TAIWANESE JOURNAL OF MATHEMATICS Vol. 11, No. 2, pp. 399-406, June 2007 This paper is available online at http://www.math.nthu.edu.tw/tjm/

A NEW CONVOLUTION IDENTITY DEDUCIBLE FROM THE REMARKABLE FORMULA OF RAMANUJAN

S. Bhargava, D. D. Somashekara and D. Mamta

Abstract. In this paper we obtain a convolution identity for the coefficients $B_n(\alpha, \theta, q)$ defined by

$$\sum_{n=-\infty}^{\infty} B_n(\alpha,\theta,q) x^n = \frac{\prod_{n=1}^{\infty} (1+2xq^n\cos\theta+x^2q^{2n})}{\prod_{n=1}^{\infty} (1+\alpha q^n x e^{i\theta})},$$

using the well-known Ramanujan's $_1\psi_1$ -summation formula. The work presented here complements the works of K.-W. Yang, S. Bhargava, C. Adiga and D. D. Somashekara and of H. M. Srivastava.

1. INTRODUCTION

The famous $_1\psi_1$ summation formula of Ramanujan [5, Ch. 16] can be stated as

(1.1)
$$\sum_{n=-\infty}^{\infty} \frac{(a)_n}{(b)_n} z^n = \frac{(az)_{\infty}(q/az)_{\infty}(q)_{\infty}(b/a)_{\infty}}{(z)_{\infty}(b/az)_{\infty}(b)_{\infty}(q/a)_{\infty}},$$

where |b/a| < |z| < 1, |q| < 1,

$$\begin{split} (a)_{\infty} &= (a;q)_{\infty} := \prod_{n=0}^{\infty} (1-aq^n), \\ (a)_n &= (a;q)_n := \frac{(a)_{\infty}}{(aq^n)_{\infty}}, \qquad n : \text{an integer.} \end{split}$$

Received April 18, 2005, revised June 14, 2005.

Communicated by H. M. Srivastava.

Key words and phrases: $_1\psi_1$ -summation, Triple product identity, Convolution identity. Supported by DST Project No. DST/MS/059/96.

²⁰⁰⁰ Mathematics Subject Classification: Primary 33D15, 11D15.

G. H. Hardy [3, pp. 222-223] has described (1.1) as a "remarkable formula with many parameters". There are several proofs of (1.1) in literature. For details one may refer the book [1] by B. C. Berndt. Setting b = 0, a = -q/c and z = cz in (1.1), we obtain

(1.2)
$$\sum_{n=-\infty}^{\infty} (-q/c)_n (cz)^n = \frac{(-qz)_{\infty} (-1/z)_{\infty} (q)_{\infty}}{(-c)_{\infty} (cz)_{\infty}}.$$

Changing q to q^2 , z to z/q in (1.2) and then setting c = 0, we obtain the well-known Jacobi's triple product identity [4]

(1.3)
$$\sum_{n=-\infty}^{\infty} q^{n^2} z^n = (-qz; q^2)_{\infty} (-q/z; q^2)_{\infty} (q^2; q^2)_{\infty}, \qquad z \neq 0.$$

The main purpose of the present note is to obtain an interesting convolution identity for the coefficients $B_n(\alpha, \theta, q)$ defined by

(1.4)
$$\sum_{n=-\infty}^{\infty} B_n(\alpha,\theta,q) x^n = \frac{\prod_{n=1}^{\infty} (1+2xq^n\cos\theta+x^2q^{2n})}{\prod_{n=1}^{\infty} (1+\alpha q^n x e^{i\theta})} \cdot$$

Our work complements the works of S. Bhargava, C. Adiga, D. D. Somashekara [2], H. M. Srivastava [6], K.-W. Yang [7]. We prove our main theorem in Section 2. In Section 3 we deduce interesting special cases, which includes the convolution identities of Yang [7] and of Bhargava, Adiga and Somashekara [2].

2. MAIN THEOREM

The following theorem contains the convolution identity for the coefficients $B_n(\alpha, \theta, q)$ given by (1.4).

Theorem. If $B_n(\alpha, \theta, q)$ is as defined in (1.4), then

(2.1)
$$\sum_{n=-\infty}^{\infty} q^{-n} B_{n+m}(\alpha, \theta, q) B_n(\beta, \theta, q) = \frac{(\alpha q)_{\infty} (\beta q)_{\infty} (1/\alpha)_m (-\alpha q e^{i\theta})^m}{(q)_{\infty}^2} \times \sum_{n=-\infty}^{\infty} \left(\frac{q^m}{\alpha}\right)_n (1/\beta)_n (\alpha \beta q e^{2i\theta})^n.$$

Proof. By (1.4), we have

$$\sum_{n=-\infty}^{\infty} B_n(\alpha,\theta,q) x^n \sum_{n=-\infty}^{\infty} B_n(\beta,\theta,q) (xq)^{-n}$$
$$= \frac{(-xqe^{i\theta})_{\infty} (-xqe^{-i\theta})_{\infty}}{(-\alpha qxe^{i\theta})_{\infty}} \cdot \frac{(-e^{i\theta}/x)_{\infty} (-e^{-i\theta}/x)_{\infty}}{(-\beta e^{i\theta}/x)_{\infty}}$$
$$= \left[\frac{(\alpha q)_{\infty}}{(q)_{\infty}} \sum_{n=-\infty}^{\infty} \left(\frac{1}{\alpha} \right)_n (-\alpha xqe^{i\theta})^n \right] \left[\frac{(\beta q)_{\infty}}{(q)_{\infty}} \sum_{n=-\infty}^{\infty} \left(\frac{1}{\beta} \right)_n \left(\frac{-\beta e^{i\theta}}{x} \right)^n \right],$$

on using (1.2). Comparing the coefficients of x^m we obtain,

$$\sum_{n=-\infty}^{\infty} q^{-n} B_{n+m}(\alpha, \theta, q) B_n(\beta, \theta, q)$$
$$= \frac{(\alpha q)_{\infty}(\beta q)_{\infty}}{(q)_{\infty}^2} \sum_{n=-\infty}^{\infty} \left(\frac{1}{\alpha}\right)_{n+m} (-\alpha q e^{i\theta})^{n+m} \left(\frac{1}{\beta}\right)_n (-\beta e^{i\theta})^n,$$

which on simplification yields (2.1).

Setting $\alpha = 0 = \beta$, in (2.1) we obtain the following corollary.

Corollary.

(2.2)
$$\sum_{n=-\infty}^{\infty} q^{-n} B_{n+m}(0,\theta,q) B_n(0,\theta,q) = \frac{q^{m(m+1)/2} e^{mi\theta}}{(q)_{\infty}^2} \sum_{n=-\infty}^{\infty} q^{n^2+nm} e^{2ni\theta}.$$

The above corollary can also be obtained from a known result [2, p. 157, Theorem 2.1] (see also [6, p. 434, Theorem 1]).

3. Some Special Cases

In this Section we obtain as special cases of (2.2) the convolution identities of Yang [7], Bhargava, Adiga and Somashekara [2] and some more which seem new.

Theorem 3.1. [Yang]. If the coefficients A_n are defined by

$$\prod_{n=1}^{\infty} (1 + xq^n + x^2q^{2n}) = \sum_{n=-\infty}^{\infty} A_n x^n,$$

then

(3.1)
$$\sum_{n=-\infty}^{\infty} q^{-n} A_n A_{2m+n} = \frac{q^{m(m+1)}(-q^3; q^6)_{\infty}(q^2; q^2)_{\infty}}{(q; q)_{\infty}},$$

(3.2)
$$\sum_{n=-\infty}^{\infty} q^{-n} A_n A_{2m+n-1} = \frac{q^{m^2} (-q^6; q^6)_{\infty} (-q; q^2)_{\infty}}{(q; q)_{\infty}}$$

Proof. Changing m to 2m in (2.2), setting $\theta = \pi/3$ and noting from (1.4) that

(3.3)
$$A_n = A_n(q) = B_n(0, \pi/3, q)$$

we obtain on some simplification

(3.4)
$$\sum_{n=-\infty}^{\infty} q^{-n} A_n A_{2m+n} = \frac{q^{m(m+1)}}{(q)_{\infty}^2} \sum_{n=-\infty}^{\infty} q^{(m+n)^2} \omega^{m+n} ,$$

where ω is a cube root of unity. Using the Jacobi's triple product identity (1.3) on the right side of (3.4) we obtain (3.1) after some simplification.

Similarly on changing m to (2m-1) in (2.2) and then proceeding as above we obtain on some simplification

(3.5)
$$\sum_{n=-\infty}^{\infty} q^{-n} A_n A_{2m+n-1} = \frac{q^{m^2}(-\omega)}{(q)_{\infty}^2} \sum_{n=-\infty}^{\infty} q^{(m+n)^2} (\omega/q)^{m+n}.$$

Using the Jacobi's triple product identity (1.3) on the right side of (3.5) we obtain (3.2) after some simplification.

Theorem 3.2. [Bhargava, Adiga and Somashekara]. If the coefficients D_n are defined by

$$\prod_{n=1}^{\infty} (1 + 2xq^n + x^2q^{2n}) = \sum_{n=-\infty}^{\infty} D_n x^n,$$

then

(3.6.)
$$\sum_{n=-\infty}^{\infty} q^{-n} D_n D_{2m+n} = \frac{q^{m(m+1)}(-q;q^2)_{\infty}^2}{(q;q)_{\infty}(q;q^2)_{\infty}},$$

(3.7)
$$\sum_{n=-\infty}^{\infty} q^{-n} D_n D_{2m+n-1} = \frac{2q^{m^2}(-q^2;q^2)_{\infty}^2}{(q;q)_{\infty}(q;q^2)_{\infty}} \cdot$$

A New Convolution Identity Deducible from the Remarkable Formula of Ramanujan 403

Proof. Changing m to 2m in (2.2), setting $\theta = 0$ and noting from (1.4) that

(3.8)
$$D_n = D_n(q) = B_n(0, 0, q)$$

we obtain on some simplification

(3.9)
$$\sum_{n=-\infty}^{\infty} q^{-n} D_n D_{2m+n} = \frac{q^{m(m+1)}}{(q)_{\infty}^2} \sum_{n=-\infty}^{\infty} q^{(m+n)^2}.$$

Using the Jacobi's triple product identity (1.3) on the right side of (3.9) we obtain (3.6) after some simplification.

Similarly, on changing m to (2m-1) in (2.2) and then proceeding as above we obtain on some simplification

(3.10)
$$\sum_{n=-\infty}^{\infty} q^{-n} D_n D_{2m+n-1} = \frac{q^{m^2}}{(q)_{\infty}^2} \sum_{n=-\infty}^{\infty} q^{(m+n)^2} q^{-(m+n)}.$$

Using the Jacobi's triple product identity (1.3) on the right side of (3.10) we obtain (3.7) after some simplification.

Theorem 3.3. [Bhargava, Adiga and Somashekara]. If the coefficients C_n are defined by

$$\prod_{n=1}^{\infty} (1+xq^n) = \sum_{n=-\infty}^{\infty} c_n x^n,$$

then

(3.11)
$$\sum_{n=-\infty}^{\infty} q^{-n} C_n C_{m+n} = \frac{q^{m(m+1)/2}}{(q;q)_{\infty}} \cdot$$

Proof. Changing m to 2m in (2.2), setting $\theta = \pi/2$ and noting from (1.4) that

(3.12)
$$C_n = C_n(q) = B_n(0, \pi/2, \sqrt{q})$$

we obtain on some simplification

(3.13)
$$\sum_{n=-\infty}^{\infty} q^{-n} C_n C_{2m+n} = \frac{q^{m(m+1)}}{(q)_{\infty}^2} \sum_{n=-\infty}^{\infty} q^{(m+n)^2} (-1)^{m+n} \, .$$

Using the Jacobi's triple product identity (1.3) on the right side of (3.13) and then changing q to $q^{\frac{1}{2}}$ we get (3.11) after some simplification.

Theorem 3.4. If the coefficients E_n are defined by

$$\prod_{n=1}^{\infty} (1 + \sqrt{3}xq^n + x^2q^{2n}) = \sum_{n=-\infty}^{\infty} E_n x^n,$$

then

(3.14)
$$\sum_{n=-\infty}^{\infty} q^{-n} E_n E_{2m+n} = \frac{q^{m(m+1)}(q^3; q^6)_{\infty}(-q; q)_{\infty}}{(q)_{\infty}(q; q^2)_{\infty}},$$

(3.15)
$$\sum_{n=-\infty}^{\infty} q^{-n} E_n E_{2m+n-1} = \frac{q^{m^2} \omega(\omega-1)i(q^6;q^6)_{\infty}}{(q)_{\infty}^2}.$$

Proof. Changing m to 2m in (2.2), setting $\theta = \pi/6$ and noting from (1.4) that

(3.16)
$$E_n = E_n(q) = B_n(0, \pi/6, q)$$

we obtain on some simplification

(3.17)
$$\sum_{n=-\infty}^{\infty} q^{-n} E_n E_{2m+n} = \frac{q^{m(m+1)}}{(q)_{\infty}^2} \sum_{n=-\infty}^{\infty} q^{(m+n)^2} (-\omega^2)^{m+n} \,.$$

Using the Jacobi's triple product identity (1.3) on the right side of (3.17) we obtain (3.14) after some simplification.

Similarly on changing m to (2m-1) in (2.2) and then proceeding as above we obtain on some simplification

.

(3.18)
$$\sum_{n=-\infty}^{\infty} q^{-n} E_n E_{2m+n-1} = \frac{q^{m^2} \omega^2 i}{(q)_{\infty}^2} \sum_{n=-\infty}^{\infty} q^{(m+n)^2} \left(\frac{-\omega^2}{q}\right)^{m+n}$$

Using the Jacobi's triple product identity (1.3) on the right side of (3.18) we obtain (3.15) after some simplification.

Theorem 3.5. If the coefficients G_n are defined by

$$\prod_{n=1}^{\infty} \left(1 + 2xq^n \cos\left(\frac{\pi}{12}\right) + x^2q^{2n} \right) = \sum_{n=-\infty}^{\infty} G_n x^n,$$

then

(3.19)
$$\sum_{n=-\infty}^{\infty} q^{-n} G_n G_{2m+n} = \frac{q^{m(m+1)} \prod_{n=0}^{\infty} (1 + \sqrt{3}q^{2n+1} + q^{4n+2})}{(q)_{\infty}(q;q^2)_{\infty}} \cdot$$

A New Convolution Identity Deducible from the Remarkable Formula of Ramanujan 405

Proof. Changing m to 2m in (2.2), setting $\theta = \pi/12$ and noting from (1.4) that

(3.20)
$$G_n = G_n(q) = B_n(0, \pi/12, q)$$

we obtain on some simplification

(3.21)
$$\sum_{n=-\infty}^{\infty} q^{-n} G_n G_{2m+n} = \frac{q^{m(m+1)}}{(q)_{\infty}^2} \sum_{n=-\infty}^{\infty} q^{(m+n)^2} (-\omega i)^{m+n} \, .$$

Using the Jacobi's triple product identity (1.3) on the right side of (3.21) we obtain (3.19) after some simplification.

ACKNOWLEDGMENT

The first author is thankful to the Department of Science and Technology, Government of India, New Delhi for the financial support under the grant DST/MS/059/96. The authors are grateful to the referee for suggestions which considerably improved the quality of the paper.

References

- 1. B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
- S. Bhargava, C. Adiga and D. D. Somashekara, Ramanujan's remarkable summation formula and an interesting convolution identity, *Bull. Austral. Math. Soc.*, 47 (1993), 155-162.
- 3. G. H. Hardy, *Ramanujan*, 3rd ed Cambridge University Press, Cambridge (1940), reprinted by Chelsea, New York, 1978.
- C. G. J. Jacobi, *Fundamenta Nova, Theoriae Functionum, Ellipticarum*, Gesammelte Werke, Erster Band, G. Reimer, Berlin, 1881.
- S. Ramanujan, *Notebooks (2 volumes)*, Tata Institute of Fundamental Research, Bombay, 1957.
- 6. H. M. Srivastava, Some convolution identities based upon Ramanujan's bilateral sum, *Bull. Austral. Math. Soc.*, **49** (1994), 433-437.
- 7. K. W. Yang, on the product $\prod_{n\geq 1} (1+q^nx+q^{2n}x^2)$, J. Austral. Math. Soc. Ser. A, 48 (1990), 148-151.

S. Bhargava, D. D. Somashekara Department of Studies in Mathematics, University of Mysore, Manasa Gangotri, Mysore 570 006, India E-mail: srinivasamurthyb@yahoo.com dsomashekara@yahoo.com

D. Mamta Department of Mathematics, The National Institute of Engineering, Mysore 570 008, India E-mail: mathsmamta@yahoo.com