following
inclusion holds true:

(1.3) Wr(P, Q) ⊂ {(x, y) ∈ R2 : ax + by ≥ 0},

for some fixed a, b ∈ R not both zero. As in the complex case, we say that the pair
(P, Q) of bounded selfadjoint operators in B(Hr) is real weakly sectorial if (1.3)
holds true.

We give various characterizations of real weakly sectorial pairs of selfadjoint
operators. As it turns out, the characterizations in the real case are not entirely
analogous to the complex case.

2. RESULTS AND PROOFS: THE COMPLEX CASE

In this section, H is a complex Hilbert space. We begin with the following
well-known equivalent conditions of weakly sectorial operators.

Proposition 1. Let A ∈ B(H), and let P and Q be the real and imaginary
parts of A, respectively. The following statements are equivalent:

(1) A is weakly sectorial.
(2) There exist a, b∈R not both zero such that aP+bQ is positive semidefinite.
(3) There exists a complex unimodular number µ such that µA+ µ̄A ∗ is positive

semi-definite.

Note that the corresponding statement for sectorial operators can be obtained
by replacing “weakly sectorial” by “sectorial” and “semidefinite” by “definite” in
the above proposition. The statement is well-known since the 1930’s; see [1], for
example, and the survey [10] for more information and further references.
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Next, we characterize weakly sectorial operators A ∈ B(H) in terms of low
dimension compressions of A, i.e., operators of the form X∗AX for some X :
H1 → H where H1 is a low dimension subspace of H. Note that if W (X ∗AX)
lies in the same closed half plane, then it is easy to show that W (A) lies in the same
half plane. Our theorem shows that even if we only know that W (X∗AX) lies in
a closed half plane which may a priori depend on X , it will follow that W (A) and
hence all W (X∗AX) lie in the same closed half plane. It is also shown that weakly
sectorial operators A can be characterized in terms of the linear dependence of the
vectors (A + A∗)x and (A− A∗)x if (Ax, x) = 0.

Theorem 2. Let A ∈ B(H), and let P and Q be the real and imaginary parts
of A, respectively. Then A is weakly sectorial if and only if any one of the following
four equivalent statements holds:

(4) For any subspace H1 of H, and any bounded linear map X : H1 → H, the
operator X ∗AX is weakly sectorial.

(5) For all integers k ≥ 2 we have the property that for every linear operator
X : Ck → H satisfying X ∗X = Ik , the operator X ∗AX ∈ B(Ck) is weakly
sectorial.

(5′) For every linear operator X : C2 → H satisfying X ∗X = I2, the operator
X∗AX ∈ B(C2) is weakly sectorial.

(6) For every x ∈ H such that (Px, x) = (Qx, x) = 0, the two vectors Px and
Qx are R-linearly dependent.

In this statement, the equivalence of the weak sectoriality and condition (4) is
trivial, and is presented only for convenience. Conditions (5) and (5’) express the
equivalence of the “local weak sectoriality” and the “global weak sectoriality”.

For the proof of Theorem 2, it is convenient to start with a lemma.

Lemma 3. Let A ∈ B(H), where H is a complex Hilbert space of dimension
at least two. Then λ ∈ C is in the interior of W (A) if and only if there exists a
two-dimensional subspace K of H such that λ is in the interior of W (A K), where
AK is a compression of A to K.

Proof. The “if” part being trivial, we focus on the “only if” part. We assume
that the dimension of H is larger than 2 to avoid trivial consideration. We may also
assume that λ = 0. Arguing by contradiction, suppose that λ is not in the interior
of W (AK) for any two dimensional subspace K of H. Since 0 is an interior point
of W (A), there exist unit vectors x, y, z ∈ H such that 0 lies in the interior of the
convex hull of {(Ax, x), (Ay, y), (Az, z)}. Without loss of generality, by slightly
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perturbing one of the vectors x, y, z, we may assume that x, y, z are linearly indepen-
dent. Let the operator B on C3 be unitarily equivalent to the compression of A on the
subspace spanned by {x, y, z}. Then W (B) contains {(Ax, x), (Ay, y), (Az, z)},
and hence 0 is in the interior of the numerical range of B . Hence, there exists
r > 0 such that reiθ ∈ W (B) for every θ ∈ [0, 2π). In other words, for every
complex unimodular number µ, there are unit vectors u and v (depending on µ) in
C3 such that (Bu, u) = rµ̄ and (Bv, v) = −rµ̄. Thus, there exists a 3 × 2 matrix
X with X ∗X = I2 and W (X∗BX) containing ±rµ̄. Since W (X∗BX) lies in
a half space defined by a line passing through the origin, we see that µX∗BX is
self-adjoint. So, X∗(µB − µ̄B∗)X = 02, and hence µB − µ̄B∗ is singular for all
complex numbers µ. As a result, if B = H + iG with H = (B + B∗)/2, we have
det(H + rG) = 0 for all r ∈ R. So, det(B) = det(H + iG) = 0, i.e., 0 is an
eigenvalue of B. If 0 is not an orthogonally reducing eigenvalue of B, then there

is a 3 × 2 matrix X with X ∗X = I2 such that X ∗BX =
[

0 a
0 b

]
with a �= 0,

and hence 0 lies in the interior of W (X ∗BX) by the elliptical range theorem (see,
for example, [7]), which contradicts condition (5’). If 0 is an orthogonally reducing
eigenvalue of B, then B is unitarily similar to [0]⊕B0. Since W (B) is the convex
hull of {0} ∪ W (B0) (a well known property of the numerical range, see, e.g., [4,
Section 1.2]) containing 0 in its interior, it follows that 0 lies in the interior of
W (B0), which is again a contradiction.

Proof of Theorem 2. Suppose H1 is a subspace of H and X : H1 → H. If
aP + bQ is positive semidefinite, then so is aX ∗PX + bX∗QX . By condition (2)
in Proposition 1, if A is weakly sectorial, then so is X∗AX . Thus, condition (4)
holds.

Using the same arguments as in the last paragraph, one sees that condition (4)
implies condition (5). In particular, the weaker condition (5’) follows as well.

Next, we assume the condition (5’). Then A is weakly sectorial by Lemma 3.
Next, we turn to condition (6). Suppose A is weakly sectorial. Then condition

(2) of Proposition 1 holds. Let x ∈ H be such that (Px, x) = (Qx, x) = 0. Then
((aP + bQ)x, x) = 0, and since aP + bQ is positive semidefinite, we must have
a(Px) + b(Qx) = 0, i.e., Px and Qx are R-linearly dependent.

Conversely, suppose condition (6) holds. Assume that A is not weakly sectorial.
By condition (4), there is X : C2 → H such that X ∗X = I2 and B = X∗AX

is not weakly sectorial. Hence, 0 is an interior point of W (B) and there is a unit
vector v ∈ C2 such that (Bv, v) = 0. Let x = Xv. Then

(Ax, x) = (Bv, v) = 0.

By condition (6), there exists a real vector (cos θ, sin θ) such that cos θPx +
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sin θQx = 0. Hence,

(e−iθB + eiθB∗)v = 2(cos θX∗PXv + sin θX∗QXv) = 0.

Consequently, the real part of e−iθB is either positive semidefinite, or negative
semidefinite. So, B is weakly sectorial, which is a contradiction.

In [6] an independent proof of the equivalence of Theorem 2 (6) and Proposi-
tion 1 (3) (for finite dimensional H) was given using canonical forms of pairs of
hermitian matrices.

An operator A ∈ B(H) is said to be nearly self-adjoint if there exist a, b ∈ C
and H = H∗ ∈ B(H) such that a �= 0 and A = aH + bI . Clearly, A is nearly
self-adjoint, if and only if W (A) is a subset of a straight line. Similarly to Theorem
2, we have the following result on equivalence of “local” and “global” essential
selfadjointness, whose finite dimensional version was proved in [8].

Theorem 4. Let A ∈ B(H). Then A is nearly self-adjoint if and only if any
one of the following two equivalent statements holds true:

(7) For all integers k ≥ 2 we have that for every linear operator X : C k → H
satisfying X ∗X = Ik , W (X∗AX) is a subset of a straight line.

(8) For every linear operator X : C2 → H satisfying X ∗X = I2, W (X∗AX) is
a subset of a straight line.

Theorem 4 follows from Lemma 3.

3. RESULTS AND PROOFS: THE REAL CASE

In this section Hr is a real Hilbert space. As in the complex case one verifies
that a pair (P, Q) of selfadjoint operators in B(Hr) is real weakly sectorial if and
only if some linear combination aP + bQ is positive semidefinite, where a, b are
real numbers not both zero.

The real analogue of Theorem 2 reads as follows:

Theorem 5. Let there be given a pair of selfadjoint operators (P, Q), P, Q ∈
B(Hr). Then the following five statements are equivalent:

(9) (P, Q) is real weakly sectorial.
(10) For any subspace Hr1 of Hr, and any bounded linear map X : Hr1 → Hr,

the pair of operators (X ∗PX, X∗QX) is real weakly sectorial.
(11) For all integers k ≥ 2 we have the property that for every linear operator

X : Rk → Hr satisfying X ∗X = Ik , the pair (X ∗PX, X∗QX) is real
weakly sectorial.
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(12) For every linear operator X : R2 → Hr satisfying X ∗X = I2, the pair
(X∗PX, X∗QX) is real weakly sectorial.

(13) For every x ∈ Hr such that (Px, x) = (Qx, x) = 0, the two vectors Px and
Qx are R-linearly dependent, and at least one of the following conditions (i)
and (ii) fails:

(i) Ker P = Ker Q has codimension 2;
(ii) the dimension of Range (aP + bQ) is equal to 2 for every a, b ∈ R not

both zero.
Note that in contrast to the complex case, the condition

(14) For every x ∈ Hr such that (Px, x) = (Qx, x) = 0, the two vectors Px and
Qx are R-linearly dependent,

is generally not equivalent to (9) - (12), as it was observed in [6]. Namely, if

P =
[

µ ν
ν −µ

]
, Q =

[
0 1
1 0

]
, µ, ν ∈ R, µ �= 0,

then (14) holds true (because only the zero vector x satisfies (Px, x) = (Qx, x) =
0), but the pair (P, Q) is not real weakly sectorial. See also the proof of Proposition
6 below.

The proof of the equivalence of (9)-(12) is basically the same as the proof of the
corresponding parts of Theorem 2, using the well-known real analogue (proved by
Brickman [2]) of the Toeplitz-Hausdorff theorem on the convexity of the numerical
range, namely, that Wr(P, Q) is convex if dimHr ≥ 3 and is an ellipse if dimHr =
2.

The equivalence of (9) and (13) was proved in [6] for the case when Hr is finite
dimensional using the canonical form for pairs of hermitian matrices.

To proceed with the proof of Theorem 5, we start with a proposition.

Proposition 6. Assume that both conditions (i) and (ii) hold true. Then the
pair (P, Q) is not real weakly sectorial. Moreover, in this case

(3.1) ((Px, x), (Qx, x)) = (0, 0), x ∈ Hr,

if and only if
Px = Qx = 0.

Proof. Suppose (i) and (ii) hold. With respect to the orthogonal decomposition
Hr = Ker P ⊕ Span {x} ⊕ Span {y} for a suitable choice of orthonormal vectors
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x, y ∈ Hr, we have

Q =


 0 0 0

0 α 0
0 0 β


 , where α, β ∈ R \ {0}.

Replacing if necessary P by P + µQ for a suitable real µ, we may assume that P

has the following form with respect to the same decomposition:

P =


 0 0 0

0 0 z

0 z γ


 , where z, γ ∈ R.

Here z �= 0, otherwise a contradiction with (i) occurs. We claim that aP + bQ is
indefinite for all a, b ∈ R not both zero. It will then follow that the pair (P, Q) is
not weakly sectorial. If our claim is not true, then for the continuous curve

R(t) = (cos t)P + (sin t)Q, t ∈ R,

there exists t0 ∈ R such that R(t0) is positive semidefinite, and R(t0+π) is negative
semidefinite. By the continuity of eigenvalues, Ker R(t1) has codimension less than
2 for some t1 ∈ [t0, t0 + π], a contradiction with (ii). So, our claim holds.

Clearly, if Px = Qx = 0 then (3.1) holds. Conversely, assume that (3.1) holds
true for some x such that x /∈ KerP = KerQ. By the reduction in the proof at the
beginning of our proof, there exists x̂ = [x1, x2]t ∈ R2 \ {0} such that

0=
([

α 0
0 β

]
x̂, x̂

)
=αx2

1+βx2
2 and 0 =

([
0 z
z γ

]
x̂, x̂

)
=2zx1x2+γx2

2.

It follows that
det

(
(zx1)

[
α 0
0 β

]
+ (βx2)

[
0 z
z γ

])

= zαβγx1x2 + 2z2αβx2
1 − z2αβx2

1 − z2β2x2
2 = 0,

a contradiction with (ii).

The following lemma will be needed in this paper only in a particular situation,
but it is sufficiently interesting to be stated and proved in the more general case. We
denote by ProjN the orthogonal projection on a subspace N . The set of subspaces
of Hr of a fixed finite dimension m will be denoted by Grasm(Hr); it is a complete
metric space in the gap topology, i.e., with metric defined by the gap

θ(M,N ) = ‖ProjN − ProjM‖, M,N ∈ Grasm(Hr).
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See, for example, [5] for more details on this topology.

Lemma 7. Let m and n be given positive integers, and let A ∈ B(H r). Then
the set Ξ(A; m, n) of all subspaces M ∈ Grasm(Hr) such that the range of the
operator ProjMAProjM has dimension at least n is either empty or dense in
Grasm(Hr) in the gap topology.

The result of Lemma 7 also holds (with the same proof) for operators and
subspaces of a complex Hilbert space.

Proof. We can assume that

(3.2) dim
(
Range ProjM0

AProjM0

) ≥ n

for some M0 ∈ Grasm(Hr). By [9, Theorem 1], the set of subspaces of Hr which
are direct complements to M⊥

0 is dense in Grasm(Hr). (The statement and proof
of [9, Theorem 1] are given in [9] for the complex case; the proof applies without
change to the real case as well.) Denote

DM0 := {N ∈ Grasm(Hr) : N +̇M⊥
0 = Hr}.

Thus, it suffices to show that

(3.3) DM0 ∩ Ξ(A; m, n) is dense in DM0.

Note that every N ∈ DM0 has the form

(3.4) N = Range
[

I

X

]
,

[
I

X

]
: M0 → M0 ⊕M⊥

0 ,

for some bounded linear operator X : M0 → M⊥
0 , which is uniquely defined by

N . Moreover, the formula (3.4) establishes a homeomorphism between DM0 as a
subset of Grasm(Hr) with the induced topology and the Banach space B(M0,M⊥

0 )
of bounded linear operators from M0 to M⊥

0 with the operator topology. To verify
the homeomorphism property, use the formula for the orthogonal projection on N ∈
DM0:

(3.5) ProjN =
[

Y Y X∗

XY XY X∗

]
, Y = (I + X∗X)−1,

where X is taken from (3.4).
We have reduced the proof to the following claim: The set of all operators

X ∈ B(M0,M⊥
0 ) for which

(3.6) dim Range
[

Y Y X∗

XY XY X∗

]
A

[
Y Y X∗

XY XY X∗

]
≥ n,

Y = (I + X∗X)−1,
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is dense in B(M0,M⊥
0 ). Let X0 ∈ B(M0,M⊥

0 ), and consider a family of opera-
tors on the m-dimensional space M0:

A(t) = [I tX∗
0 ]A

[
I

tX0

]
, t ∈ R.

We will represent A(t) as m×m matrices with respect to a fixed orthonormal basis
in M0. By (3.2), the dimension of the range of A(0) is at least n. Thus, there exists
an n×n submatrix, call it As(0), in A(0) with a nonzero determinant. Clearly, the
determinant of As(t) is a polynomial of t, and therefore for t �= 1 arbitrarily close
to 1, the determinant of As(t) is also nonzero, hence the dimension of the range of
A(t) is at least n. A fortiori

dimRange
[

Y0 Y0tX
∗
0

tX0Y0 t2X0Y0X
∗
0

]
A

[
Y0 Y0tX

∗
0

tX0Y0 t2X0Y0X
∗
0

]
≥ n,

Y0 = (I + t2X∗
0X0)−1,

for t �= 1 arbitrarily close to 1, and the claim is proved.

Proof of Theorem 5. In view of Proposition 6 and the remarks made after
Theorem 5, we need only prove that (9) implies (14), and that if (13) holds then
(P, Q) is real weakly sectorial. The implication (9) =⇒ (14) is easy, because
if aP + bQ is positive semidefinite for some real a and b not both zero, and if
(Px, x) = (Qx, x) = 0, then ((aP + bQ)x, x) = 0, and in view of the positive
semidefiniteness of aP +bQ, we have (aP +bQ)x = 0, i.e., Px and Qx are linearly
dependent.

Assuming that (13) holds, we will prove that the pair (P, Q) is real weakly
sectorial. We suppose that H is infinite dimensional, as the result in the finite-
dimensional case was proved in [6]. It is easy to check, and will be used in the
sequel, that for every subspace N ⊆ Hr, the pair

(ProjNPProjN , ProjNQProjN ),

considered as a pair of selfadjoint operators on N , also satisfies condition (13).
Suppose first that the codimension of Ker P is larger than 2. Then there exists

a subspace M0 of Hr of dimension at most six and at least three (spanned by
three linearly independent vectors x1, x2, x3 in the range of P , and by three vectors
y1, y2, y3 such that Py1 = x1, Py2 = x2, Py3 = x3) such that the range of the
linear transformation ProjM0

PProjM0
on M0 has dimension at least 3. Denote

by κ the dimension of M0. By the finite-dimensional result of [6], the pair

(3.7) (ProjM0
PProjM0

, ProjM0
QProjM0

)
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is real weakly sectorial. By Lemma 7, the set of all κ-dimensional subspaces M
such that

dim (Range ProjMPProjM) ≥ 3

is dense in Grasκ(Hr). Therefore, by continuity we obtain that the pair (3.7) is
real weakly sectorial for every κ-dimensional subspace of Hr . Now (P, Q) is real
weakly sectorial by the equivalence of (12) and (9). We are similarly done if the
codimension of Ker Q is larger than 2.

If the codimension of both Ker Q and Ker P is equal 2, but

Ker Q �= KerP,

or if (i) holds true but (ii) does not, then with respect to the orthogonal decomposition

Hr = (Ker P ∩ Ker Q)⊕ (KerP ∩ Ker Q)⊥

write the operators in the block matrix form

P =
[

0 0
0 P̂

]
, Q =

[
0 0
0 Q̂

]
.

Thus, it will suffice to prove that the pair (P̂ , Q̂) is real weakly sectorial. But since
(Ker P ∩ Ker Q)⊥ is finite dimensional we are done by the result of [6].
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