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A NEW CONVOLUTION IDENTITY DEDUCIBLE FROM THE
REMARKABLE FORMULA OF RAMANUJAN

S. Bhargava, D. D. Somashekara and D. Mamta

Abstract. In this paper we obtain a convolution identity for the coefficients
Bn(α, θ, q) defined by

∞∑
n=−∞

Bn(α, θ, q)xn =

∞∏
n=1

(1 + 2xqn cos θ + x2q2n)

∞∏
n=1

(1 + αqnxeiθ)

,

using the well-known Ramanujan’s 1ψ1-summation formula. The work pre-
sented here complements the works of K.-W. Yang, S. Bhargava, C. Adiga
and D. D. Somashekara and of H. M. Srivastava.

1. INTRODUCTION

The famous 1ψ1 summation formula of Ramanujan [5, Ch. 16] can be stated
as

(1.1)
∞∑

n=−∞

(a)n

(b)n
zn =

(az)∞(q/az)∞(q)∞(b/a)∞
(z)∞(b/az)∞(b)∞(q/a)∞

,

where |b/a| < |z| < 1, |q| < 1,

(a)∞ = (a; q)∞ :=
∞∏

n=0

(1− aqn),

(a)n = (a; q)n :=
(a)∞

(aqn)∞
, n : an integer.
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G. H. Hardy [3, pp. 222-223] has described (1.1) as a “remarkable formula with
many parameters”. There are several proofs of (1.1) in literature. For details one
may refer the book [1] by B. C. Berndt. Setting b = 0, a = −q/c and z = cz in
(1.1), we obtain

(1.2)
∞∑

n=−∞
(−q/c)n(cz)n =

(−qz)∞(−1/z)∞(q)∞
(−c)∞(cz)∞

.

Changing q to q2, z to z/q in (1.2) and then setting c = 0, we obtain the well-known
Jacobi’s triple product identity [4]

(1.3)
∞∑

n=−∞
qn2

zn = (−qz; q2)∞(−q/z; q2)∞(q2; q2)∞, z �= 0.

The main purpose of the present note is to obtain an interesting convolution identity
for the coefficients Bn(α, θ, q) defined by

(1.4)
∞∑

n=−∞
Bn(α, θ, q)xn =

∞∏
n=1

(1 + 2xqn cos θ + x2q2n)

∞∏
n=1

(1 + αqnxeiθ)

·

Our work complements the works of S. Bhargava, C. Adiga, D. D. Somashekara
[2], H. M. Srivastava [6], K.-W. Yang [7]. We prove our main theorem in Section
2. In Section 3 we deduce interesting special cases, which includes the convolution
identities of Yang [7] and of Bhargava, Adiga and Somashekara [2].

2. MAIN THEOREM

The following theorem contains the convolution identity for the coefficients
Bn(α, θ, q) given by (1.4).

Theorem. If Bn(α, θ, q) is as defined in (1.4), then

(2.1)

∞∑
n=−∞

q−nBn+m(α, θ, q)Bn(β, θ, q) =
(αq)∞(βq)∞(1/α)m(−αqeiθ)m

(q)2∞

×
∞∑

n=−∞

(
qm

α

)
n

(1/β)n(αβqe2iθ)n.
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Proof. By (1.4), we have

∞∑
n=−∞

Bn(α, θ, q)xn
∞∑

n=−∞
Bn(β, θ, q)(xq)−n

=
(−xqeiθ)∞(−xqe−iθ)∞

(−αqxeiθ)∞ · (−eiθ/x)∞(−e−iθ/x)∞
(−βeiθ/x)∞

=

[
(αq)∞
(q)∞

∞∑
n=−∞

(
1
α

)
n

(−αxqeiθ)n

][
(βq)∞
(q)∞

∞∑
n=−∞

(
1
β

)
n

(−βeiθ
x

)n
]
,

on using (1.2). Comparing the coefficients of xm we obtain,

∞∑
n=−∞

q−nBn+m(α, θ, q)Bn(β, θ, q)

=
(αq)∞(βq)∞

(q)2∞

∞∑
n=−∞

(
1
α

)
n+m

(−αqeiθ)n+m

(
1
β

)
n

(−βeiθ)n,

which on simplification yields (2.1).

Setting α = 0 = β, in (2.1) we obtain the following corollary.

Corollary.

(2.2)
∞∑

n=−∞
q−nBn+m(0, θ, q)Bn(0, θ, q) =

qm(m+1)/2emiθ

(q)2∞

∞∑
n=−∞

qn2+nme2niθ.

The above corollary can also be obtained from a known result [2, p. 157,
Theorem 2.1] (see also [6, p. 434, Theorem 1]).

3. SOME SPECIAL CASES

In this Section we obtain as special cases of (2.2) the convolution identities of
Yang [7], Bhargava, Adiga and Somashekara [2] and some more which seem new.

Theorem 3.1. [Yang]. If the coefficients An are defined by

∞∏
n=1

(1 + xqn + x2q2n) =
∞∑

n=−∞
Anx

n,
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then

(3.1)
∞∑

n=−∞
q−nAnA2m+n =

qm(m+1)(−q3; q6)∞(q2; q2)∞
(q; q)∞

,

(3.2)
∞∑

n=−∞
q−nAnA2m+n−1 =

qm2
(−q6; q6)∞(−q; q2)∞

(q; q)∞
·

Proof. Changing m to 2m in (2.2), setting θ = π/3 and noting from (1.4) that

(3.3) An = An(q) = Bn(0, π/3, q)

we obtain on some simplification

(3.4)
∞∑

n=−∞
q−nAnA2m+n =

qm(m+1)

(q)2∞

∞∑
n=−∞

q(m+n)2ωm+n ,

where ω is a cube root of unity. Using the Jacobi’s triple product identity (1.3) on
the right side of (3.4) we obtain (3.1) after some simplification.

Similarly on changing m to (2m−1) in (2.2) and then proceeding as above we
obtain on some simplification

(3.5)
∞∑

n=−∞
q−nAnA2m+n−1 =

qm2
(−ω)

(q)2∞

∞∑
n=−∞

q(m+n)2(ω/q)m+n .

Using the Jacobi’s triple product identity (1.3) on the right side of (3.5) we obtain
(3.2) after some simplification.

Theorem 3.2. [Bhargava, Adiga and Somashekara]. If the coefficients Dn are
defined by

∞∏
n=1

(1 + 2xqn + x2q2n) =
∞∑

n=−∞
Dnx

n,

then

(3.6.)
∞∑

n=−∞
q−nDnD2m+n =

qm(m+1)(−q; q2)2∞
(q; q)∞(q; q2)∞

,

(3.7)
∞∑

n=−∞
q−nDnD2m+n−1 =

2qm2
(−q2; q2)2∞

(q; q)∞(q; q2)∞
·
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Proof. Changing m to 2m in (2.2), setting θ = 0 and noting from (1.4) that

(3.8) Dn = Dn(q) = Bn(0, 0, q)

we obtain on some simplification

(3.9)
∞∑

n=−∞
q−nDnD2m+n =

qm(m+1)

(q)2∞

∞∑
n=−∞

q(m+n)2 .

Using the Jacobi’s triple product identity (1.3) on the right side of (3.9) we obtain
(3.6) after some simplification.

Similarly, on changing m to (2m−1) in (2.2) and then proceeding as above we
obtain on some simplification

(3.10)
∞∑

n=−∞
q−nDnD2m+n−1 =

qm2

(q)2∞

∞∑
n=−∞

q(m+n)2q− (m+n).

Using the Jacobi’s triple product identity (1.3) on the right side of (3.10) we
obtain (3.7) after some simplification.

Theorem 3.3. [Bhargava, Adiga and Somashekara]. If the coefficients Cn are
defined by

∞∏
n=1

(1 + xqn) =
∞∑

n=−∞
cnx

n,

then

(3.11)
∞∑

n=−∞
q−nCnCm+n =

qm(m+1)/2

(q; q)∞
·

Proof. Changing m to 2m in (2.2), setting θ = π/2 and noting from (1.4) that

(3.12) Cn = Cn(q) = Bn(0, π/2,
√
q)

we obtain on some simplification

(3.13)
∞∑

n=−∞
q−nCnC2m+n =

qm(m+1)

(q)2∞

∞∑
n=−∞

q(m+n)2(−1)m+n .

Using the Jacobi’s triple product identity (1.3) on the right side of (3.13) and
then changing q to q

1
2 we get (3.11) after some simplification.
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Theorem 3.4. If the coefficients En are defined by
∞∏

n=1

(1 +
√

3xqn + x2q2n) =
∞∑

n=−∞
Enx

n,

then

(3.14)
∞∑

n=−∞
q−nEnE2m+n =

qm(m+1)(q3; q6)∞(−q; q)∞
(q)∞(q; q2)∞

,

(3.15)
∞∑

n=−∞
q−nEnE2m+n−1 =

qm2
ω(ω − 1)i(q6; q6)∞

(q)2∞
·

Proof. Changing m to 2m in (2.2), setting θ = π/6 and noting from (1.4) that

(3.16) En = En(q) = Bn(0, π/6, q)

we obtain on some simplification

(3.17)
∞∑

n=−∞
q−nEnE2m+n =

qm(m+1)

(q)2∞

∞∑
n=−∞

q(m+n)2(−ω2)m+n .

Using the Jacobi’s triple product identity (1.3) on the right side of (3.17) we obtain
(3.14) after some simplification.

Similarly on changing m to (2m−1) in (2.2) and then proceeding as above we
obtain on some simplification

(3.18)
∞∑

n=−∞
q−nEnE2m+n−1 =

qm2
ω2i

(q)2∞

∞∑
n=−∞

q(m+n)2
(−ω2

q

)m+n

.

Using the Jacobi’s triple product identity (1.3) on the right side of (3.18) we obtain
(3.15) after some simplification.

Theorem 3.5. If the coefficients Gn are defined by
∞∏

n=1

(
1 + 2xqn cos

( π

12

)
+ x2q2n

)
=

∞∑
n=−∞

Gnx
n,

then

(3.19)
∞∑

n=−∞
q−nGnG2m+n =

qm(m+1)
∞∏

n=0

(1 +
√

3q2n+1 + q4n+2)

(q)∞(q; q2)∞
·
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Proof. Changing m to 2m in (2.2), setting θ = π/12 and noting from (1.4)
that

(3.20) Gn = Gn(q) = Bn(0, π/12, q)

we obtain on some simplification

(3.21)
∞∑

n=−∞
q−nGnG2m+n =

qm(m+1)

(q)2∞

∞∑
n=−∞

q(m+n)2(−ωi)m+n .

Using the Jacobi’s triple product identity (1.3) on the right side of (3.21) we obtain
(3.19) after some simplification.
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