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THE CONVERGENCE BALL OF NEWTON-LIKE METHODS
IN BANACH SPACE AND APPLICATIONS

Jinhai Chen and Qingying Sun

Abstract. Under the hypothesis that the derivative satisfies some kind of
weak Lipschitz condition, sharp estimates of the radii of convergence balls of
Newton-like methods for operator equations are given in Banach space. New
results can be used to analyze the convergence of other developed Newton
iterative methods.

1. INTRODUCTION

We consider the operator equation:

(1.1) f(x) = 0

where f(x) is an operator mapping from some domain D in a real or complex
Banach space X to another Y. Let f ′(x) denote the Frechet derivative of f at
x. Locally convergent iterative procedures commonly used to solve (1.1) have the
general form:

For n = 0 step 1 until convergence do
Find the step ∆n which satisfies

(1.2) Bn∆n = −f(xn)

Set xn+1 = xn + ∆n,

where x0 is a given initial guess. The process is Newton method if Bn = f ′(xn),
and it represents Newton-like methods if Bn = B(xn) approximates f ′(xn) (see[3]).

Received April 7, 2005, accepted September 8, 2005.
Communicated by H. M. Srivastava.
2000 Mathematics Subject Classification: 65H10.
Key words and phrases: Newton-like methods, Lipschitz condition, Convergence ball, Affine invariant
condition.

383



384 Jinhai Chen and Qingying Sun

Let x∗ denote the solution of (1.1), B(x, r) denote an open ball with radius r

and center x, and let B(x, r) denote its closure. Traub & Wozniakowski (see[2])
and Wang (see[6]) independently gave an exact estimate for the convergence ball of
Newton’s method. Under the hypothesis that f ′(x) satisfies the some generalized
Lipschitz conditions, Wang, Li et al (see[7,11]) also studied the convergence of
the Newton’s method. For more results on Newton iterative methods, we refer the
reader to [1, 3] and the references therein.

In this paper we study the convergence of Newton-like methods under weak
Lipschitz conditions and provide estimates of the radius of the convergence domain.
The results obtained include, as a special case, the sharp estimate for the radius of
convergence of Newton method given by Wang ([7, 11]). New results can also be
used to analyze the convergence of other developed Newton iterative methods.

2. PRELIMINARIES

The condition on the function f

(2.1) ‖f(x)− f(xτ )‖ ≤ L‖x − xτ‖, ∀x ∈ B(x∗, r),

where xτ = x∗ + τ(x−x∗), 0 ≤ τ ≤ 1, is usually called radius Lipschitz condition
in the ball B(x∗, r) with constant L. The function f satisfies the center Lipschitz
condition in the ball B(x∗, r) if it is only required to satisfy

(2.2) ‖f(x)− f(x∗)‖ ≤ L‖x − x∗‖, ∀x ∈ B(x∗, r).

The constant L in the Lipschitz condition needs not to be constant, but a positive
integrable function, If this is the case, then (2.1) or (2.2) is replaced by

(2.3) ‖f(x) − f(xτ )‖ ≤
∫ ρ(x)

τρ(x)
L(u)du, ∀x ∈ B(x∗, r), 0 ≤ τ ≤ 1,

or

(2.4) ‖f(x)− f(x∗)‖ ≤
∫ ρ(x)

0
L(u)du, ∀x ∈ B(x∗, r),

where ρ(x) = ‖x − x∗‖. Here L is a positive integrable function in (0, r) and
conditions (2.3), (2.4) are denoted as Lipschitz conditions with the L average.

By Banach’s theorem (see[3, 9]), the following result can be obtained directly.

Lemma 2.1. (see[7]) Suppose that f has a continuous derivative in B(x ∗, r),
f ′(x∗)−1 exists and f ′(x∗)−1f ′ satisfies the center Lipschitz condition with the L

average:

(2.5) ‖f ′(x∗)−1f ′(x) − I‖ ≤
∫ ρ(x)

0
L(u)du, ∀x ∈ B(x∗, r),
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where L is positive integrable function. Let r satisfy

(2.6)
∫ r

0
L(u)du ≤ 1,

then f ′(x) is invertible in this ball and

(2.7) ‖f ′(x)−1f ′(x∗)‖ ≤
(

1−
∫ ρ(x)

0

L(u)du

)−1

.

Lemma 2.2. (see [10, 11, 12]) Let

(2.7) h(t) =
1
tα

∫ t

0
L(u)uα−1du, α ≥ 1, 0 ≤ t ≤ r,

where L(u) is a positive integrable function nondecreasing in [0, r]. Then h(t) is
nondecreasing with respect to t.

Lemma 2.3. [12] Let

(0.1) ϕ(t) =
1
t2

∫ t

0
L(u)(αt− u)du, α ≥ 1, 0 ≤ t ≤ r,

where L(u) is a positive integrable function and nondecreasing monotonically in
[0, r]. Then ϕ(t) is nondecreasing monotonically with respect to t.

3. CONVERGENCE BALL OF NEWTON-LIKE METHODS

Theorem 3.1. Suppose x∗ satisfies (1.1), f has a continuous derivative in
B(x∗, r), f ′(x∗)−1 exists and f ′(x∗)−1f ′ satisfies the radius Lipschitz condition
with L average:

(3.1) ‖f ′(x∗)−1
(
f ′(x) − f ′(xτ )

) ‖≤∫ ρ(x)

τρ(x)
L(u)du, ∀x∈B(x∗, r), 0≤τ≤1,

where xτ = x∗ + τ(x − x∗), ρ(x) = ‖x − x∗‖, and L is nondecreasing. Let B(x)
be invertible and

(3.2) ‖B(x)−1f ′(x)‖ ≤ υ1, ‖B(x)−1f ′(x) − I‖ ≤ υ2, ∀x ∈ B(x∗, r),

where I is unit operator. Let r > 0 satisfy
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(3.3)
υ1

∫ r
0 L(u)udu

r
(
1 − ∫ r

0 L(u)du
) + υ2 ≤ 1.

Then Newton-like methods are convergent for all x 0 ∈ B(x∗, r) and

(3.4)
‖xn+1 − x∗‖ ≤ υ1

∫ ρ(x0)
0 L(u)udu

ρ(x0)2
(
1−∫ ρ(x0)

0 L(u)du
)‖xn − x∗‖2 + υ2‖xn − x∗‖,

n = 0, 1, · · · ,

where

(3.5) q =
υ1

∫ ρ(x0)
0 L(u)udu

ρ(x0)
(
1 − ∫ ρ(x0)

0 L(u)du
) + υ2

is less than 1.

Proof. Choosing x0 ∈ B(x∗, r) where r satisfies (3.3), then q determined by
(3.5) is less than 1. In fact, from the monotonicity of L and Lemma 2.2, we have

q =
υ1

∫ ρ(x0)
0 L(u)udu

ρ(x0)2
(
1− ∫ ρ(x0)

0 L(u)du
)ρ(x0) + υ2 <

υ1

∫ r
0 L(u)udu

r2
(
1− ∫ r

0 L(u)du
)r + υ2 ≤ 1.

Now if xn ∈ B(x∗, r), we have by (1.2)

xn+1−x∗ = xn−x∗−B−1
n (f(xn)−f(x∗))

= xn−x∗−
∫ 1

0
B−1

n f ′(xτ )dτ(xn−x∗)

= B−1
n f ′(xn)

∫ 1

0
f ′(xn)−1f ′(x∗)

(
f ′(x∗)−1(f ′(xn)−f ′(xτ ))

)
(xn−x∗)dτ

+B−1
n (Bn−f ′(xn))(xn−x∗),

where xτ = x∗ + τ(xn − x∗). Hence, by Lemma 2.1 and condition (3.1) we obtain

‖xn+1 − x∗‖ ≤ ‖B−1
n f ′(xn)‖

∫ 1

0
‖f ′(xn)−1f ′(x∗)‖‖f ′(x∗)−1(f ′(xn)− f ′(xτ ))‖

· ‖xn − x∗‖dτ + ‖B−1
n (Bn − f ′(xn)‖ · ‖xn − x∗‖

≤ υ1

1 − ∫ ρ(xn)
0 L(u)du

∫ 1

0

∫ ρ(xn)

τρ(xn)

L(u)duρ(xn)dτ + υ2ρ(xn)

=
υ1

∫ ρ(xn)
0 L(u)udu

1 − ∫ ρ(xn)
0 L(u)du

+ υ2ρ(xn).
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Taking n = 0 above, we obtain ‖x1 − x∗‖ ≤ q‖x0 − x∗‖ < ‖x0 − x∗‖, i.e.,
x1 ∈ B(x∗, r). By mathematical induction, all xn belong to B(x∗, r) and ρ(xn) =
‖xn − x∗‖ decreases monotonically. Therefore, for all n = 0, 1, · · · , we have

‖xn+1 − x∗‖ ≤
υ1

∫ ρ(xn)

0
L(u)udu

ρ(xn)2
(

1−
∫ ρ(xn)

0
L(u)du

)ρ(xn)2 + υ2ρ(xn)

≤
υ1

∫ ρ(x0)

0
L(u)udu

ρ(x0)2
(

1 −
∫ ρ(x0)

0
L(u)du

)ρ(xn)2 + υ2ρ(xn).

Thus (3.4) follows.

Theorem 3.2. Suppose x∗ satisfies (1.1), f has a continuous derivative in
B(x∗, r), f ′(x∗)−1 exists and f ′(x∗)−1f ′ satisfies the center Lipschitz condition
with L average.

(3.6) ‖f ′(x∗)−1f ′(x) − I‖ ≤
∫ ρ(x)

0
L(u)du, ∀x ∈ B(x∗, r),

where ρ(x) = ‖x − x∗‖, and L is nondecreasing. Let condition (3.2) hold. Let
r > 0 satisfy

(3.7)
υ1

∫ r

0

L(u) (2r − u) du

r

(
1 −

∫ r

0
L(u)du

) + υ2 ≤ 1.

Then Newton-like methods are convergent for all x 0 ∈ B(x∗, r) and

(3.8)
‖xn+1−x∗‖≤

υ1

∫ ρ(xn)

0
L(u) (2ρ(x0)−u)du

ρ(x0)

(
1−
∫ ρ(x0)

0

L(u)du

) ‖xn−x∗‖2+υ2‖xn−x∗‖,

n = 0, 1, · · · ,

where

(3.9) q =
υ1

∫ ρ(x0)

0

L(u) (2ρ(x0) − u) du

ρ(x0)

(
1 −

∫ ρ(x0)

0
L(u)du

) + υ2
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is less than 1.

Proof. Arbitrarily choosing x0 ∈ B(x∗, r), where r satisfies (3.7), then q

determined by (3.9) is less than 1. In fact, by the monotonicity of L and Lemma
2.3, we have

q =
υ1

∫ ρ(x0)

0
L(u) (2ρ(x0)− u) du

ρ(x0)2
(

1−
∫ ρ(x0)

0

L(u)du

) ρ(x0)+υ2<
υ1

∫ r
0 L(u) (2r − u) du

r2

(
1 −

∫ r

0
L(u)du

) r+υ2≤1.

Now if xn ∈ B(x∗, r), we have by (1.2)

xn+1−x∗ = xn−x∗−B−1
n (f(xn)−f(x∗))

= xn−x∗−
∫ 1

0
B−1

n f ′(xτ )dτ(xn−x∗)

= B−1
n f ′(xn)

∫ 1

0
f ′(xn)−1f ′(x∗)

(
f ′(x∗)−1(f ′(xn)−f ′(xτ ))

)
(xn−x∗)dτ

−B−1
n (f ′(xn)−Bn)(xn−x∗),

where xτ = x + τ(xn − x∗). Hence, by Lemma 2.1 and condition (3.6) we obtain

‖xn+1 − x∗‖ ≤ ‖B−1
n f ′(xn)‖

∫ 1

0
‖f ′(xn)−1f ′(x∗)‖‖f ′(x∗)−1(f ′(xn) − f ′(xτ ))‖

·‖xn − x∗‖dτ

≤ ‖B−1
n f ′(xn)‖ · ‖f ′(xn)−1f ′(x∗)‖

(∫ 1

0
‖f ′(x∗)−1(f ′(xn)

− f ′(x∗))‖dτ +
∫ 1

0
‖f ′(x∗)−1(f ′(xτ )− f ′(x∗))‖dτ

)
· ‖xn−x∗‖

+ ‖B−1
n (f ′(xn) − Bn)‖ · ‖xn − x∗‖

≤ υ1

1−
∫ ρ(xn)

0
L(u)du

∫ 1

0

(∫ ρ(xn)

0
+
∫ τρ(xn)

0

)
L(u)duρ(xn)dτ+υ2ρ(xn)

=
υ1

∫ ρ(xn)

0
L(u) (2ρ(xn) − u) du

1−
∫ ρ(xn)

0
L(u)du

+ υ2ρ(xn).

Taking n = 0 above, we obtain ‖x1 − x∗‖ ≤ q‖x0 − x∗‖ < ‖x0 − x∗‖. Hence, i.e.
x1 ∈ B(x∗, r), this shows that (1.2) can be continued an infinite number of times.
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By mathematical induction, all xn belong to B(x∗, r) and ρ(xn) = ‖xn − x∗‖
decreases monotonically. Therefore, for all n = 0, 1, · · · , we have

‖xn+1 − x∗‖ ≤ υ1

∫ ρ(xn)
0 L(u) (2ρ(xn) − u) du

ρ(xn)2
(
1 − ∫ ρ(xn)

0 L(u)du
) ρ(xn)2 + υ2ρ(xn)

≤ υ1

∫ ρ(x0)
0 L(u) (2ρ(x0)− u) du

ρ(x0)2
(
1 − ∫ ρ(x0)

0 L(u)du
) ρ(xn)2 + υ2ρ(xn).

Thus (3.8) follows.

Remark. Suppose that B(x) = f ′(x) and the equality sign holds in the
inequality (3.3) in Theorem 3.1. Then the given value r of the convergence ball is
the best possible, see Theorem 5.1 [7]. Furthermore, note that r depends on L, υ1,
υ2, but it is independent of f .

4. COROLLARIES OF THE MAIN RESULTS

In the study of the Newton’s method, the assumption that the derivative is
Lipschitz continuous is considered traditional. Combining Theorems 3.1 ∼ 3.2, and
taking L as a constant, the following corollaries are obtained directly.

Corollary 4.1. Suppose x∗ satisfies (1.1), f has a continuous derivative in
B(x∗, r), f ′(x∗)−1 exists and f ′(x∗)−1f ′ satisfies the radius Lipschitz condition
with L average:

(4.1) ‖f ′(x∗)−1(f ′(x)−f ′(xτ ))‖ ≤ (1−τ)L‖x−x∗‖, ∀x ∈ B(x∗, r), 0 ≤ τ ≤ 1,

where xτ = x∗ + τ(x − x∗), L is positive number. Let condition (3.2) hold and

(4.2) r =
2(1− υ2)

L(υ1 + 2 − 2υ2)
.

Then, Newton-like methods are convergent for all x0 ∈ B(x∗, r),

(4.3) q =
υ1L‖x0 − x∗‖

2 (1 − L‖x0 − x∗‖) + υ2 < 1

and the inequality (3.4) holds.

Corollary 4.2. Suppose x∗ satisfies (1.1), f has a continuous derivative in
B(x∗, r), f ′(x∗)−1 exists and f ′(x∗)−1f ′ satisfies the center Lipschitz condition
with L average:

(4.4) ‖f ′(x∗)−1f ′(x)− I‖ ≤ L‖x− x∗‖, ∀x ∈ B(x∗, r).
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Let condition (3.2) hold and

(4.5) r =
2α

(3 + 2α)L
,

where α = 1−υ2
υ1

. Then Newton-like methods are convergent for all x0 ∈ B(x∗, r),

(4.6) q =
3υ1L‖x0 − x∗‖

2 (1 − L‖x0 − x∗‖) + υ2 < 1

and the inequality (3.9) holds.
By Theorems 3.1 and 3.2, and taking

(4.7) L(u) =
2γ

(1 − γu)3
,

we obtain the following corollaries.

Corollary 4.3. Suppose x∗ satisfies (1.1), f has a continuous derivative in
B(x∗, r), f ′(x∗)−1 exists and f ′(x∗)−1f ′ satisfies the radius Lipschitz condition
with L average:
(4.8)
‖f ′(x∗)−1(f ′(x)−f ′(xτ ))‖ ≤ 1

(1 − γ‖x− x∗‖)2−
1

(1 − τγ‖x− x∗‖)2 , 0 ≤ τ ≤ 1,

where xτ = x∗ + τ(x − x∗), γ is positive number. Let condition (3.2) hold and

(4.9) r =
4α + 1−√

8α2 + 8α + 1
4γα

,

where α = 1−υ2
υ1

, then Newton-like methods are convergent for all x 0 ∈ B(x∗, r),

(4.10) q =
υ1γ‖x0 − x∗‖

1 − 4γ‖x0 − x∗‖ + 2 (γ‖x0 − x∗‖)2 + υ2 < 1

and the inequality (3.4) holds.

Corollary 4.4. Suppose x∗ satisfies (1.1), f has a continuous derivative in
B(x∗, r), f ′(x∗)−1 exists and f ′(x∗)−1f ′ satisfies the center Lipschitz condition
with L average:

(4.11) ‖f ′(x∗)−1f ′(x)− I‖ ≤ 1
(1 − γ‖x− x∗‖)2 − 1,

γ is positive number. Let condition (3.2) hold and
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(4.12) r =
3 + 4α −√

8α2 + 16α + 9
4γ(1 + α)

,

where α = 1−υ2
υ1

. Then Newton-like methods are convergent for all x0 ∈ B(x∗, r),

(4.13) q =
υ2

(
1 − (1 + 2γ‖x0 − x∗‖)(1− γ‖x0 − x∗‖)2)
γ‖x0 − x∗‖ (2(1 − γ‖x0 − x∗‖)2 − 1)

+ υ2 < 1

and the inequality (3.9) holds.
Taking υ1 = 1 and υ2 = 0 in (3.2), we get the Newton method. For this case,

the results of Corollaries 4.1 and 4.3 merge into Corollaries 6.1 and 6.3 by Wang
[7]. Therefore, Corollaries 4.1 ∼ 4.4 generalize known results for Newton methods
to the Newton-like framework.

Using Theorems 3.1 ∼ 3.2 and considering some functions L, we can derive
the radii of convergence of Newton-like methods. In the following example, let c
be a positive number.

Example 1. Taking

(4.14) L(u) = 2cγ(1− γu)−3,

we obtain that if the right-hand side in (4.8) is replaced by

(4.15)
c

(1 − γ‖x− x∗‖)2 − c

(1 − τγ‖x− x∗‖)2 ,

we have

(4.16) r =
2α(c + 1) + c −√c(4α2(c + 1) + 4α(c + 1) + c)

2αγ(c + 1)
,

and

(4.17) q =
υ1cγ‖x0 − x∗‖

1− 2(c + 1)γ‖x0 − x∗‖ + (c + 1) (γ‖x0 − x∗‖)2 + υ2.

If the right-hand side in (4.11) is replaced by

(4.18)
c

(1 − γ‖x− x∗‖)2 − 1,

we have

(4.19) r =
2α + 3c + 2αc −√c (4α + 4α2 + 9c + 12αc + 4α2c)

2γ(α + 2c + αc)
,
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and

(4.20) q =
υ1c

(
1 − (1 + 2γ‖x0 − x∗‖)(1− γ‖x0 − x∗‖)2)

γ‖x0 − x∗‖ ((1 + c)(1− γ‖x0 − x∗‖)2 − c)
+ υ2,

where α = 1−υ2
υ1

.

Example 2. Taking

(4.21) L(u) = 2cγ(1− γu)−3/2,

we obtain that if the right-hand side in (4.8) is replaced by

(4.22)
c√

1 − γ‖x− x∗‖ − c√
1 − τγ‖x− x∗‖ ,

we have

(4.23) r=

√
16α3c(1+c)2+(2αc(2+c)−α2(1+2c)+c2)2−(2αc(2+c)−α2(1+2c)+c2)

2γα2(c+1)2
,

and

(4.24) q=
υ1cγ‖x0−x∗‖

2−(c+2)γ‖x0−x∗‖+(2−(c+1)γ‖x0−x∗‖)√1−γ‖x0−x∗‖ + υ2.

If the right-hand side in (4.11) is replaced by

(4.25)
c√

1 − γ‖x− x∗‖ − c,

we have
(4.26)

r=




α2+32αc+8α2c+48c2+32αc2+(α−4c)
√

α2+8αc+16α2c+144c2+192αc2+64α2c2

2γ(α2+16αc+8α2c+64c2+64αc2+16α2c2)
, if c≤ α

4 ;

α2+32αc+8α2c+48c2+32αc2−(α−4c)
√

α2+8αc+16α2c+144c2+192αc2+64α2c2

2γ(α2+16αc+8α2c+64c2+64αc2+16α2c2) , if c> α
4 ,

and

(4.27) q=
4υ1c

(
2(1−γ‖x0−x∗‖)2+√1−γ‖x0−x∗‖ (3γ‖x0−x∗‖−2)

)
γ‖x0−x∗‖

(
(1+4c) (1−γ‖x0−x∗‖)−4c

√
1−γ‖x0−x∗‖

) +υ2,

where α = 1−υ2
υ1

.
For the rest of this paper, we will assume that X and Y are finite dimensional

spaces Rn.
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We remark that the conditions (3.1), (3.2) and (4.1), (4.5) are affine invariant, as
they are insensitive with respect to transformations of the mapping f(x) of the form:
f(x) −→ Af(x), A an invertible matrix, as long as the same affine transformation
is also valid for B(x).

Since Newton’s iterates are affine invariant, in [4, 5] convergence conditions
were determined in affine invariant terms. We point out that, if the affine transfor-
mation is valid for B, i.e. B(x) → AB(x), then Theorems 3.1 and 3.2 represent
an affine convergence analysis of Newton-like methods.

5. APPLICATIONS TO DETERMINATE CONVERGENCE BALL OF

NEWTON ITERATIVE METHOD

Clearly many developed Newton iterative methods [3, 8] can be classified as
Newton-like methods. Theorems 3.1 and 3.2 establish convergence analysis for
many methods and make us explicitly see how big the convergence field, comparing
with Newton’s method.

In [8] Newton-arithmetic mean (Newton-AM) method for solving the system of
nonlinear equations

(5.1) f(x) = 0, f : D ⊆ Rn −→ Rn

were studied by E.Galligani. Now we will show how to determinate the convergence
ball of Newton-AM method using Theorem 3.1.

E.Galligani considered the following two splittings of the matrix f ′(x)

(5.2) f ′(x) = M1(x) − N1(x) = M2(x) − N2(x),

where the spectral radius ρ(M1(x)−1N1(x)) < 1, ρ(M2(x)−1N2(x)) < 1.
Combining the splittings (5.2), Newton-AM method can be described as follows:

Choose the initial guess x0

For n = 0 step 1 until convergence do

w(0)
n = 0

For j = 1, · · · , jn do

M1(xn)z1 = N1(xn)w(j−1)
n − f(xn)

M2(xn)z2 = N2(xn)w(j−1)
n − f(xn)

w(j)
n =

1
2
(z1 + z2)

Set xn+1 = xn + w
(jn)
n .
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Here {jn} denotes a sequence of positive integers.
In fact, at each outer iteration n, the Newton-AM method generates the vectors

w(1)
n = −M(xn)−1f(xn),

w(2)
n = −(H(xn) + I)M(xn)−1f(xn),

...

w(jn)
n = −


jn−1∑

j=0

(H(xn))j


M(xn)−1f(xn),

where

(5.3) M(x)−1 =
1
2
(
M1(x)−1 + M2(x)−1

)
,

(5.4) H(x) =
1
2
(
M1(x)−1N1(x) + M2(x)−1N2(x)

)
= I − M(x)−1f ′(x).

If we set

(5.5) B(xn)−1 =


jn−1∑

j=0

(H(xn))j


M(xn)−1,

then we have

(5.6) xn+1 = xn − B(xn)−1f(xn).

Thus, the Newton-AM method can be regarded as a class Newton-like method in
which f ′(xn) has been replaced by the matrix B(xn) given by (5.5).

We now assume that the matrices M1(xn), M2(xn), M(xn) are all nonsingular
and H(x) is convergent at xn ∈ D (i.e., the spectral radius ρ(H(xn)) < 1). Thus
from (5.5),

(5.7)

B(xn)−1 =
(
I − (H(xn))jn

)
(I − H(xn))−1 M(xn)−1

=
(
I − (H(xn))jn

)(
M(xn)−1f ′(xn)

)−1
M(xn)−1

=
(
I − (H(xn))jn

)
f ′(xn)−1.

Now combining the above discussion and Theorem 3.1 we will give the con-
vergence ball of Newton-AM method.

Theorem 5.1. Suppose x∗ satisfies (5.1), f has a continuous derivative in
B(x∗, r), f ′(x∗)−1 exists and f ′(x∗)−1f ′ satisfies the radius Lipschitz condition
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(3.1) with L average. M1(x), M2(x), M(x), H(x) are invertible for all x ∈
B(x∗, r) and

(5.8) ‖I − H(x)‖ ≤ υ1, ‖H(x)‖ ≤ υ2 ≤ 1.

Let r > 0 satisfy

(5.9)
υ1

∫ r
0 L(u)udu

r(1− υ2)
(
1 − ∫ r

0 L(u)du
) + υ2 ≤ 1.

Then Newton-AM method is convergent for all x 0 ∈ B(x∗, r) and

(5.10)
‖xn+1 − x∗‖ ≤

υ1

∫ ρ(x0)

0
L(u)udu

ρ(x0)2(1 − υ2)

(
1 −

∫ ρ(x0)

0
L(u)du

)

‖xn − x∗‖2 + υ2‖xn − x∗‖, n = 1, 2, · · · ,

where

(5.11) q =
υ1

∫ ρ(x0)

0
L(u)udu

ρ(x0)(1− υ2)

(
1 −

∫ ρ(x0)

0
L(u)du

) + υ2

is less than 1.

Proof. In fact, From (5.7) and (5.8), we have

‖B(xk)−1f ′(xk) − I‖ = ‖ (H(xk))
jk ‖ ≤ ‖H(xk)‖jk ≤ υ2,

‖B(xk)−1f ′(xk)‖ = ‖I − (H(xk))
jk ‖

≤ ‖I − H(xk)‖ ·
jk−1∑
j=0

‖H(x(k))‖j ≤ ‖I − H(xk)‖
1 − ‖H(xk)‖ ≤ υ1

1 − υ2
.

By Theorem 3.1, we obtain the result immediately.

Taking L(u) as a positive constant, we can have the following corollary directly.

Corollary 5.1. Suppose x∗ satisfies (5.1), f has a continuous derivative in
B(x∗, r), f ′(x∗)−1 exists and f ′(x∗)−1f ′ satisfies the radius Lipschitz condition
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(5.1) with L(u) a positive constant. M1(x), M2(x), M(x), H(x) are invertible for
all x ∈ B(x∗, r) and (5.8) holds, Let

(5.12) r =
2(1− υ2)2

Lυ1 + 2L(1− υ2)2
> 0.

Then Newton-AM method is convergent for all x 0 ∈ B(x∗, r) and for

(5.13) q =
υ1L‖x0 − x∗‖

2(1− υ2) (1 − L‖x0 − x∗‖) + υ2 < 1

the inequality (5.10) holds.
Under affine invariant Lipschitz condition:

(5.14) ‖f ′(u)−1(f ′(v)− f ′(u))‖ ≤ L‖u − v‖, ∀u, v ∈ B(x∗, r),

E.Galligani [8,Theorem 1] gave the convergence analysis of Newton-AM method.
It is clear that the conditions (3.1) and (4.1) are different from the condition (5.14).
That is to say, under others affine invariant Lipschitz condition, Theorem 5.1 and
Corollary 5.1 show the convergence analysis of Newton-AM method, so Theorem
5.1 and Corollary 5.1 extend the results of E.Galligani and expand the application
field of Newton-AM method.
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